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ABSTRACT
In recent years, deep-learning-based speech emotion recog-
nition models have outperformed classical machine learning
models. Previously, some neural network designs, such as
Multitask Learning, have accounted for variations in emo-
tional expressions due to demographic and contextual factors.
However, existing models face a few constraints: 1) they rely
on a clear definition of domains (e.g. gender, culture, noise
condition, etc.) and the availability of domain labels. 2) they
often attempt to learn domain-invariant features while emo-
tion expressions can be domain-specific. In the present study,
we propose the Nonparametric Hierarchical Neural Network
(NHNN), a lightweight hierarchical neural network model
based on Bayesian nonparametric clustering. In comparison
to Multitask Learning approaches, the proposed model does
not require domain/task labels. In our experiments, the NHNN
models outperform the models with similar levels of complex-
ity and state-of-the-art models in within-corpus and cross-
corpus tests. Through clustering analysis, we show that the
NHNN models are able to learn group-specific features and
bridge the performance gap between groups.

KEYWORDS
Speech Emotion Recognition, BayesianNonparametricMethod,
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1 INTRODUCTION
Emotion can greatly influence people’s mental processes and
behaviors and is also a predictor of physical and psychological
well being. Speech Emotion Recognition (SER) has become an
important research topic in human-computer interaction.

Although considerable research effort has been put into
developing models capable of recognizing and predicting hu-
man emotions, much of the work focuses on lab-produced
datasets[3] and robust speech emotion recognition on in-the-
wild speech with diverse confounding acoustic elements re-
mains a challenge [32]. Previous work has used a variety of
machine learning techniques such as multi-task learning [32]
and domain generalization [31] that attempt to learn a more
robust and generalizable representation of speech features,
yet few studies have successfully accounted for variations in
speech emotion corpora due to the complexity of emotion ex-
pressions and a variety of moderating variables such as gender,
culture, etc.

In this paper, we propose a novel lightweight architecture
based on unsupervised non-parametric clustering and super-
vised convolutional neural networks (CNN) in order to account
for inter-group differences in emotional expressions. We test

the model on both lab-produced and in-the-wild speech emo-
tion datasets and show our proposed model outperforms state-
of-the-art methods on most within-corpus and cross-corpus
tests. Our work has the potential to achieve robust SER per-
formances in groups with a variety of emotional expressions.

2 RELATEDWORK
2.1 Speech Emotion Recognition
Speech Emotion Recognition (SER) has attracted enormous in-
terest in the past decades. Past research has experimented with
different machine learning algorithms, such as Hidden Markov
Models (HMM)[16], Artificial Neural Networks (ANN) [4], Sup-
port Vector Machines (SVM) [10]. In recent years, deep learn-
ing approaches have become more popular and have reached
state-of-the-art performances on SER [9]. For instance, Zhao
et al. proposed the CNN-LSTM model, which showed better
accuracy than conventional CNN and LSTM models [33]. Liu
et al. proposed a temporal attention CNN model, which shows
stable and state-of-the-art performances on SER tasks [15] .

2.2 Acoustic Features and Variations
A considerable amount of research from the speech signal
processing community has explored relevant acoustic features
for SER [27]. Some common features used for classifications
often include prosody features, such as pitch and loudness,
voice quality features, such as the first three formants and the
signal-to-noise ratio, and spectral features, such as the Melfre-
quency Cepstral Coefficients (MFCC) and Linear Prediction
Cepstral Coefficients (LPCC).

However, robustly extracting emotion from these acoustic
features can be quite challenging. The relationship between
experienced emotions and observed acoustic features can be
moderated by multiple contextual and demographic factors.
These variations create challenges for robust automatic speech
recognition systems. One source of variations is environmen-
tal conditions. In-the-wild speech is often recorded with dif-
ferent recording devices, producing different sound qualities.
A variety of background noise, such as other human speech
and music, can also introduce noise into the extracted acous-
tic features. Additionally, researchers have shown that the
experience of emotion and its expressions are often influ-
enced by biological, social, and cultural factors. Kring and
Gordon found that, when presented with emotional stimuli,
female participants were more expressive than male partici-
pants, even though they reported the same type and intensity
of experienced emotions [13]. Matsumoto et al. found that
cultural display rules differ systematically between Japan and
the United States [17]. Gender differences have also been well
documented in SER applications. For instance, Alghowinem
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et al. found that best features for depression detection from
speech differed across genders [26].

Despite advances in speech emotion recognition systems,
few model designs have properly accounted for these factors.
One popular approach is to partition audio segments to be part
of a certain domain, such as gender, corpus, noise condition,
etc., and apply domain adaptation [30] or multi-task learning
during training [32]. Some have trained separate models on
each domain and then applied model fusion in a later stage
[24]. However, one key assumption of such approaches is that
there exist pre-specified domains for audio. For human speech,
the domains can be non-exhaustive. For instance, gender, race,
language, age, environmental conditions are all possible crite-
ria for categorization, yet a combination of these criteria would
generate an exponential amount of permutations with multi-
ple labels (e.g. Male, Caucasian, adult, etc.). Training separate
models for each permutation or applying domain adaptation
among such a large number of domains are simply impractical.

In addition, the goal of domain adaptation approaches is to
find some shared representation that exists across domains.
However, some acoustic features may be domain-specific. Past
research has shown that negative transfer can occur where
transfer methods decrease performances [28].

Last but not least, working with pre-specified domains as-
sumes sufficient information about the corpus. However, when
training on in-the-wild speech or real-world speech recordings,
researchers often don’t have explicit and perfect knowledge on
subjects’ demographics or speech recording conditions, and
many of these labels may be incomplete.

In the present study, we introduce the Bayesian Nonpara-
metric method (BNP) as a way to account for acoustic varia-
tions. Our proposed method offers a more flexible alternative
than Multi-task Learning or domain adaptation as it captures
the latent structure of the dataset through unsupervised means
and does not rely on any additional labels except ground-truth
emotion categories. The number of domains can grow as new
data becomes available.

2.3 Bayesian Nonparametric Method
2.3.1 Dirichlet Process and Dirichlet Process Mixture Model.
The Bayesian nonparametric (BNP) method was first proposed
by Ferguson [8], who introduced the Dirichlet process, de-
noted as DP(𝛼0,𝐺0), where 𝛼0 is the scaling parameter, and
𝐺0 is the probability measure. An explicit formulation was
provided by Sethuraman [25] with the famous “stick-breaking
construction”, which uses an independent sequence of i.i.d. ran-
dom variables 𝜷 = (𝛽1, 𝛽2, ...) and components 𝝓 = (𝜙1, 𝜙2, ...)
where

𝛽𝑘 |𝛼0,𝐺0 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼0)
𝜙𝑘 |𝛼0,𝐺0 ∼ 𝐺0

(1)

Then we can define a discrete distribution 𝐺 as

𝜋1 = 𝛽1, 𝜋𝑘 =

𝑘−1∏
𝑖=1

(1 − 𝛽𝑖 )𝛽𝑘

𝐺 =

∞∑︁
𝑘=1

𝜋𝑘𝛿𝜙𝑘

(2)

where 𝛿𝜙𝑘
is a probability measure concentrated at 𝜙𝑘 .

One of the most popular application of the Dirichlet process
is to serve as a nonparametric prior for the latent mixing mea-
sure in a mixture model, which can be expressed as follows:

𝜃𝑖 |𝐺 ∼ 𝐺

𝑥𝑖 |𝜃𝑖 ∼ 𝐹 (𝜃𝑖 )
(3)

where 𝑥𝑖 is the observation, and 𝐹 (𝜃𝑖 ) denotes the distribution
of 𝑥𝑖 given 𝜃𝑖 . This is referred as the Dirichlet Process Mixture
Model (DPMM). Since 𝐺 can be represented with the stick-
breaking construction process defined earlier, we can express
𝜃𝑖 with atoms 𝜙𝑘 . This results in an alternative representation:

𝝅 |𝛼0 ∼ 𝐺𝐸𝑀 (𝛼0) 𝜙𝑘 |𝐺0 ∼ 𝐺0

𝑧𝑖 |𝝅 ∼ 𝝅 𝑥𝑖 |𝑧𝑖 , 𝝓 ∼ 𝐹 (𝜙𝑧𝑖 )
(4)

Based on this formulation, Antoniak [1] shows that the like-
lihood of the number of mixtures 𝑘 , given 𝑛 observations, is
calculated to be

𝑝 (𝑘 |𝛼0, 𝑛) =
𝑛!Γ(𝛼0)
Γ(𝛼0 + 𝑛)

𝑧𝑛𝑘𝛼
𝑘
0 ∝ 𝑧𝑛𝑘𝛼

𝑘
0 (5)

where 𝑧𝑛𝑘 is the unsigned Stirling number of the first kind.
The expected number of mixtures is

𝐸 [𝑘 |𝛼0, 𝑛] =
𝑛∑︁

𝑘=1
𝑘𝑝 (𝑘 |𝛼0, 𝑛) = 𝛼0

𝑛∑︁
𝑘−1

1
𝛼0 + 𝑘 − 1

≈ 𝛼0 ln
(
𝑛 + 𝛼0
𝛼0

)
(6)

In comparison to a standardGaussianMixtureModel (GMM),
the DPMM is able to infer the number of components from
the data where in a GMM, the number of components is a
predetermined hyperparameter. DPMM is preferred in our
study because the groups with variations in acoustic emotion
expression are latent. The DPMM can account for such latent
structures within the acoustic data.

2.3.2 Inference of DPMM. Given observations, the inference
of the Dirichlet Process Mixture Model often uses one of the
two methods: Markov Chain Monte Carlo [20] and Variational
Inference [2]. In our experiments, the inference of the mixtures
is estimated by BNP packages in sklearn [22], which uses the
Variational Inference method.

2.3.3 Applications of BNP. Due to the variable and complex
nature of human behaviors, BNP has been commonly applied
to model human activities. Navarro et al. introduced a frame-
workwith the Dirichlet Process tomodel individual differences
in category learning, publication habits of psychologists, and
web browsing activities [19]. Chen et al. applied the Dirichlet
Process Mixture Model to learn Pedestrian Motion Patterns [5].
These past research showed that BNP was a powerful tool that
could be capable of capturing the similarities and differences
among emotional domains.



Some previous work has incorporated BNP in SER. For
instance, Wang et al. used a hierarchical Dirichlet Process
mixture model on music emotion labeling and showed better
performance on music emotion annotation and retrieval than
GMM [29]. However, the overall application of BNP in SER is
quite limited and none has attempted using BNP in modeling
individual/group differences in corpora.

3 CLASSIFICATION MODEL
In this section, we present the baseline models and the pro-
posed Nonparametric Hierarchical Neural Network.

3.1 Baseline Models
3.1.1 Dilated Convolutional Neural Network (DCNN). Con-
volutional Neural Network(CNN) is one of the most popu-
lar deep learning methods. In many applications, CNN has
well surpassed the performances of classical machine learning
methods because of its ability to construct rich representations
from data [11].

The CNN model consists of a feature encoder, which is a
stack of convolutional and maxpool layers, and a classifier,
which is a stack of fully-connected layers and a softmax layer.
For classifications, the classifier generates an n-class probabil-
ity distribution.

In the present study, we use a Dilated Convolutional Neural
Network (DCNN), which uses two 1D dilated convolutional
layers as the feature encoder for inputs. In comparison to a
CNN, the dilation in the DCNN allows for a more inclusive
receptive field, which is commonly used in SER [11, 14]. We
use ReLU as the activation function, except the softmax at
the end. The channel size for the convolutional layers and
fully-connected layers are both 128, as used in [11].

3.1.2 Multitask CNN (MTL-CNN). Multitask Learning attempts
to learn models that perform well on multiple tasks simultane-
ously. Through this paradigm, models can learn shared repre-
sentations for multiple tasks with better generalizability. In a
simple Multitask CNN, different tasks share the same feature
encoder while having task-unique classification layers. We in-
clude Multitask CNN as a baseline because it also attempts to
account for variations in speech domains and its architecture
have a similar amount of parameters and training time as our
proposed methods. In the present study, we follow existing
work [21, 32] and use gender classification as an auxiliary task
in addition the main task of valence classification.

3.1.3 CNN with Long Short-Term Memory (CNN-LSTM). Zhao
et al. [33] proposed a CNN-LSTM model which achieved state-
of-the-art performance on SER tasks. In this paper, we use the
same 1D CNN-LSTM model, which consists of 4 convolutional
layers, each followed by a max pooling and dropout layer, 1
LSTM layer and a fully-connected layer.

3.2 Nonparametric Hierarchical Neural
Network

The NHNN model (Fig. 1) is a hierarchical model that consists
of a shared feature encoder and domain-specific classifiers. The
feature encoder aims to learn a shared representation for all

domains while the domain-specific classifier learns a domain-
specific mapping from the bottleneck features to outputs.

Once the model is trained, the model performs the classifi-
cation task as follows.Suppose the classification problem has
𝑛 classes and assume 𝑘 mixture components are inferred from
a Gaussian DPMM with parameters 𝝁, 𝝈 and cluster weights
𝝎. Denote the set of mixtures as 𝝓 = (𝜙1, 𝜙2, ..., 𝜙𝑘 ), the ob-
servation as 𝑥 , the class of the observation as 𝑧, and the latent
discrete allocation variable as 𝜃 . Each of the classifiers produce
a probability distribution 𝜋 (𝜙𝑖 ) = (𝜋1 (𝜙𝑖 ), 𝜋2 (𝜙𝑖 ) ...𝜋𝑛 (𝜙𝑖 ))
from the softmax layer, where 𝜋 𝑗 (𝜙𝑖 ) denotes the j-th output
from the softmax probability distribution associated with the
cluster 𝜙𝑖 . Here we can equivalently express this as a condi-
tional probability 𝜋 𝑗 (𝜙𝑖 ) = 𝑃 (𝑧 = 𝑗 |𝜃 = 𝑖). Then the weighted
conditional probability is,

𝑃 (𝑧 = 𝑗 |𝑥, 𝝁,𝝈 ,𝝎) =
𝑘∑︁
𝑖=1

𝑃 (𝑧 = 𝑗 |𝜃 = 𝑖)𝑃 (𝜃 = 𝑖 |𝑥, 𝝁,𝝈 ,𝝎)

(7)

Since each cluster is a Gaussian, we can substitute the condi-
tional probability for the latent variable.

𝑃 (𝑧 = 𝑗 |𝑥, 𝝁,𝝈 ,𝝎) =
𝑘∑︁
𝑖=1

𝑃 (𝑧 = 𝑗 |𝜃 = 𝑖) 𝜔𝑖𝑁 (𝑥 |𝜇𝑖 , 𝜎𝑖 )∑𝑘
𝑙=1 𝜔𝑙𝑁 (𝑥 |𝜇𝑙 , 𝜎𝑙 )

(8)

=

𝑘∑︁
𝑖=1

𝜋 𝑗 (𝜙𝑖 )
𝜔𝑖𝑁 (𝑥 |𝜇𝑖 , 𝜎𝑖 )∑𝑘
𝑙=1 𝜔𝑙𝑁 (𝑥 |𝜇𝑙 , 𝜎𝑙 )

(9)

Then the predicted label 𝜏 of observation 𝑥 is essentially

𝜏 = argmax
𝑗

𝑘∑︁
𝑖=1

𝜋 𝑗 (𝜙𝑖 )
𝜔𝑖𝑁 (𝑥 |𝜇𝑖 , 𝜎𝑖 )∑𝑘
𝑙=1 𝜔𝑙𝑁 (𝑥 |𝜇𝑙 , 𝜎𝑙 )

𝑗 = 1, 2, ...𝑛

(10)

where
∑𝑛

𝑗=1 𝜋 𝑗 (𝜙𝑖 ) = 1.
Through its hierarchical structure, NHNN is able to extract

common features across domains while preserving domain-
specific characteristics. The structure can be adapted to a vari-
ety of neural networks such as CNN, RNN, and DNN.

In the present study, we use a CNN-based NHNN for SER.
The pipeline of the model is shown in Fig 2. The clustering
of the audio is based on eGeMAPS feature vectors and the
MFB features are passed into the feature encoder and emotion
classifier. Both eGeMAPS and MFB features are commonly
used in SER work and will be introduced in detail in Section
4.5. We use the feature encoder from the DCNN model to
construct a shared bottleneck representation.

In our preliminary clustering analysis, we find that, in each
dataset, the clustering yields two major components that ac-
count for over 90% of the utterances. Clusters with little data
(< 10% of the corpus) are therefore removed to ensure each
cluster has sufficient data to fit the neural network. In experi-
ments, the data are reassigned to existing cluster.

3.3 Model Complexity
TheDCNNmodel has the least number of parameters (n_parameters
=175,619). The MTL-CNN model and the proposed NHNN FC
model have a similar amount of parameters (n_parameters



Figure 1: Architecture of Nonparametric Hierarchical
Neural Network

Figure 2: CNN-based NHNN implementation pipeline
for speech emotion recognition

=192,389 and 192,518 respectively). The proposedNHNNFC+Conv
has more free parameters (n_parameters=274,438) as the last
layer of the encoder is tuned during training. The CNN-LSTM
model has themost number of parameters (n_parameters=530,691).
In our experiments, we find the training time of each model is
roughly proportional to the number of free parameters, where
the CNN-LSTM takes the most time to train.

4 DATASETS
We select three datasets in the present study: IEMOCAP [3],
PRIORI Emotion [12], and PRIORI R21 . All three datasets are
in English. IEMOCAP is a popular dataset produced in a lab,
where both PRIORI Emotion and PRIORI R21 are in-the-wild
datasets, which include phone calls with spontaneous speech
and various background noises. We choose the three datasets
so that the proposed model can be tested on both lab-recorded
and in-the-wild datasets. Each dataset will be introduced in
detail below.

4.1 IEMOCAP
The Interactive Emotional Dyadic MOtion Capture Database
(IEMOCAP) is a common lab-recorded multimodal dataset.
Ten actors (five male and five female) performed a series of
scripts or improvisational scenarios recorded over five ses-
sions. The audios are recorded at a 48 kHz sampling rate and
then downsampled to 16 kHz. The IEMOCAP dataset includes
10,039 audio segments (5,255 scripted utterances and 4,784
improvised utterances). The segments are annotated by two
to four annotators on valence, activation, and dominance on a
5-point Likert Scale.

4.2 PRIORI Emotion
The PRIORI Emotion dataset is an annotated subset of the
larger PRIORI (Predicting Individual Outcomes for Rapid Inter-
vention) bipolar mood dataset [cite]. It consists of phone calls
from 19 subjects. The utterances are annotated on a 9-point
Likert scale on valence and activation. The dataset includes
18,388 annotated audio segments.

4.3 PRIORI R21
PRIORI R21 is a multicultural subset of PRIORI. The PRIORI
R21 dataset includes 9 subjects, 5 are native English speakers
and 4 are native Arabic speakers. The countries of birth in-
clude Palestine, Lebanon, Saudi Arabia, Yemen, and the United
States. Similar to PRIORI Emotion, the audio segments are
annotated on a 9-point Likert scale on valence and activation.
During annotation, non-English speech or empty segments
are removed. The R21 dataset includes 4,148 annotated audio
segments. In the present study, we exclude two subjects, one
due to poor audio quality and the other due to a lack of audio
segments (33 segments).

4.4 Emotion Labels
SER work often uses one of two emotion labels: categorical
and dimensional labels. The categorical labels include emo-
tions such as happy, sad, angry, etc. where dimensional la-
bels typically include valence and activation. Valence refers
to the perceived pleasantness of the speech and activation
refers to the degree of arousal. Valence and activation are of-
ten scored on a Likert scale, which maps each utterance onto
a 2-D valence-activation space.

Although much of the work on IEMOCAP uses categorical
labels in classification tasks, in the present study, however, we
choose to use dimensional valence scores because the PRIORI
datasets are only annotated on dimensional scores. Previous
research has also shown that dimensional labels are more
consistently interpretable across datasets [9, 23].

We follow the same preprocessing procedure as Gideon et
al. [9] by converting each annotation of valence into three
bins. The middle bin corresponds to medium valence with a
rating of 3 for IEMOCAP and a rating of 5 for PRIORI Emotion
and PRIORI R21. The other two bins correspond to valence
ratings below and above the middle points. We then create a
final label for an utterance by aggregating over all evaluations
for that utterance and identifying the most commonly selected
(majority) bin. We exclude all utterances without a majority



Dataset Environment Sampling Speaker Level Valence Rating
Rate(kHz) All Female Male All Low Medium High

IEMOCAP Laboratory 16 10 5 5 6,816 3,181 1,641 1,994
PRIORI Emotion Phone Calls 8 19 12 7 13,822 5,135 6,579 2,108
PRIORI R21 Phone Calls 8 7 4 3 2,677 1,228 1,044 405

Table 1: Summary of datasets

bin. Our final datasets include 6,816 segments for IEMOCAP,
13,822 segments for PRIORI Emotion, and 2,677 segments for
PRIORI R21. The breakdown of utterance annotations and
demographics are shown in Table 1.

4.5 Feature Extraction and Preprocessing
All audio segments from the datasets are normalized to 0 dBFS
using the Sox command line tool. We extract two sets of fea-
tures for our model: eGeMAPS and MFB.

eGeMAPS – The eGeMAPS feature set is a commonly used
feature set designed for SER. It includes 88 acoustic features
such as energy, excitation, spectral, cepstral, etc. In the present
study, the eGeMAPS feature vectors are extracted by the openS-
MILE toolkit with default parameters [6, 7].

MFB – We extract 40-dimensional MFB features with 25ms
frame length and 10ms frame shift using the Librosa package
[18]. The MFB features are then z-normalized and padded to
the same length during training to account for variations in
audio lengths.

5 EXPERIMENTAL SETUP
We designed two experiments to test the within-corpus and
cross-corpus performance of NHNN against the baseline. In
the present study, we train and test two variants of NHNN
by freezing different layers of the DCNN model. The NHNN
FC variant freezes all the convolutional layers and adapts the
fully-connected layers to each cluster. The NHNN FC+Conv
variant freezes one out of the two convolutional layers of the
feature encoder.

In both experiments, the classifiers are trained on a single
corpus. We randomly take out 1/4 of the training set to be
the validation set. We implement both experiments with Py-
torch. We use early stopping with a patience of 5 epochs and
a maximum epoch of 50. The model with the best validation
loss is selected. Training and testing is repeated with different
random seeds. In both experiments, hyperparameters includ-
ing batch size(32/64) and learning rate(0.001/0.0005/0.0001)
are tuned for all models. We choose a batch size of 64 and a
learning rate of 0.0001 for the final implementation.

For performance evaluation, we use the Unweighted Av-
erage Recall (UAR) as the performance metric. UAR ensures
that each valence class is given equal weight at performance
evaluation to account for possible data imbalance. A random
prediction would result in a UAR of 0.333 in our experiments.

5.1 Experiment 1
In Experiment 1, we investigate the performance of NHNN on
a single corpus. We train and test classifiers within-corpus for
each of the three datasets. For each dataset, we use Leave-One-
Subject-Out (LOSO) testing scheme and the performances are
averaged over the number of subjects. We repeat the exper-
iments with different random seeds and the final results are
averaged. Since each model is tested with the same testing
scheme, to evaluate the significance of performance difference,
we use a paired t-test between results of the models models,
where the UAR performance on each subject is paired from
the LOSO testing results.

We also break down the UAR performances by groups in-
cluding gender, language, and subject to compare the perfor-
mances. We relate any performance discrepancies to differ-
ences between clusters to see if the clustering is improving
the model performances on subsets/groups within the dataset.

5.2 Experiment 2
In Experiment 2, we investigate the cross-corpus performances
by training classifiers on one dataset and testing their cross-
corpus performances on each of the other two datasets. Since
the PRIORI datasets and IEMOCAP are sampled with different
rates, the IEMOCAP dataset is downsampled to 8 kHz in Ex-
periment 2. Each model is trained 30 times and the results are
averaged for comparison. Similar to experiment 1, we perform
a paired t-test to compare the results.

6 RESULTS
6.1 Experiment 1
The results of Experiment 1 are summarized in Table 2. The two
proposed NHNNmodels achieve the best UAR performances in
all three datasets when compared with other models. Between
the two variants, the NHNN FC+Conv model shows superior
UAR on all three datasets, compared to the NHNN FC variant.
The Multi-task CNN model, when treating gender recognition
as the auxiliary task, shows similar performance as the DCNN
model. The CNN-LSTM model has a similar performance as
the two NHNN models on IEMOCAP and PRIORI Emotion,
where the differences are not statistically significant, but the
CNN-LSTM performed poorly on PRIORI R21.

In the R21 dataset, the DCNN baseline model performance
has a higher UAR for native English speakers (UAR=0.4017)
than non-native speakers (UAR=0.3856) with statistical signifi-
cance (p=0.0055). In NHNN FC, the performance gap decreases



slightly from 1.61% to 1.33%, whereas in NHNN FC+Conv, it in-
creases to 2.05%. However, none of the changes in performance
gaps is statistically significant.

The comparison analysis between the two gender groups
shows that the performance gaps between male and female
speech in PRIORI Emotion and PRIORI R21 shrink under
our proposed models. In PRIORI Emotion, the UAR perfor-
mance on female speech (UAR=0.4731) is 3.73% higher than
on male speech (UAR=0.4358). The gender-group UAR dif-
ference shrinks to 3.42% under NHNN FC and 3.26% under
NHNN FC+Conv. In PRIORI R21, the UAR performance on
male speech (UAR=0.3990) is 1.61% higher than on female
speech (UAR=0.3876). The gender-groupUAR difference shrinks
to 0.38% under NHNN FC and -0.54% under NHNN FC+Conv.
No significant changes in gender-group UAR differences are
observed for IEMOCAP when comparing two NHNN models
and the DCNN model.

Table 3 shows the group-level performances improvement
between female and male subjects against the DCNN model.
In PRIORI Emotion and PRIORI R21, both variants of NHNN
showed statistically significant performance boost on one of
the gender groups but not the other, whereas the performance
changes for the two gender groups is similar and both statisti-
cally significant on IEMOCAP.

6.2 Clustering Analysis
The twomixture components have similar weights across three
datasets, which roughly follow an 80/20 split. We first relate
the clustering results to attributes of the audio segments. In
particular, we look at the gender ratio, language ratio, subject
audio distribution, and mood severity in each mixture. In the
R21 dataset, we also analyze the proportion of audio segments
from native English speakers in the mixtures. As gender and
native-language are binary variables in our study, we simply
compare the ratio of the two attributes in a dataset/mixture.
The gender ratio is defined as the number of female audio
segments divided by the number of male audio segments. The
language ratio is calculated by dividing the number of audio
segments from native English speakers from those from non-
native speakers. As for subjects, there are great variations
in the number of audio segments belonged to each subject
in each dataset while the mixtures are of different sizes. To
analyze the distributions of subject_id, we divide themaximum
number of audio segments belonged to a single subject by the
minimum number as a surrogate of the dispersion of subject
audio segments in a dataset/mixture. If the clustering is not
based on a certain attribute, we would expect the relevant
ratios to be similar in cluster 1, cluster 2, and the dataset as a
whole.

In the R21 dataset, the clusters seem to be indicative of
subjects’ demographics, where gender ratio difference and
native-language language difference are observed between the
two clusters. In cluster 1, the Female/Male ratio is 0.65, and
1.53 in cluster 2. The English/Arabic as first language ratio is
2.24 in the first cluster and 0.95 in the second cluster.

In the PRIORI Emotion dataset, the gender ratios are 1.96
and 0.69, respectively. Significant variations in subject_id dis-
tributions are found in the two clusters. In the PRIORI Emotion
dataset, the max/min subject audio segments ratio is 2.77 in
cluster 1 and 9.00 in cluster 2, while the ratio is 1.56 in the V1
dataset as a whole.

As for IEMOCAP, the gender ratio follows an even split
in each mixture and the dataset as a whole. We also did not
observe any significant variations in the number of subject
audio segments among clusters. It’s likely that the clustering
of IEMOCAP depends more on lower-level acoustic features
than subject group differences.

The valence rating distributions are similar in all mixture
components in each of the datasets.

6.3 Experiment 2
Table 4 shows the results of Experiment 2. The two NHNN
models have better average performances than other mod-
els. In particular, NHNN FC+Conv outperforms DCNN and
MTL-CNN on all cross-corpus tests, and CNN-LSTM when
trained on IEMOCAP and PRIORI Emotion. The CNN-LSTM
model performs relatively poorly on IEMOCAP and PRIORI
Emotion against other models but has the best UAR perfor-
mance when trained on PRIORI R21 and tested on the other
two datasets. The differences are not statistically significant
between CNN-LSTM and NHNN FC+Conv when trained on
PRIORI R21 (p=0.1401 when tested on IEMOCAP and p=0.0986
when tested on PRIORI Emotion). Between the two variants,
NHNN FC+Conv has on average better cross-corpus perfor-
mances than NHNN FC model.

7 DISCUSSION
In the present study, we introduce the Nonparametric Hier-
archical Neural Network, which learns latent structures from
the dataset with a Dirichlet Process Mixture Model to build
domain-specific classifiers from a shared feature encoder.

The two experiments we conducted show that NHNN, de-
spite being a lightweight model, has superior within-corpus
performance than DCNN and MTL-CNN. Its cross-corpus test
performance is on average better than DCNN, MTL-CNN and
CNN-LSTM, which indicates a better generalizability on un-
seen data. The performance increase over the DCNN, which
uses the same feature encoder as the NHNNmodel, is observed
for both lab-produced and in-the-wild datasets. In addition,
NHNN FC+Conv shows a slightly better average performance
than NHNN FC in both experiments. This is likely because
NHNN FC+Conv allows for a more versatile classifier with
more free parameters.

Comparing results across two experiments, we notice that
the model trained on PRIORI Emotion and tested on PRIORI
R21 has a significantly better performance than within-corpus
UAR of PRIORI R21. This suggests that the low R21 within-
corpus performance relative to PRIORI Emotion is likely due
to a lack of training samples.

In the cluster analysis, we show that the clustering criteria
vary depending on the dataset, which may be a combination
of higher-level attributes or lower-level acoustic features. Our



Dataset
Performance (UAR)

DCNN MTL
CNN

CNN-
LSTM

NHNN
FC

NHNN
FC+Conv

IEMOCAP 0.5452 0.5482 0.5517 0.5551∗ 0.5568∗

PRIORI Emotion 0.4594 0.4450 0.4639 0.4654∗ 0.4685∗

PRIORI R21 0.3925 0.3993 0.3876 0.4001 0.4071†

Table 2:Within-corpus test performances of models. Best UAR performances are bolded. * indicates the performance
is better than DCNN and MTL-CNN with p<0.05. †indicates the performance is better than CNN-LSTM with p<0.05.

Dataset Model ΔUAR𝑚𝑎𝑙𝑒 ΔUAR𝑓 𝑒𝑚𝑎𝑙𝑒

IEMOCAP
FC 0.0096 0.0101

FC+Conv 0.0095 0.0136

PRIORI Emotion
FC 0.0121 0.0074

FC+Conv 0.0080 0.0048

PRIORI R21
FC 0.0033 0.0109

FC+Conv 0.0050 0.0218

Table 3: Gender group-level average UAR performance change compared with DCNN model. Statistically significant
improvements (p<0.05) are bolded

Dataset Ratio Cluster 1 Cluster 2 Total

IEMOCAP
Gender 1.05 1.01 1.04
Subject 1.60 2.13 1.35

PRIORI Emotion
Gender 1.96 0.69 1.67
Subject 2.77 9.00 1.56

PRIORI R21
Gender 0.65 1.53 1.28
language 2.44 0.95 1.15
Subject 13.22 85.25 17.13

Table 4: Key ratios among datasets and clusters

subsequent analysis also confirms that the performance im-
provement of the NHNNmodels tend to be different depending
on domains. In Experiment 1, we found that the performance
improvement on one gender is significantly better than the
other when the dataset has gender imbalances in utterances
and the clustering is partially based on gender. When the clus-
tering is not based on gender, and the gender ratio is close to
1, as is the case for IEMOCAP, the model showed a similar
performance increase for both genders. This implies that the
clustering-based approach has an effect on the model perfor-
mance on some selective gender-related data with local charac-
teristics that are not properly accounted for in a general CNN
model when there is a gender imbalance. Through clustering,
we build customized classifiers for each mixture component to
account for these variations, while using a shared feature en-
coder to preserve group-invariant characteristics. Compared

with a typical blackbox machine learning algorithm, our pro-
posed model and subsequent analysis provide a more intuitive
and explainable approach.

In addition to performance, compared with multi-tasking
learning, which has a similar training time and model com-
plexity, our model is more flexible as it does not require any
group labels for training and achieves better within-corpus
and cross-corpus performances with statistical significance.

Lastly, as much of the emotional experiences, expressions
and perceptions are biologically, socially and culturally depen-
dent, the ability to understand and account for domain-specific
characteristics is crucial in building equitable SER systems for
in-the-wild speech by speakers from all backgrounds. The
NHNN model has the potential of accounting for variations
and reducing model biases.



Train On Test On
Performance (UAR)

DCNN MTL
CNN

CNN-
LSTM

NHNN
FC

NHNN
FC+Conv

IEMOCAP PRIORI Emotion 0.3572 0.3742 0.3622 0.3831∗ 0.3873∗†

IEMOCAP PRIORI R21 0.4002 0.3836 0.4027 0.3989 0.4059∗†

PRIORI Emotion IEMOCAP 0.4056 0.4003 0.3873 0.4084∗† 0.4083†

PRIORI Emotion PRIORI R21 0.4488 0.4353 0.4399 0.4562∗† 0.4540∗†

PRIORI R21 IEMOCAP 0.3441 0.3471 0.3572 0.3444∗ 0.3508∗

PRIORI R21 PRIORI Emotion 0.3499 0.3611 0.3752 0.3560∗ 0.3684∗

Table 5: Cross-corpus performances of models. Best UAR performances are bolded. * indicates the performance is
better than DCNN and MTL-CNN with p<0.05. †indicates the performance is better than CNN-LSTM with p<0.05.

Future studies can explore in detail how the clustering of
acoustic features is related to sources of variation. This will
help us better understand domain-specific features in speech
emotion expressions. In our experiments, we used a standard
DPMM with a full set of eGeMAPS features. Future studies
can conduct feature selection and regularization techniques
to test different variants of NHNN.

8 CONCLUSION
In this study, we propose the Nonparametric Hierarchical Neu-
ral Network to account for variations in emotional expressions
in speech. In our experiments, we show the proposed model
surpass state-of-the-art models on most of within-corpus and
cross-corpus SER tests.
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