
ar
X

iv
:2

10
9.

04
30

4v
1

 [
cs

.L
G

]
 9

 S
ep

 2
02

1
JOURNAL OF 1

DAE-PINN: A Physics-Informed Neural Network

Model for Simulating Differential Algebraic

Equations with Application to Power Networks
Christian Moya, Member, IEEE, and Guang Lin, Senior Member, IEEE

Abstract—Deep learning-based surrogate modeling is becom-
ing a promising approach for learning and simulating dynamical
systems. Deep-learning methods, however, find very challenging
learning stiff dynamics. In this paper, we develop DAE-PINN,
the first effective deep-learning framework for learning and sim-
ulating the solution trajectories of nonlinear differential-algebraic
equations (DAE), which present a form of infinite stiffness and
describe, for example, the dynamics of power networks. Our
DAE-PINN bases its effectiveness on the synergy between implicit
Runge-Kutta time-stepping schemes (designed specifically for
solving DAEs) and physics-informed neural networks (PINN) (deep
neural networks that we train to satisfy the dynamics of the
underlying problem). Furthermore, our framework (i) enforces
the neural network to satisfy the DAEs as (approximate) hard
constraints using a penalty-based method and (ii) enables simu-
lating DAEs for long-time horizons. We showcase the effectiveness
and accuracy of DAE-PINN by learning and simulating the
solution trajectories of a three-bus power network.

Index Terms—Deep learning, Data-driven scientific computing,
Nonlinear differential-algebraic equations, Implicit Runge-Kutta.

I. INTRODUCTION

IN recent years, we have seen the power network incorpo-

rate more and more transformative technologies such as

integrating distributed energy resources, enabling a liberal-

ized market, or adopting more complex communication and

control algorithms. Such transformation seeks to enhance the

reliability and efficiency of the power network operation. This

transformation, however, pushes the power network to operate

under a more diversified set of operating conditions and

contingencies that could potentially compromise its security.

To assess the power network’s dynamic security [1], op-

erators implement an offline procedure that seeks to predict

whether the power network will remain safely operating after

facing a single contingency (e.g., the disconnection of a gen-

erator) from a set of credible contingencies. Such a procedure

is known as the N − 1 criteria [2] and requires simulating the

power network’s dynamic response.

Simulating the power network’s dynamic response requires

integrating a set of nonlinear differential-algebraic equa-

tions (DAE) [1]. Solving this set of DAEs is, however, a chal-

lenging task. Indeed, the classical explicit integration schemes

fail catastrophically on such a task [3]. As a result, most

commercial solvers for DAEs use numerically stable schemes

C. Moya and G. Lin are with the Department of Mathematics, Pur-
due University, West Lafayette, IN, 47907 USA e-mail: {cmoyacal, guan-
glin}@purdue.edu.

to integrate the dynamic equations and iterative schemes to

solve the algebraic equations [4]. However, the computational

cost and memory required to integrate DAEs are very high

and constitute the main obstacle to deploying dynamic security

assessment online [5]. However, with the transformation the

power network now faces, soon, it will become imperative for

electric utilities to assess security online, which calls for the

faster integration/simulation of DAEs.

Motivated by the above power network application, in this

paper, we seek to derive a deep learning (DL) framework that

accelerates simulating nonlinear DAEs. Enabled by the expo-

nential growth of computational power and data availability,

DL has achieved outstanding performance in computer vision

and natural language processing applications [6], and promises

to also revolutionize the scientific and engineering fields.

However, the current application of DL to learn scientific and

engineering dynamical systems is, at most, limited since the

cost of collecting data is prohibitive. Most conventional DL

methods (e.g., convolutional or recurrent neural networks) lack

robustness and generalization capabilities in such a small data

regime.

In recent years, the field of scientific machine learning [7]

has provided us with a series of new transformative works [8],

[9], [10], [11] aiming at learning the differential equations

describing dynamical systems and, hence providing us with

an efficient alternative to traditional costly numerical solvers.

Behind most of these transformative works lies the idea of us-

ing the physical laws that govern these dynamical systems [8].

Such prior information acts as a regularizing agent, limiting

the space of possible solutions and enabling generalizing well

even when the amount of data is small. Admittedly, there

is still much work needed to scale physics-informed deep

learning methods so that they can become accurate surrogate

models of large-scale dynamical systems. In particular, these

accurate surrogate models must (i) predict solution trajectories

for a large set of initial conditions and (ii) maintain physical

accuracy for long-time horizons.

Despite the success of scientific machine learning for learn-

ing the solution trajectories of ordinary differential equa-

tions [11], developing a DL-based framework for learning and

simulating the solution trajectories of nonlinear differential-

algebraic equations remains an open problem. This is be-

cause DAEs present a form of infinite stiffness [12] that

may produce gradient pathologies [13] and ill-conditioned

optimization problems, leading to the failure of the stochastic

gradient descent-based training. The first attempts to derive

http://arxiv.org/abs/2109.04304v1

JOURNAL OF 2

DL frameworks for learning stiff differential equations were

presented in [14] and [12]. In [14], the authors show that

continuous PINN models fail to learn stiff ODEs and propose

using quasi-steady-state assumptions to derive a simpler model

more suitable for PINNs. In [12], Kim et al. modified neural

ordinary differential equations [15] so that they can learn the

solution trajectories of stiff problems for long-time horizons.

Both of the above methods have their merits, but, as presented,

they are not suitable for learning the solution trajectories of

the DAEs studied in this paper.

In this paper, we develop DAE-PINN, the first deep

learning-based framework for learning and simulating the so-

lution trajectories of semi-explicit differential-algebraic equa-

tions (DAE) of index-1. In particular, our objectives in this

paper are:

1) Forward problem: deriving a framework that learns to

map a given distribution of initial conditions to the

solution trajectories (within a short-time interval) of a

dynamical system described by DAEs.

2) Long-time simulation of DAEs: designing an algorithm

that uses the trained framework to simulate DAEs over

long-time horizons.

We detail our contributions next.

1) We design a deep learning (DL) framework (DAE-PINN

- Sections III-A and III-B) that tackles the forward

problem by enabling the synergistic combination of a

discrete physics-informed neural network model with an

implicit Runge-Kutta scheme designed specifically for

solving DAEs. Thus, our framework effectively extends

the method proposed in [8] to DAEs.

2) A penalty-based method is then introduced (Sec-

tion III-C) to facilitate the training of DAE-PINN. The

penalty method aims to enforce DAE-PINN to satisfy

the DAEs as (approximate) hard constraints.

3) For the long-time simulation of DAEs, we propose an

algorithm (Section III-D) that iteratively evaluates the

trained DAE-PINN. Following a Markov-like procedure,

the proposed algorithm uses the DAE-PINN prediction

of the previous evaluation step as the initial condition

for the next step.

4) We illustrate the training protocols for DAE-PINN and

evaluate its effectiveness (Section IV) using a three-bus

power network example described by a set of stiff and

nonlinear DAEs.

We organize this work as follows. In Section II, we introduce

the differential algebraic equations (DAE) studied in this

paper. In Section III, after describing the implicit Runge-

Kutta (IRK) time-stepping scheme, we describe DAE-PINN,

i.e., the discrete physics-informed neural network that allows

us to use the IRK scheme (with an arbitrary number of

stages) for solving DAEs. We then describe the penalty method

that enforces DAE-PINN to satisfy the DAEs as approximate

hard constraints. We conclude Section III by introducing

Algorithm 2 that enables us to use the trained DAE-PINN

for simulating DAEs over long-time horizons. In Section IV,

we verify the effectiveness of the proposed framework using

a three-bus power network example. We provide a discussion

of our results and future work in Section V and conclude the

paper in Section VI.

II. PROBLEM SETUP

In this paper, we develop DAE-PINN, a deep learning-

based framework that employs physics-informed neural net-

works [8] and implicit Runge-Kutta schemes [3] for learning

the solution trajectories of nonlinear Differential-Algebraic

equations (DAE) [16] given in the semi-explicit form

ẏ = f(y, z), y(t0) = y0 (1a)

0 = g(y, z), z(t0) = z0, (1b)

where y = y(t) ∈ R
n are the dynamic states, z = z(t) ∈ R

m

are the algebraic variables, f : R
n × R

m → R
n describes

the differential equations, g : Rn × R
m → R

m the algebraic

equations, t ∈ [t0, T] the simulation time interval, and T > t0
the time horizon.

Assumptions: Let us assume that f and g are sufficiently often

differentiable and the initial conditions satisfy g(y0, z0) = 0.

We also assume that the DAEs (1) are of index 1 [17], which

means that the inverse of the Jacobian gz = ∂g/∂z exists

and is bounded in a neighborhood of the exact solution.

This implies that, by the implicit function theorem [18],

the algebraic equations (1b) have locally a unique solution

z = G(y). Hence the DAE (1) is equivalent to the following

system of ordinary differential equations

ẏ = f(y,G(y)). (2)

with initial conditions (y(t0), z(t0)) = (y0, G(y0)). Notice

that the examples studied in Ji et al. [14] (Stiff-PINNs)

correspond to a special case in our problem setup where the

algebraic variables z can be solved for explicitly to obtain (2).

Applications: DAEs frequently arise in dynamic simulations

of power networks [1], mechanical problems, trajectory

control, etc. DAEs also originate from singular perturbation

problems (SPP) of the form

ẏ = f(y, z) (3a)

ǫż = g(y, z), (3b)

by letting the parameter ǫ > 0 approach zero. SPPs have

been used to study (i) nonlinear oscillations with large param-

eters, (ii) structure-preserving power networks with frequency-

dependent dynamic loads, and (iii) chemical kinetics with slow

and fast reactions.

We conclude this section with the following remark. The

DAE-PINN that we will develop in Section III could also be

used for solving problems described in descriptor form

Mẋ = ϕ(x), x(t0) = x0, (4)

where x ∈ R
n+m and M is a singular matrix. To that end, we

show next that (4) is mathematically equivalent to the DAE (1).

First, we decompose M (e.g., via Gaussian elimination with

total pivoting) as

M = S

(

I 0
0 0

)

T

JOURNAL OF 3

where S and T are invertible matrices and I is the identity

matrix with dimension corresponding to the rank of M . Then,

we insert the above into (4) and use Tu =
(

y⊤, z⊤
)⊤

to obtain
(

ẏ
0

)

= S−1ϕ

(

T−1

(

y
z

))

=:

(

f(y, z)
g(y, z)

)

,

i.e., the semi-explicit DAE (1). Thus, the deep learning frame-

work that we will derive in Section III for (1) also applies for

problems in descriptor form (4), provided we can decompose

the matrix M .

III. PROPOSED METHOD - DAE-PINN

This section describes our DAE-PINN framework, i.e., a

physics-informed neural network framework that allows to

solve the DAE (1) using the implicit Runge-Kutta (IRK) time-

stepping scheme with ν stages.

A. Implicit Runge-Kutta Scheme

Let us start by assuming that the integration of (1) has

been carried out up to (tn, yn, zn) and we seek to advance

it to (tn+1, yn+1, zn+1), where tn+1 = tn + h and h > 0 is

the time step [3]. We apply the implicit Runge-Kutta scheme

with ν stages [3], [17] to our system of DAEs (1) and obtain

ξj = yn + h

ν
∑

i=1

aj,if(ξi, ζi), j = 1, . . . , ν (5a)

0 = g(ξj , ζj), j = 1, . . . , ν (5b)

yn+1 = yn + h

ν
∑

j=1

bjf(ξj , ζj) (5c)

0 = g(yn+1, zn+1). (5d)

Here ξj = y(tn + cjh), ζj = z(tn + cjh), and {aj,i, bj, ci}
are the known parameters of the IRK scheme. Following [3]

and to let the scheme be of nontrivial order, we impose the

following convention for the parameters

ν
∑

i=1

aj,i = cj .

B. Discrete Physics-Informed Neural Networks

In classical numerical analysis [3], implicit formulations

of Runge-Kutta schemes are usually constrained due to the

computational cost of solving (5). And if we increase the

number of IRK stages, these constraints become more severe.

To overcome these constraints, our DAE-PINN framework

employs a discrete physics-informed neural network (PINN)

model [8] to enable the implicit Runge-Kutta scheme with ν
stages (5).

In the discrete PINN model, the first step is to construct

multi-output neural networks with parameters θ (see Fig. 1a

and 1b) as a surrogate for the solution of the IRK scheme (5),

which takes the input yn and outputs

[ξθ1 , . . . , ξ
θ
ν , y

θ
n+1] (6a)

[ζθ1 , . . . , ζ
θ
ν , z

θ
n+1]. (6b)

yn

σ

σ

σ

σ

σ

σ

output layer

(a)

yn

FNN

FNN

ξθ1

ξθν
y
θ
n+1

dynamic

ζθ1

ζθν
z
θ
n+1

algebraic

(b)

Fig. 1: (a) The multi-output fully-connected neural network for

the dynamic states y. (b) Unstacked architecture - DAE-PINN

framework for solving the DAEs (1) using IRK (5).

Remark 1. Architecture: In this paper, we mainly adopt the

unstacked architecture depicted in Fig. 1b, which assigns one

neural network for the dynamic state variables y ∈ R
n and

another neural network for the algebraic variables z ∈ R
m.

We remark, however, that one can also adopt a stacked

architecture, which assigns a single neural network for each

of the dynamic variables yi ∈ R and each of the algebraic

variables zi ∈ R.

Remark 2. Complexity: As described in [8], PINN enable us

to employ implicit Runge-Kutta schemes with a large number

of stages at effectively very little extra cost. More specifically,

only the number of neurons of the last layer of the neural

networks grows linearly with the total number of stages, i.e.,

with cost ∼ O(ν).

In the second step for the discrete PINN model, we restrict

the neural networks to satisfy the differential and algebraic

equations described by the IRK scheme (5). In practice, we re-

strict the neural networks on some set of randomly distributed

initial conditions scattered/sampled throughout the domain [9],

i.e., the set of training data T := {y1n, y
2
n, . . . , y

|T |
n } of

size |T |1. To measure the discrepancy between the neural

networks and the IRK scheme (5), we use the following loss

function:

L(θ; T) = wfLf (θ; T) + wgLg(θ; T). (7)

1Observe that our proposed framework does not require supervision, i.e., it
does not require to know target values of the solution trajectory.

JOURNAL OF 4

In the above, wg and wf are the weights,

Lf (θ; T) =
1

|T |(ν + 1)

∑

yn∈T

ν+1
∑

j=1

||yn − ynj (θ)||
2
2,

where

ynj (θ) := ξθk − h

ν
∑

i=1

aj,if(ξ
θ
i , ζ

θ
i), j = 1, . . . , ν

ynν+1(θ) := yθn+1 − h

s
∑

j=1

bjf(ξ
θ
j , ζ

θ
j),

and

Lg(θ; T) =
1

(ν + 1)





ν
∑

j=1

||g(ξθj , ζ
θ
j)||

2
2 + ||g(y

θ
n+1, z

θ
n+1)||

2
2



 .

In the last step for the discrete PINN model, we train the

neural network parameters by minimizing the loss function us-

ing gradient-based optimizers, e.g., the Adam optimizer [19]:

θ∗ = argmin
θ
L(θ; T). (8)

We use the weight coefficients wf and wg in (7) to balance

the residual loss terms for the dynamic variables Lf and the

algebraic variables Lg. In this paper, we use a penalty-based

method [10] to update the value of the weight coefficients wf

and wg .

C. Enforcing DAEs as approximate hard constraints

In the DAE problem (1), the solution trajectories must

always satisfy the dynamic equations (1a) and lie in the

manifold described by the algebraic equations (1b), i.e.,

{(y, z) : g(y, z) = 0}.

which, for power networks, represents satisfying the power

flow equations [1]. However, by using the soft constraints

approach for the loss function (7), it may be difficult to satisfy

the dynamic and algebraic equations exactly. This can be seen

as follows. If the weight coefficients wf and wg are selected

too large, which severely penalizes the violation of the DAEs,

the optimization problem may become ill-conditioned, and,

hence, it may be difficult to converge to a minimum. On the

other hand, if the values selected for wf and wg are too small,

the solution will not satisfy the dynamic equations or will not

lie in the manifold described by the algebraic equations.

To impose the DAEs as approximate hard constraints,

we implement the penalty-based method introduced in [10]

and summarized in Algorithm 1. The main idea behind this

method is to replace the optimization problem with equality

constraints (i.e., the differential and algebraic equations) with a

sequence of unconstrained problems with varying penalty co-

efficients wk
f and wk

f . More specifically, during the kth “outer”

iteration, we solve the following unconstrained optimization

problem

min
θ
L(θ; T) = wk

fLf + wk
fLg.

Algorithm 1: Training using the penalty method [10]

Hyperparameters: initial penalty coefficients w0
f and

w0
g , factor β, and number of iterations K

k ←− 0
θ0 ←− argminθ L

0(θ; T): train the neural network (7)

from random initialization, until the training loss has

converged, i.e., L0(θ; T) ≤ 1e-5

while k ≤ K do

k ←− k + 1
wk

g ←− βwk−1
g

wk
f ←− βwk−1

f

θk ←− argminθ L
k(θ; T): train the networks (7)

from the initialization θk−1, until the training loss

has converged, i.e., Lk(θ; T) ≤ 1e-5;̇

where wk
f and wk

g are the penalty coefficients for the kth

iteration. Furthermore, at the beginning of each iteration, we

increase the penalty coefficients by a constant factor β > 1:

wk+1
g = βwk

g = (β)kw0
g ,

wk+1
f = βwk

f = (β)kw0
f .

As k → ∞, and given that the neural networks are well

trained, the solution of the sequence of unconstrained opti-

mization problems will converge to the solution that satisfies

the DAEs approximately as hard constraints [20], [10]. In

practice, however, if we fail to carefully select the hyper-

parameters w0
f , w0

g , and β, the optimization problem may

become ill-conditioned or experience slow convergence.

D. Simulating DAEs for long-time horizons

Until now, we have described how the DAE-PINN frame-

work enables integrating DAEs (1) from (tn, yn, zn) to (tn +
h, yn+1, zn+1). Such a framework can use a large number ν
of stages to take a very large time step h. However, when

simulating stiff and nonlinear DAEs (e.g., the power network

dynamics) for long-time horizons, it may be necessary to

take multiple time steps. Thus, in this subsection, we briefly

describe how we can use our trained DAE-PINN framework to

simulate DAEs for long-time horizons. We provide a detailed

description of the proposed iterative strategy in Algorithm 2

and an illustrative example in Fig. 2. The main idea behind

our strategy is to update recurrently (in Markov-like fashion)

the input to DAE-PINN yn using the predicted dynamic

states yθ
∗

n+1 from the previous evaluation step.

Thus, Algorithm 2 enables us to simulate the solution

trajectories of DAEs (1), y(t) and z(t), within the time interval

t ∈ [0, h · N], using a single trained DAE-PINN with time

step h. We remark that one can easily extend Algorithm 2

to work with multiple trained discrete PINNs with possibly

different time steps h. Such a strategy can be applied, for

example, to problems with multiple time scales (e.g., transients

and steady-state).

IV. NUMERICAL EXPERIMENTS

This section contains a systematic study on a three-bus

power (Fig. 3) network that aims to demonstrate the perfor-

mance of our DAE-PINN framework.

JOURNAL OF 5

z0

y0

NN
θ
∗

h h h

t

yN−1

y1 y2
yN

z1 z2 zN

y1

yN−1

zN1
ζ1
1

ζ1ν
ζ2
1

ζ2ν ζNν
ζN
1

ξ1
1

ξ1ν

ξ2
1 ξ2ν

ξN
1

ξNν

NN
θ
∗

NN
θ
∗

Fig. 2: Illustration of how to use the proposed trained DAE-

PINN (NNθ∗

) to simulate index-1 DAEs (1) for long-time

horizons (i.e., for N time steps of size h).

Algorithm 2: Simulating DAEs for long-time horizons

Given is the number of time steps N , and the

DAE-PINN with trained parameters θ∗ and time

step h. Let the initial condition of (1a), y0, be the

input to the DAE-PINN, i.e., yn = y0.

for k = 1,. . . ,N do
(1) compute the forward pass using the proposed

framework, i.e.,

yn 7→ [ξθ
∗

1 , . . . , ξθ
∗

ν , yθ
∗

n+1] =: Y θ∗

k

yn 7→ [ζθ
∗

1 , . . . , ζθ
∗

ν , zθ
∗

n+1] =: Zθ∗

k

(2) update the input using the predicted value

yθ
∗

n+1, i.e.,

yn ←− yθ
∗

n+1

The Algorithm computes the solution trajectory in the

time interval [0, h ·N]. Such a solution trajectory is

obtained by concatenating the outputs from all

forward passes, i.e., {Y θ∗

k }
N
k=1 and {Zθ∗

k }
N
k=1

slack generator generator

̇B12

P3

pq bus

̇B13 ̇B23

P2

Fig. 3: Three-bus-two-generators power network [21]

A. Three-bus power network

We consider the three-bus (a slack bus, a generator bus, and

a load bus) power network depicted in Fig. 3 and described

by the following set of nonlinear and stiff DAEs [21]

ω̇1 = (1/M1)(−Dω1 + f1 + f2) (9a)

ω̇2 = (1/M2)(−Dω2 − f1) (9b)

δ̇2 = ω2 − ω1 (9c)

δ̇3 = −(ω1 − f2/Dl) (9d)

0 = −(1/V3)(g1), (9e)

where y = (ω1, ω2, δ2, δ3)
⊤ are the dynamic states, z = V3

the algebraic state, and

f1 = B12V1V2 sin(δ2) +B23V2V3 sin(δ2 − δ3) + Pg,

f2 = B13V1V3 sin(δ3) +B23V2V3 sin(δ3 − δ2) + Pl,

g1 = (B13 +B23)V
2
3 −B13V1V3 cos(δ3) . . .

−B23V2V3 cos(δ3 − δ2) +Ql.

We fix the parameters of the power network to the following

values M1 = .52, M2 = .0531, D = .05, Dl = .005, V1 =
1.02, V2 = 0.05, B12, B13, B23 = 10, Pg = −2.0, Pl = 3.0,

and Ql = .1.

B. Neural Networks, hyper-parameters and learning protocols

We implemented DAE-PINN using PyTorch and published

all the codes in GitHub. All the experiments presented

in this section were trained by minimizing the loss func-

tion L(θ; T) (7) using the Adam [19] optimizer with default

hyper-parameters and initial learning rate η = 10−3. We

reduced the learning rate whenever the value of the loss

function L reached a plateau or started to increase. The

training and test datasets consist of initial conditions collected

uniformly at random and as follows: ω1(0), ω2(0) ∼ U(−π, π)
and δ2(0), δ3(0) ∼ U(−0.1, 0.1).

The neural network that approximates the mapping yn 7→
(ξ1, . . . , ξν , yn+1) (i.e., dynamic equations) and the neural net-

work that approximates the mapping yn 7→ (ζ1, . . . , ζν , zn+1)
(i.e., algebraic equations) were implemented using the im-

proved fully-connected architecture proposed in [13], which

has the following forward pass:

U = φ(XW 1 + b1), V = φ(XW 2 + b2)

H(1) = φ(XW z,1 + bz,1)

Z(k) = φ(H(k)W z,k + bz,k), k = 1, . . . , d

H(k+1) = (1− Z(k))⊙ U + Z(k) ⊙ V, k = 1, . . . , d

fθ(x) = H(d+1)W + b,

Here, X is the input tensor to the neural network, d is the

number of hidden-layers (i.e., the network’s depth), ⊙ is the

Hadamard or element-wise product, and φ, in this paper, is a

point-wise sinusoidal activation function. We also assume that

each hidden-layer has width w. The trainable parameters of

this novel network architecture, which we initialize using the

Glorot normal algorithm, are collected in the following set:

θ = {W 1, b1,W 2, b2, {W z,l, bz,l}dl=1,W, b}.

Our experiments show that this novel architecture outperforms

the conventional fully connected architecture. This is because

JOURNAL OF 6

it explicitly accounts for the multiplicative interactions be-

tween different inputs and enhances hidden-state represen-

tation with residual connections [13]. Let us conclude this

subsection with the following remark.

Remark 3. Output feature layer for the algebraic equation.

The term (1/V3) in (9e) may lead to the loss for the algebraic

variables Lg being a few orders of magnitude larger than

the loss for the dynamic variables Lf . We have observed

empirically that such an imbalance compromises gradient

descent optimization. To mitigate such an issue, we added

the following output feature layer for the neural network

associated with the algebraic equations:

(ζ1, . . . , ζν , zn+1) 7→ softplus(ζ1, . . . , ζν , zn+1).

Note that the above feature layer constraints the bus voltage

to be non-negative, i.e., V3 > 0.

C. Convergence experiments

In this subsection, we investigate how the network archi-

tecture, the network size, and the training dataset affect the

training convergence of DAE-PINN. To this end, we train

DAE-PINN with a time step h = 0.1 for 50000 epochs.

Network architecture: Our first convergence experiment

evaluates which architecture, stacked or unstacked, provides

better convergence results for the training of DAE-PINN. The

stacked architecture uses a neural network (width w = 25 and

depth d = 4 layers) for each dynamic and algebraic state.

On the other hand, the unstacked architecture uses one neural

network (width w = 100 and depth d = 4 layers) for all the

dynamic states and another neural network (width w = 25 and

depth d = 4 layers) for the algebraic state. Fig. 4a shows the

results of running this experiment 10 times. We observe that

the unstacked architecture provides us with the best training

performance.

Network size: This experiment evaluates the effect of the

size of the networks during training. More specifically, we use

an unstacked architecture (to eliminate the network architec-

ture effect) to verify the training convergence while varying the

width and depth of the neural networks. Fig. 4b illustrates the

results when we vary the width (depth fixed to d = 2 layers).

We note that increasing the width from 10 to 200 decreases the

train and test errors, but the errors increase instead when we

further increase the width. On the other hand, Fig. 4c shows

the results when we vary the depth (width fixed to w = 100).

We observe that the train and test errors reach a minimum

when we set the depth to d = 4 or d = 8 hidden layers.

Training dataset: Our last experiment investigates how the

size of the training dataset |T | affects the training convergence

of DAE-PINN. To eliminate the effect of the architecture and

size of the neural networks, we choose unstacked architectures

with depth of d = 4 for the neural networks of the dynamic

and algebraic states. Further, we select a width of w = 100
(resp. w = 40) for the neural network of the dynamic (resp.

algebraic) states. The results illustrate that (see Fig. 4d) in-

cluding more training examples (initial conditions), in general,

leads to smaller train and test errors. We conclude this section

by describing the characteristics of our best DAE-PINN model.

This best model trains with |T | = 2000 initial condition

points sampled from the state-space, tests the performance of

DAE-PINN every 1000 epochs using a test dataset witn 1500
initial conditions not included in the train dataset, and uses

unstacked neural network architectures with d = 4 hidden

layers. Moreover, for this best DAE-PINN model, the neural

network representing the dynamic (resp. algebraic) states has

a width of w = 100 (resp. w = 40).

D. Results for the best DAE-PINN model

In this subsection, we verify the effectiveness of DAE-PINN

to perform long-time simulation of DAEs using Algorithm 2.

To this end, we train the best DAE-PINN model with time-step

h = 0.1 using the penalty-method described in Algorithm 1

with hyper-parameters w0
f = w0

g = 1 and β = 2.

Fig. 5 presents a simulated DAE trajectory for N = 80
time steps, corresponding to a representative initial condition

selected uniformly at random from the test dataset. We note

excellent agreement between the simulated trajectory and the

true trajectory (obtained by integrating (9) using conventional

numerical methods [16]). To better understand the long-time

simulation accuracy of the DAE-PINN framework, we sample

100 initial conditions from the test dataset and compute the

mean and standard deviation of the L2 relative error of each

state variable. Table I reports the L2 relative errors of each

state variable. From the reported results, we conclude that

DAE-PINN can simulate DAEs for long-time horizons with

excellent accuracy.

ω1 ω2 δ2 δ3 V3

mean 0.0382 0.0381 0.0093 0.0011 0.0002
st. dev. 1.01e-2 1.07e-2 2.44 e-3 2.96e-4 2.98e-07

TABLE I: Mean and standard deviation of the L2 relative error

of the long-time simulation of 100 initial conditions sampled

from the test dataset.

E. Comparison with other numerical integration schemes

In this subsection, we compare the proposed DAE-PINN

framework that enables the IRK scheme with ν = 100 stages

with other discrete PINN models enabling the following DAE

numerical integration schemes [3]: (i) Backward-Euler method

and (ii) the Gauss-Legendre IRK with ν = 3, which is

probably the largest IRK scheme that is consistent, stable,

and with reasonable implementation costs [3]. We train and

implement all the previously mentioned discrete PINN models

using the same protocols and with time-step h = 0.1. We then

test their capability of simulating DAEs for N = 80 time steps.

Fig. 6 compares the three discrete PINN models for simulating

the DAEs for the representative initial condition selected from

the test dataset. The results clearly illustrate that our DAE-

PINN, which enables the IRK scheme with ν = 100 stages,

significantly outperforms all other discrete PINN models. We

also illustrate (see Fig. 7) the L2 relative error as a function

of the number of time steps N for the slack machine speed ω1

and the load bus angle δ3. One should observe that the discrete

PINN model for the Gauss-Legendre IRK method effectively

simulates the speed of the slack generator but fails to simulate

JOURNAL OF 7

Stacked Unstacked

3× 10−3

4× 10−3

5× 10−3

6× 10−3
M
.s
.e
.

Train

Test

(a)

102 103

Width

10−4

6× 10−5

2× 10−4

M
.s
.e
.

Train

Test

(b)

1 2 4 6 8 10
Depth

10−4

M
.s
.e
.

Train

Test

(c)

102 103

No. of training examples |T |

1.7× 10−3

1.75× 10−3

1.8× 10−3

1.85× 10−3

1.9× 10−3

1.95× 10−3

M
.s.
e.

Train

Test

(d)

Fig. 4: Convergence experiments. (a) stacked vs unstacked

architectures. (b) Network width. (c) Network depth. (d)

Number of training examples.

−0.5
0.0
0.5

ω
1(
t
)

−0.5
0.0
0.5

ω
2(
t
)

0.0

0.1

δ
2(
t
)

−0.1
0.0
0.1

δ
3(
t
) True

Predicted

0 2 4 6 8
time (sec)

0.8

1.0

1.2

V
3(
t
)

Fig. 5: Predicted and true solution trajectories of the DAEs

describing the three-bus power network dynamics (9) within

the simulation time interval [0, N · h] = [0, 8] seconds for a

initial condition sampled from the test dataset.

the load bus angle. On the other hand, the discrete PINN model

for the Backward-Euler method fails to simulate the machine

speed and also the load bus angle dynamics.

V. DISCUSSION

On extending our framework to large-scale power net-

works: Developing deep learning methods for simulating

large-scale scientific and engineering systems remains an open

problem. Thus, the straightforward application of DAE-PINN

for simulating large-scale power networks is not feasible.

We, however, believe that similar to the author’s previous

work [22], our proposed framework can be used in a plug-

and-play fashion and replace the numerical solvers for the

DAEs describing the individual components of the network

(e.g., generators). To showcase such plug-and-play ability, in

our future work, we plan to construct a surrogate model that

can predict the response of a medium-size power network and

whose components are pre-trained using our framework. To

this end, our method must generalize to unseen events and

even predict unstable behaviors. The fully connected neural

networks used in this paper may not be powerful enough for

such a challenge. Thus, it is also part of our future work to

enhance our method using more sophisticated architectures,

which we briefly describe next.

On using more sophisticated Neural Network architectures:

In this paper, to simulate DAEs over a long-time horizon,

we employed a modified version of the conventional fully

JOURNAL OF 8

−0.5
0.0
0.5

ω
1(
t
)

−0.5
0.0
0.5

ω
2(
t
)

0.0

0.1

δ
2(
t
)

−0.25

0.00

δ
3(
t
)

0 2 4 6 8
time (sec)

0.95

1.00

1.05

V
3(
t
)

IRK-ν = 100

IRK-Gauss-Legendre

Backward-Euler

Fig. 6: Comparing the long-time simulation accuracy of DAE-

PINNs enabling (i) IRK scheme with ν = 100 stages, (ii) IRK

Gauss-Legendre scheme, and (iii) Backward-Euler method.

10−4

10−3

10−2

100

L
2
re
l.
er
ro
r
-
ω
1

0 20 40 60 80
No. of time steps N

10−4

10−3

10−2

10−1

100

L
2
re
l.
er
ro
r
-
δ
3

IRK-ν = 100

IRK-Gauss-Legendre

Backward-Euler

Fig. 7: L2 relative error for the slack generator speed ω1 and

load bus angle δ3 as a function of the number of time steps N .

connected neural network architecture. However, we realize

that other architectures may increase our ability to simulate

long-time dependencies [23]. Thus, in our future work, we

plan to implement DAE-PINN using neural networks that

can generalize well to unseen events. In particular, we plan

to employ the state-of-the-art deep Operator Neural Net-

work (deepOnet) [24], a neural network that approximates

nonlinear operators (a mapping from functions to functions),

which has shown great potential to reduce the generalization

error significantly. We can apply deepOnets to our frame-

work by noting that integration is an operation of the form:

Th : x(·) 7→ x(·+ h) where the time-step h is a parameter.

On the inverse problem: We remark that extending the pro-

posed framework to learn unknown but identifiable parameters

of DAEs is straightforward (see [8] for more details). Further-

more, in [25], the authors already used a physics-informed

continuous deep learning model to learn unknown parameters

of the power network. It is, however, unclear whether the au-

thors’ framework learns the stiff nonlinear DAEs or a non-stiff

ODE-based approximation of the power network dynamics.

As reported in [14] (and also our experience with physics-

informed continuous models), the learning process of stiff

ODEs and DAEs using physics-informed continuous models

is extremely unstable. Thus, it requires a problem-dependent

solution to avoid the failure of gradient-based training.

On the stochastic setting: With the increasing penetration

of renewable resources, the operating conditions for power

networks are becoming more uncertain. Thus, developing an

online dynamic security assessment tool that considers such a

stochastic environment is necessary. To this end, in our future

work, we will develop a deep learning framework that learns

and simulates the stochastic differential-algebraic equations

describing power networks dynamics for a given distribution

of initial conditions and a set of uncertain parameters.

VI. CONCLUSION

We developed DAE-PINN, a deep learning framework for

learning and simulating the set differential-algebraic equa-

tions (DAE) that describes power networks. DAE-PINN con-

sists of a discrete physics-informed neural network model

that enables employing arbitrarily accurate implicit Runge-

Kutta schemes with a large number of stages. Moreover,

we implemented a penalty-based that enforces DAE-PINN

to satisfy the DAEs as approximate hard constraints. We

then proposed Algorithm 2, which uses the trained DAE-

PINN to simulate DAEs over long-time horizons. Finally, we

demonstrated the effectiveness of our proposed framework

using a three-bus power network.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the

National Science Foundation (DMS-1555072, DMS-1736364,

DMS-2053746, and DMS-2134209), and Brookhaven National

Laboratory Subcontract 382247, and U.S. Department of En-

ergy (DOE) Office of Science Advanced Scientific Computing

Research program DE-SC0021142).

REFERENCES

[1] P. Kundur, “Power system stability,” Power system stability and control,
pp. 7–1, 2007.

[2] F. Alvarado and S. Oren, “Transmission system operation and intercon-
nection,” National transmission grid study–Issue papers, pp. A1–A35,
2002.

[3] A. Iserles, A first course in the numerical analysis of differential
equations. Cambridge university press, 2009, no. 44.

[4] B. Stott, “Power system dynamic response calculations,” Proceedings of

the IEEE, vol. 67, no. 2, pp. 219–241, 1979.
[5] R. Schainker, P. Miller, W. Dubbelday, P. Hirsch, and G. Zhang, “Real-

time dynamic security assessment: fast simulation and modeling applied
to emergency outage security of the electric grid,” IEEE Power and

Energy magazine, vol. 4, no. 2, pp. 51–58, 2006.

JOURNAL OF 9

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[7] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm,
M. Parashar, A. Patra, J. Sethian, S. Wild et al., “Workshop report on
basic research needs for scientific machine learning: Core technologies
for artificial intelligence,” USDOE Office of Science (SC), Washington,
DC (United States), Tech. Rep., 2019.

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[9] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde: A deep
learning library for solving differential equations,” SIAM Review, vol. 63,
no. 1, pp. 208–228, 2021.

[10] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G. Johnson,
“Physics-informed neural networks with hard constraints for inverse
design,” arXiv preprint arXiv:2102.04626, 2021.

[11] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis, “Systems biology
informed deep learning for inferring parameters and hidden dynamics,”
PLoS computational biology, vol. 16, no. 11, p. e1007575, 2020.

[12] S. Kim, W. Ji, S. Deng, and C. Rackauckas, “Stiff neural ordinary
differential equations,” arXiv preprint arXiv:2103.15341, 2021.

[13] S. Wang, Y. Teng, and P. Perdikaris, “Understanding and mitigating gra-
dient pathologies in physics-informed neural networks,” arXiv preprint
arXiv:2001.04536, 2020.

[14] W. Ji, W. Qiu, Z. Shi, S. Pan, and S. Deng, “Stiff-pinn: Physics-
informed neural network for stiff chemical kinetics,” arXiv preprint
arXiv:2011.04520, 2020.

[15] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” arXiv preprint arXiv:1806.07366, 2018.

[16] G. Wanner, Solving ordinary differential equations II, vol. 375.
[17] M. Roche, “Implicit runge–kutta methods for differential algebraic

equations,” SIAM journal on numerical analysis, vol. 26, no. 4, pp.
963–975, 1989.

[18] W. Rudin et al., Principles of mathematical analysis. McGraw-hill
New York, 1976, vol. 3.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[20] D. G. Luenberger, Introduction to linear and nonlinear programming.
Addison-wesley Reading, MA, 1973, vol. 28.

[21] H. Zheng and C. L. DeMarco, “A bi-stable branch model for energy-
based cascading failure analysis in power systems,” in North American

Power Symposium 2010. IEEE, 2010, pp. 1–7.
[22] J. Li, M. Yue, Y. Zhao, and G. Lin, “Machine-learning-based online

transient analysis via iterative computation of generator dynamics,” in
2020 IEEE International Conference on Communications, Control, and

Computing Technologies for Smart Grids (SmartGridComm). IEEE,
2020, pp. 1–6.

[23] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” arXiv preprint arXiv:2012.07436, 2020.

[24] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning
nonlinear operators via deeponet based on the universal approximation
theorem of operators,” Nature Machine Intelligence, vol. 3, no. 3, pp.
218–229, 2021.

[25] G. S. Misyris, A. Venzke, and S. Chatzivasileiadis, “Physics-informed
neural networks for power systems,” in 2020 IEEE Power & Energy

Society General Meeting (PESGM). IEEE, 2020, pp. 1–5.

	I Introduction
	II Problem setup
	III Proposed method - DAE-PINN
	III-A Implicit Runge-Kutta Scheme
	III-B Discrete Physics-Informed Neural Networks
	III-C Enforcing DAEs as approximate hard constraints
	III-D Simulating DAEs for long-time horizons

	IV Numerical Experiments
	IV-A Three-bus power network
	IV-B Neural Networks, hyper-parameters and learning protocols
	IV-C Convergence experiments
	IV-D Results for the best DAE-PINN model
	IV-E Comparison with other numerical integration schemes

	V Discussion
	VI Conclusion
	References

