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ABSTRACT
E-commerce platforms usually display a mixed list of ads and or-
ganic items in feed. One key problem is to allocate the limited slots
in the feed to maximize the overall revenue as well as improve
user experience, which requires a good model for user preference.
Instead of modeling the influence of individual items on user be-
haviors, the arrangement signal models the influence of the ar-
rangement of items and may lead to a better allocation strategy.
However, most of previous strategies fail to model such a signal
and therefore result in suboptimal performance. In addition, the
percentage of ads exposed (PAE) is an important indicator in ads
allocation. Excessive PAE hurts user experience while too low PAE
reduces platform revenue. Therefore, how to constrain the PAE
within a certain range while keeping personalized recommendation
under the PAE constraint is a challenge.

In this paper, we propose Cross Deep Q Network (Cross DQN) to
extract the crucial arrangement signal by crossing the embeddings
of different items and modeling the crossed sequence by multi-
channel attention. Besides, we propose an auxiliary loss for batch-
level constraint on PAE to tackle the above-mentioned challenge.
Our model results in higher revenue and better user experience
than state-of-the-art baselines in offline experiments. Moreover,
our model demonstrates a significant improvement in the online
A/B test and has been fully deployed on Meituan feed to serve more
than 300 millions of customers.

CCS CONCEPTS
• Information systems→ Computational advertising; Online ad-
vertising; Ads allocation.

KEYWORDS
Ads Allocation, Deep Reinforcement Learning, Arrangement Signal,
Adaptive Ads Exposure

1 INTRODUCTION
Feed, mixed with organic items and ads, is a popular product on
many e-commerce platforms nowadays [7]. Platforms serve users
and gain revenue via feed. In general, there are two ways for plat-
forms to get revenue. Firstly, once users consume organic items
or ads, the e-commerce platform will gain the platform service fee
(hereinafter referred to as fee) according to the orders. Secondly, as
an ad is clicked by a user, the platform will charge the correspond-
ing advertiser. For the sake of the platform, displaying more ads is
beneficial to ads revenue but harmful to fee since ads are less likely

†Guogang Liao and Ze Wang are the corresponding authors.
‡This work was done when Chuhang Zhang was an intern in Meituan.

engaging than organic items [23]. Usually, the number of ads is lim-
ited in feed to ensure good user experience and engagement. Hence,
how to allocate limited slots reasonably and effectively to maximize
overall revenue has become a very meaningful and challenging
problem [11, 16, 22].

The structure of an industrial ads allocation system is shown
in Figure 1. Blending Server takes ads sequence and organic items
sequence as input and outputs a mixed sequence of the two. For
Blending Server, there are two common strategies: fixed slots strat-
egy and dynamic slots strategy. Most platforms simply allocate
ads to pre-determined slots [10, 13]. Such strategies may lead to
suboptimal overall performance. Dynamic slots strategy adjusts
the number and slots of ads according to the interest of users. For
instance, if a user has a higher tendency to consume commercial
ads, the platform will allocate more ads at conspicuous slots to
maximize possible benefits. Except for personalization, dynamic
slots strategies have lower ads blindness [21] and better adaptabil-
ity, significantly outperforming fixed slots strategy and gradually
becoming today’s trend. Early dynamic slots strategies use some
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Figure 1: Structure of an ads allocation system. The process
of ads allocation takes place in the Blending Server.

classic algorithms (e.g., Bellman-Ford, unified rank score) to allo-
cate ads slots. Since the feed is presented to the user in a sequence,
recent dynamic ads allocation strategies usually model the problem
as Markov Decision Process [14] and solve it using reinforcement
learning (RL) [4, 22, 25].

However, existing RL-based dynamic slots strategies encounter
several major limitations: i) Most approaches ignore the crucial
arrangement signal which is the influence of the arrangement of
displayed items on user behaviors. For example, as illustrated in Fig-
ure 2, once an ad is inserted into feed, the click-through rate (CTR)
of surrounding organic items and ads fluctuate. This signal receives
attention in the scenario of Re-Rank recently [2, 5, 6, 19] but is
largely neglected in ads allocation. ii) Most of existing methods
lack an efficient balance between the personalization of different
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Figure 2: While inserting 𝑎𝑑2 into feed, the CTR of organic
items increases while the CTR of 𝑎𝑑1 decreases.

requests and the constraint on the percentage of ads exposed (PAE)
in a period. PAE is the most important constraint in ads allocation,
which balances the user experience and platform revenue. Previous
methods constrain all the requests or the requests within the same
hour [17] with the same target PAE, resulting in a lack of personal-
ization and differentiation in the allocation of ads between different
requests.

To address the limitations of existing methods, we present a
novel framework calledCross Deep QNetwork (Cross DQN) based on
deep reinforcement learning. Specifically, we design two novel units
called State and Action Crossing Unit (SACU) and Multi-Channel
Attention Unit (MCAU) to explicitly extract the arrangement signal.
Besides, we propose an auxiliary loss for batch-level constraint to
balance the personalization of different requests and the constraint
on PAE in a period.

The contributions of our work are summarized as follows:
• A superior ads allocation strategy. In this paper, we propose
a novel RL-based framework named Cross DQN1 to dynamically
adjust the number and the slots of ads in feed, which can effec-
tively extract the arrangement signal and reasonably balance
personalization of different requests and the constraint on PAE.
• Detailed industrial and practical experience. We success-
fully deploy Cross DQN on the Meituan feed and obtain signifi-
cant improvements in both platform revenue and user experience.

2 RELATEDWORKS
Traditional strategy for ads allocation in feed is to display ads at
fixed slots. Recently, dynamic ads allocation strategies gains grow-
ing attention. According to whether RL is used, existing dynamic
ads allocation strategies can be roughly categorized into two cate-
gories: non RL-based and RL-based.

Non RL-based methods usually use classical algorithms to allo-
cate ads slots. Koutsopoulos [9] define ads allocation as a shortest-
path problem on a weighted directed acyclic graph where nodes
represent ads or slots and edges represent expected revenue. The
shortest path can be found by running Bellman-Ford algorithm. Fur-
thermore, Yan et al. [21] takes the impact of the interval between

1The code and data example are publicly accessible at https://github.com/weberrr/
CrossDQN.

ads into consideration and re-ranks ads and organic items jointly
via a uniform ranking formula.

RL-based methods model the ads allocation problem as an MDP
and solved it with different RL techniques. Zhao et al. [25] proposes
a two-level RL framework to jointly optimize the recommending
and advertising strategies. Zhao et al. [24] proposes a DQN architec-
ture to determine the optimal ads and ads position jointly. Xie et al.
[20] proposes a hierarchical RL-based framework to first decide
the channel and then determine the specific item for each slot. In
contrast to the previous work, we incorporate the arrangement
signal into a RL-based dynamic ads allocation model to improve
the performance.

3 PROBLEM FORMULATION
In our scenario, we present 𝐾 slots in one screen and handle the
allocation for each screen in the feed of a request sequentially.
The ads allocation problem is formulated as a Constrained Markov
Decision Process (CMDP) [1] (S, A, 𝑟 , 𝑃 , 𝛾 , C), the elements of
which are defined as follows:
• State space S. A state 𝑠 ∈ S consists of the information of
candidate items (i.e., the ads sequence and the organic items
sequence which are available on current step 𝑡 ), the user
(e.g., age, gender and historical behaviors), and the context
(e.g., order time).
• Action space A. An action 𝑎 ∈ A is the decision whether
to display an ad on each slot on the current screen, which is
formulated as follows:

𝑎 = (𝑥1, 𝑥2, . . . , 𝑥𝐾 ), (1)

where 𝑥𝑘 =

{
1 display an ad in the 𝑘-th slot
0 otherwise

, ∀𝑘 ∈ [𝐾].

In our scenario, we do not change the order of ads sequence
and organic items sequence in Blending Server.
• Reward 𝑟 . After the system takes an action in one state,
a user browses the mixed list and gives a feedback. The
reward is calculated based on the feedback and consists of
ads revenue 𝑟ad, fee 𝑟 fee and user experience 𝑟 ex:

𝑟 (𝑠, 𝑎) = 𝑟ad + 𝑟 fee + 𝜂𝑟 ex,

where 𝑟 ex =


2 click and order
1 click and leave
0 no click and leave

.
(2)

• Transition probability 𝑃 . 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is defined as the
state transition probability from 𝑠𝑡 to 𝑠𝑡+1 after taking the
action 𝑎𝑡 , where 𝑡 is the index for the screen/time step. The
action taken in the state affects user behaviors. When the
user pulls down, the state 𝑠𝑡 transits to the state of next
screen 𝑠𝑡+1. The items selected to present by 𝑎𝑡 will be re-
moved from the state on the next step 𝑠𝑡+1. If the user no
longer pulls down, the transition terminates.
• Discount factor 𝛾 . The discount factor 𝛾 ∈ [0, 1] balances
the short-term and long-term rewards.
• Constraint C. The platform-level constraint is that the ab-
solute difference between the total PAE in a period and the
the target value 𝛿 should be less than a threshold 𝜀 to ensure

https://github.com/weberrr/CrossDQN
https://github.com/weberrr/CrossDQN


stable ads revenue. The PAE is formulated as follows:

PAE =

∑
1≤𝑖≤𝑁 Numad

𝑖∑
1≤𝑖≤𝑁 (Numad

𝑖
+ Numoi

𝑖
)
, (3)

where 𝑁 is the number of requests in a period, Numad
𝑖

and
Numoi

𝑖
mean the number of ads and organic items in the 𝑖-th

request. In this work, we choose one week as the period. Con-
sequently, the platform-level constraint can be formulated
as follows:

|PAE − 𝛿 | < 𝜀. (4)
Given the CMDP formulated as above, the objective is to find

an ads allocation policy 𝜋 : S → A to maximize the total reward
under the platform-level constraint.

4 METHODOLOGY
4.1 Architecture Overview
The structure of popular RL model, Dueling DQN, [18] is shown
in Figure 3(a), which receives the state only as the input. Such a
structure fails to extract cross information between the action and
the state, making it difficult to model the arrangement signal of
mixed lists. A common solution is to concatenate state and action
directly, but the model remains hard to extract the information
between the items in the mixed list designated by the action. To
this end, we propose a novel structure Cross DQN (cf. Figure 3(b)).
The State and Action Crossing Unit (SACU) is designed to cross the
embeddings of the items in amixed list designated by the action. The
Multi-Channel Attention Unit (MCAU) is designed to effectively
extract arrangement signal from different channel combinations.

Specifically, we show the detailed structure of Cross DQN in
Figure 4. The model takes a state (including the organic items/ads
sequence, context information, etc.) and the corresponding candi-
date actions as the input. Then, Item Representation Module (IRM)
generates the representations (especially the representations of ads
and organic items). Next, Sequential Decision Module (SDM) gen-
erates Q-values of different actions with the help of SACU, MCAU
and an auxiliary loss for batch-level constraint. In SACU, the state
embeddings are intersected according to the action to form a unified
matrix representation. In MCAU, the crossing matrix generated
from SACU are split into different channels to calculate the multi-
channel attention weight. Finally, SDM chooses the action with the
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Figure 3: Architectures of Dueling DQN and Cross DQN.

largest Q-value. We will introduce them in detail in the following
subsections.

4.2 Item Representation Module
Item Representation Module (IRM) generates the state embedding
from the raw state. To efficiently process the information from dif-
ferent sources, IRM generates two sequences of mixed embeddings:
one for ads and one for organic items. The embedding for each
item encodes not only the information of the item itself but also
the information of the user profile, the context, and the interaction
with historical user behaviors.

First, we use embedding layers to extract the embeddings from
raw inputs.We denote the embeddings for ads, organic items, histor-
ical behaviors of the user, the user profile, the context as {ead

𝑖
}𝑁ad
𝑖=1 ,

{eoi
𝑖
}𝑁oi
𝑖=1, {e

b
𝑖
}𝑁b
𝑖=1, e

u, and ec respectively, where the subscript 𝑖 de-
notes the index within the sequence and 𝑁ad, 𝑁oi, and 𝑁b are the
number of ads, organic items, and historical behaviors. Then, we
use a target attention unit [15] to encodes the interaction between
the historical behaviors of the user and the corresponding item,
which is similar to Zhou et al. [26]:

ead𝑗 ← Att
(
ead𝑗 , {e

b
𝑖 }
𝑁b
𝑖=1

)
,∀𝑗 ∈ [𝑁ad];

eoi𝑗 ← Att
(
eoi𝑗 , {e

b
𝑖 }
𝑁b
𝑖=1

)
,∀𝑗 ∈ [𝑁oi] .

(5)

Afterwards, we append the embeddings of the user profile and
the context to the embedding of each item:

ead𝑗 ← MLP
(
ead𝑗 | |e

u | |ec
)
,∀𝑗 ∈ [𝑁ad];

eoi𝑗 ← MLP
(
eoi𝑗 | |e

u | |ec
)
,∀𝑗 ∈ [𝑁oi];

(6)

where | | denotes concatenation. Notice that there are some strong
features for ads and organic items in our scenario (e.g., discount,
delivery fee, delivery time), which are concatenated with the em-
bedding of each item and input into SDM.

For ease of notation, we can also write the embeddings for ads
and organic items in matrix form, each row of which represents
one item in the sequence, i.e.,

Ead =

[
ead1

���ead2 ���...���ead𝑁ad

]𝑇
,

Eoi =
[
eoi1

���eoi2 ���...���eoi𝑁oi

]𝑇
.

(7)

Involving several attention units, IRM may be time-consuming
upon deployment. However, IRM is an independent module within
Cross DQN so that we can invoke IRM in parallel to other modules
preceding Cross DQN. See more details in Section 4.8.

4.3 State and Action Crossing Unit
To evaluate the Q-value of a certain state-action pair, we need an
efficient representation of the mixed list designated by the corre-
sponding action. State and Action Crossing Unit (SACU) helps us
to construct a sequence of embeddings corresponding to the mixed
list from the state embedding.

First, given an action, we generate the corresponding action
offset matrices for ads and organic items: Mad ∈ {0, 1}𝐾×𝑁ad and
Moi ∈ {0, 1}𝐾×𝑁oi , where the (𝑖, 𝑗)-th element represents whether
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Figure 4: Network architecture of Cross DQN. Item Representation Module (IRM) generates the state embedding based on the
raw state. Sequential DecisionModule (SDM) generates Q-values of different actions with the help of State andAction Crossing
Unit (SACU), Multi-Channel Attention Unit (MCAU) and auxiliary loss for batch-level constraint.

the 𝑗-th ad/organic item is presented on the 𝑖-th slot. Recall that 𝐾
is the number of slots in one screen. For example, given the action
𝑎 = (0, 1, 0, 0, 1) with 𝐾 = 5, the action offset matrixMad is

Mad =


0 0 . . . 0 0
1 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
0 1 . . . 0 0


∈ R𝐾×𝑁ad . (8)

Then, we can calculate the cross matrix Mcross, which is the
embedding of the mixed list corresponding to the given action,
using the action offset matrices.

Mcross = MadEad +MoiEoi . (9)

With SACU, we generate the embedding for the mixed list which
enables us to efficiently extract the arrangement signal in the next
module.

4.4 Multi-Channel Attention Unit
The user may focus on one or more aspects (e.g., discount, delivery
fee, delivery time) of the mixed sequence at the same time. Ac-
cordingly, we propose MCAU to simultaneously model the user’s
attention to different aspects of the mixed sequence.

The cross matrix Mcross ∈ R𝐾×𝑁e generated by SACU contains
𝑁e different channels. Each channel represents an information
dimension in the latent space and can be used to model one aspect
of the mixed sequence. Meanwhile, the user may pay attention
to more than one aspect of the mixed sequence at the same time.
So the sequence information of two or more channels need to be
combined for modeling. Next we will detail that how the sequence
information of multiple channels is combined and modeled.

For 𝑁e channels, we formulate the number of channel combina-
tions as 𝑁c, which is calculated as follows:

𝑁c = 2𝑁e − 1. (10)

We formalize the mask matrix for the 𝑖-th combination asMmask
𝑖

.
For example, the mask matrix for combination of the first channel
and the last channel is

Mmask
𝑖 =


1 0 . . . 0 1
1 0 . . . 0 1
1 0 . . . 0 1
1 0 . . . 0 1
1 0 . . . 0 1


∈ R𝐾×𝑁e . (11)

Nextly, signal matrix calculated by cross matrix and mask matrix
are input into corresponding self-attention network [15] to model
the attention across the 𝐾 items and generate a latent vector, as
follows:

Msignal
𝑖

= Mcross ⊙Mmask
𝑖 , ∀𝑖 ∈ [𝑁c] . (12)

esignal
𝑖

= flatten
(
SelfAtt(𝑖)

(
Msignal
𝑖

) )
, ∀𝑖 ∈ [𝑁c] . (13)

Latent vectors output by different self-attention network are con-
catenated together to represent the arrangement signal extracted
from different channels, as follows:

esignal = esignal1 | |esignal2 | |...| |esignal
𝑁c

. (14)

4.5 Sequential Decision Module
With the help of SACU and MCAU, Sequential Decision Module
(SDM) takes the embeddings generated by IRM and candidate ac-
tions as the input, and outputs Q-values corresponding to different
actions.



Given a set of 𝑁a candidate actions {𝑎𝑖 }𝑁a
𝑖=1, SACU generates a

cross matrix Mcross
𝑖

for each action and MCAU generates corre-
sponding arrangement signal representation for each action. Subse-
quently, the outputs of the V network and the A network [18] can
be calculated as follows:

𝑉 (𝑠) = MLP
(
flatten(pool(Ead) | |pool(Eoi)))

)
. (15)

𝐴(𝑠, 𝑎𝑖 ) = MLP
(
esignal
𝑖

)
, (16)

where pool indicates average pooling over different rows (i.e., dif-
ferent items in the ads/organic items sequence).

Finally, SDM outputs the Q-value 𝑄 (𝑠, 𝑎𝑖 ) corresponding to the
𝑖-th candidate action on the current screen as follows:

𝑄 (𝑠, 𝑎𝑖 ) = 𝑉 (𝑠) +
(
𝐴(𝑠, 𝑎𝑖 ) −

1
𝑁a

𝑁a∑︁
𝑗=1

𝐴(𝑠, 𝑎 𝑗 )
)
. (17)

4.6 Auxiliary Loss for Batch-level Constraint
Recall that our objective is to maximize cumulative reward under
the constraint on the average ads exposure. The key for a successful
strategy is to satisfy the constraint while maintaining a differenti-
ated recommendation for different users/scenarios. For example, if
the user is prone to be annoyed by ads, we should expose less ads to
the user, and vice versa. Different auxiliary losses to constrain the
percentage of ads exposure (PAE) can result in different level of dif-
ferentiation. A common solution is to use a request-level constraint,
i.e., constraining the PAE of each request to be close to the PAE
target 𝛿 . Such a solution may result in poor differentiation since the
PAE of each request is constrained to the same target 𝛿 regardless
of the context. To allow for differentiation, Wang et al. [17] propose
to use an hour-level constraint that allows for using different PAE
targets in different hours. However, the level of differentiation is
still limited within an hour. To this end, we propose a batch-level
constraint to constrain the average PAE of the requests in a batch
instead of constraining the PAE of each request.

We denote the PAE associated with the action 𝑎 as PAE(𝑎). For
example, the PAE of 𝑎 = (0, 1, 0, 0, 1) is 0.4. Given a batch of transi-
tions 𝐵, our batch-level constraint can be written as:

𝐿PAE (𝐵) =
(
𝛿 − 1
|𝐵 |

∑︁
𝑠∼𝐵

PAE(argmax
𝑎∈A

𝑄 (𝑠, 𝑎))
)2
. (18)

However, the argmax function is not differentiable. Therefore, we
use a soft version of argmax instead, i.e., we use

PAE(argmax
𝑎∈A

𝑄 (𝑠, 𝑎)) ≈
𝑁a∑︁
𝑖=1

1
𝑍
exp

[
𝛽𝑄 (𝑠, 𝑎𝑖 )

]
PAE(𝑎𝑖 ), (19)

where 𝑍 =
∑𝑁a
𝑗=1 exp[𝛽𝑄 (𝑠, 𝑎 𝑗 )] is the normalization factor and 𝛽

is the temperature coefficient.
Unlike previous request-level or hour-level constraints that limit

the PAE for each request, we only limit the average PAE estimated
using randomly sampled batches. Such a weaker form of constraint
encourages the model to choose the action with a PAE that is
deviated from 𝛿 but may better adapt for the current context.

4.7 Offline Training
We show the process of offline training in Algorithm 1. We train
Cross DQN based on an offline dataset 𝐷 generated by an online
exploratory policy 𝜋𝑏 . For each iteration, we sample a batch of
transitions 𝐵 from the offline dataset and update the model using
gradient back-propagation w.r.t. the loss:

𝐿(𝐵) = 𝐿DQN (𝐵) + 𝛼𝐿PAE (𝐵), (20)
where 𝐿DQN is the same loss function as the loss in DQN [12], 𝐿PAE
is the auxiliary loss for the constraint, and 𝛼 is the coefficient to
balance the two losses. Specifically,

𝐿DQN (𝐵) =
1
|𝐵 |

∑︁
(𝑠,𝑎,𝑟,𝑠′) ∈𝐵

(
𝑟 + 𝛾 max

𝑎′∈A
𝑄 (𝑠 ′, 𝑎′) −𝑄 (𝑠, 𝑎)

)2
. (21)

Algorithm 1 Offline Training of Cross DQN
1: Offline data 𝐷 = {(𝑠, 𝑎, 𝑟, 𝑠 ′)} (generated by an online ex-

ploratory policy 𝜋𝑏 )
2: Initialize a value function 𝑄 with random weights
3: repeat
4: Sample a batch 𝐵 of (𝑠, 𝑎, 𝑟, 𝑠 ′) from 𝐷

5: Update network parameters by minimizing 𝐿(𝐵) in (20)
6: until Convergence

4.8 Online Serving
We show the process of online serving in Algorithm 2. In the online
serving system, Cross DQN selects the action with the highest
reward based on current state and converts the action to ads slots
set for the output. When the user pulls down, the model receives
the state for the next screen, and then makes a decision based on
the information on the next screen.

Algorithm 2 Online Inference of Cross DQN
1: Initial state 𝑠0
2: repeat
3: Generate 𝑎∗𝑡 = argmax𝑎∈A 𝑄 (𝑠𝑡 , 𝑎)
4: Allocate ads slots following 𝑎∗𝑡
5: User pulls down to the next screen 𝑡 + 1
6: Observe the next state 𝑠𝑡+1
7: until User leaves

In our scenario, current state will transit to the next state or
terminate depending on whether the user pulls down. However, the
next possible state corresponding to a given action is deterministic
if the interaction does not terminate. Based on this observation,
we can cache the decisions for multiple screens and transmit to
the client at once to reduce the time cost for the communication
between the server and the client.

Model Decomposition. Cross DQN will be called 𝑇 times for
one cache, which is time consuming for industrial scenarios where
latency is a major concern. Fortunately, the outputs of IRM can
be reused across different calls of Cross DQN in one cache, which
saves up to about 80% computation time. Since the generation of
item representations does not rely on the previous modules (such
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Figure 5: Model decomposition for online service.

as ranking and ads bidding), we calculate the representation of the
items parallel to the previous modules, which further reduces the
latency. As shown in Figure 5, the Cross DQN is decomposed into
IRM and SDM for deployment. The two parts are trained end-to-end
but deployed on different services for real-time prediction. The IRM
is calculated parallel to Ad Ranking and Organic Ranking systems.
Hence, it is latency-free for real-time inference of SDM.

Parameter Sharing. Both of IRM and SDM use parameter shar-
ing (cf. Figure 4) across different ads/organic items. As for IRM, we
can calculate the representations for all recalled items at the same
time without ranking information through parameter sharing and
parallel computing. Meanwhile, in SDM, we use parameter sharing
across different actions to guarantee the consistency of the reward
evaluation of the actions and ensure that the batch-level constraint
is effective. In addition, parameter sharing can reduce the scale of
parameters, accelerate model training and reduce memory usage.

5 EXPERIMENTS
We will evaluate Cross DQN model through offline and online
experiments in this section. In offline experiments, we will compare
Cross DQN with existing baselines and analyze the role of different
designs in Cross DQN. In online experiments, we will compare
Cross DQN with the previous strategy deployed on the Meituan
platform using an online A/B test.

5.1 Experimental Settings
5.1.1 Dataset. We collect the dataset by running an exploratory
policy on the Meituan platform during March 2021. We present the
detailed statistics of the dataset in Table 1. Notice that each request
contains several transitions. The features for the ads/organic items
include the identity, the category, the comment score, etc. The
features for the user profile include the identity, the gender, etc.

5.1.2 Evaluation Metrics. We evaluate the model with revenue in-
dicators and experience indicators. As for revenue indicators, we
use ads revenue and service fee in a period to measure platform
revenue. Specifically, the ads revenue is gained from advertisers
calculated using Generalized Second Price (GSP) [3] and charged

Table 1: Statistics of the dataset.

#requests #users #ads #items
12,729,509 2,000,420 385,383 726,587

per click. The total ads revenue is calculated as 𝑅ad =
∑
𝑟ad. The

service fee is charged from merchants’ orders according to a certain
percentage. and the total service fee is calculated as 𝑅fee =

∑
𝑟 fee.

In our platform, user experience is measured by whether the user
demand (e.g., finding a satisfying product) can be fulfilled. As for
experience indicators, we use the average conversion rate and aver-
age experience score to measure user experience. The conversion
rate calculated as 𝑟 cxr =

∑
CTR × CVR is the ratio of the number

of orders placed by the user to the number of his/her requests.
The experience score 𝑟 ex defined in Section 3 reflects the degree of
satisfaction of the user demand.

5.1.3 Hyperparameters. We implement Cross DQN with Tensor-
Flow and apply a gird search for the hyperparameters. The hidden
layer sizes of the IRM are (128, 64, 32, 8, 2) and the hidden layer sizes
of the SDM are (16, 8, 1). The learning rate is 10−3, the optimizer is
Adam [8] and the batch size is 8, 192.

5.2 Offline Experiment
In this section, we train Cross DQN with offline data and evalu-
ate the performance using an offline estimator. Through extended
engineering, the offline estimator models the user preference and
aligns well with the online service. We conduct experiments to an-
swer the following two questions: i) How does Cross DQN perform
compared with other baselines? ii) How do different designs (e.g.,
SACU, MCAU) and hyperparameter settings (e.g., 𝛼 , 𝛽) affect the
performance of Cross DQN?

5.2.1 Baselines. We compare Cross DQN with the following five
representative methods:

• Fixed. This method displays ads in fixed slots, such as the
slot indexed by 3, 6, 9, · · · .
• GEA [21]. GEA is a non RL-based dynamic ads slots strategy.
It takes the impact of ads intervals into consideration and
ranks the ads and organic items jointly with a rank score
RS = (CTR × charge + GMV × takerate) exp(𝛽 ′𝑑), where
charge is the fee paid by advertisers, takerate is the take rate
(i.e., the fee charged on each transaction by the platform),
and 𝑑 is the interval between two ads.
• CTLRL [17]. Constrained Two-Level Reinforcement Learn-
ing (CTLRL) uses a two-level RL structure to allocate ads.
The upper level RL model decomposes the platform-level
constraint into hour-level constraints, and the lower level
RL model sets the hour-level constraint as the request-level
constraint.
• HRL-Rec [20]. HRL-Rec is an RL-based dynamic ads slots
strategy. It divides the integrated recommendation into two
levels of tasks and solves using hierarchical reinforcement
learning. Specifically, the model first decides the channel
(i.e., select an organic item or an ad) and then determine the
specific item for each slot.
• DEAR [24]. DEAR is also an RL-based dynamic ads slots
strategy. It designs a deep Q-network architecture to deter-
mine three related tasks jointly, i.e., i) whether to insert an
ad to the recommendation list, and if yes, ii) the optimal ad
and iii) the optimal location to insert.



Table 2: The result of Revenue Indicators and Experience Indicators. Each experiment are presented in the form of mean ±
standard deviation. The improvement means the improvements of Cross DQN across the best baselines.

model Revenue Indicators Experience Indicators
𝑅ad 𝑅fee 𝑅cxr 𝑅ex

Fixed 0.2211 (±0.00252) 0.2476 (±0.00686) 0.2148 (±0.00342) 0.8823 (±0.00730)
GEA 0.2372 (±0.00035) 0.2564 (±0.00096) 0.2457 (±0.00061) 0.9493( ±0.00012)
CTLRL 0.2286 (±0.00101) 0.2536 (±0.00860) 0.2250 (±0.00213) 0.9078 (±0.00384)
HRL-Rec 0.2380 (±0.00287) 0.2660 (±0.00132) 0.2530 (±0.00021) 0.9526 (±0.00123)
DEAR 0.2391 (±0.00244) 0.2687 (±0.00116) 0.2530 (±0.00044) 0.9552 (±0.00407)

Cross DQN 0.2465 (±0.00058) 0.2742 (±0.00135) 0.2551 (±0.00081) 0.9703 (±0.00085)
-aux 0.2446 (±0.00079) 0.2737 (±0.00231) 0.2537 (±0.00034) 0.9671 (±0.00118)

-aux-mcau 0.2418 (±0.00120) 0.2728 (±0.00102) 0.2534 (±0.00045) 0.9661 (±0.00092)
-aux-mcau-sacu 0.2370 (±0.00217) 0.2722 (±0.00286) 0.2508 (±0.00065) 0.9629 (±0.00201)
Improvement 3.09% 2.05% 0.83% 1.58%
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Figure 6: The experimental results on the sensitivity of 𝜂, 𝛼 and 𝛽 .

5.2.2 Performance Comparison. We present the experiment re-
sults under the same PAE level in Table 2 and have the following
observations: i) Compared with all these baselines, Cross DQN
achieves strongly competitive performance on both the revenue-
related metrics and experience-related metrics. Specifically, Cross
DQN improves over the best baseline w.r.t. 𝑅ad, 𝑅fee, 𝑅cxr and 𝑅ex
by 3.09%, 2.05%, 0.83% and 1.58% separately. ii) Cross DQN out-
performs the fixed slots strategy. A reasonable explanation is that
the ads positions calculated by Cross DQN are more personalized,
which leads to an increase in revenue as well as an improvement of
user experience. iii) Cross DQN outperforms GEA, which indicates
that an RL-based method may perform better than a rule-based
method. iv) Cross DQN also performs better than CTLRL possible
due to the fact that the PAE of different requests of Cross DQN
within the same hour are more personalized. v) Compared with the
state-of-the-art RL-based methods, i.e., HRL-Rec and DEAR, the
superior performance of Cross DQN justifies the explicit modeling
of the arrangement signal.

5.2.3 Ablation Study. To verify the impact of different designs
(SACU, MCAU, batch-level constraint), we study three ablated vari-
ants of Cross DQN which have different components in SDM.
• Cross DQN (-aux) does not use the auxiliary loss of Cross
DQN. Notice that without the help of the auxiliary loss, we
can adjust the coefficients in the reward function to realize
the same PAE as the PAE of other baselines.
• Cross DQN (-aux-mcau) additionally blocks the MCAU and
uses one self-attention unit instead on top of the previous
ablated version.
• Cross DQN (-aux-mcau-sacu) concatenate the embeddings
of the action and the state directly without SACU.

The results shown in Table 2 reveal the following findings: i)
The performance gap between Cross DQN (-aux-mcau-sacu) and
Cross DQN (-aux-mcau) indicates the effectiveness of SACU. By
explicitly crossing the embeddings of the states and the actions,
SACU can effectively generate cross matrix representation for sub-
sequent extraction of arrangement signal, therefore improving the
overall metrics. ii) The MCAU is an additional process after the
crossover to strengthen the mutual interaction. The performance



of Cross DQN (-aux) is superior to Cross DQN (-aux-mcau), which
verifies the effectiveness of extracting arrangement signal of dif-
ferent channel combinations. iii) Cross DQN outperforms Cross
DQN (-aux), resulting from the fact that the batch-level constraint
brings a certain revenue increase and makes the PAE in a period
more stable.

5.2.4 Hyperparameter Analysis. We analyze the sensitivity of these
three hyperparameters: 𝜂, 𝛼 and 𝛽 . 𝜂 is the weight for the user
experience in the reward function (cf. Eq. (2)). 𝛽 is the temperature
parameter that controls the degree of the approximation in Eq. (19).
𝛼 is the hyperparameter which balances the main loss and auxiliary
loss (cf. Eq (20)).

Hyperparameter𝜂.The experimental results of different values
of 𝜂 are presented in Figure 6a. As 𝜂 increases, 𝑅ex increases but 𝑅ad
decreases. A reasonable explanation is that the system of dynamic
ads allocation tends to insert fewer ads when 𝜂 becomes larger,
which has a beneficial impact on user experience and fee.

Hyperparameter 𝛼 . As shown in Figure 6b, we find that the
auxiliary loss for batch-level constraint has greater influence on re-
turn. When 𝛼 increases, the standard deviation of reward decreases.
This phenomenon shows that the PAE and revenue are more stable
under batch-level constraint. It is worth noticing that the mean of
reward increases when 𝛼 changes from 0 to 1. One possible explana-
tion is that the ads allocation under a certain batch-level constraint
of PAEwill be more reasonable, which ensures the quality of display
results and improves the revenue and user experience. However, if
𝛼 is too large, it will deviate from the learning goal, resulting in a
decline in reward.

Hyperparameter 𝛽 . The right curve in Figure 6 reveals that
the mean of reward increases and the standard deviation of reward
decreases as 𝛽 increases within a certain range. This phenomenon
demonstrates that accurate calculation of PAE results in stable and
high reward. On the contrary, the reward may decrease when 𝛽
exceeds a certain threshold, suggesting the necessity to carefully
tune this parameter in practice.

5.3 Online Results
We compare Cross DQNwith fixed ads positions and both strategies
are deployed on the Meituan platform through online A/B test. We
keep total PAE the same for all methods for a fair comparison. As a
result, we find that 𝑅ad, 𝑅fee and 𝑅ex increase by 12.9%, 10.2% and
9.1%, which demonstrates that our Cross DQN not only significantly
increases the platform revenue, but also improves user experience.
It is worth noting that this increase values are 11.5%, 10.7% and
10.0% in offline experiments. One possible reason for this difference
in absolute value is the differences in data distribution.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose Cross DQN to optimize ads allocation in
feed. In Cross DQN, we design State and Action Cross Unit and
Multi-Channel Attention Unit to explicitly extract the arrangement
signal that is the influence of the arrangement of items in mixed list
on user behaviors. In addition, we introduce an auxiliary loss for
batch-level constraint to achieve the personalization for different
requests as well as the platform-level constraint. Practically, both

offline experiments and online A/B test have demonstrated the
superior performance and efficiency of our solution.

In our scenario, user experience is also an important objective for
the long-term growth of the platform since the improvement of user
experience directly increases the retention rate and enhances the
reputation of the platform. In the future, it is beneficial to optimize
for more user experience metrics and pay more attention to the
modeling of long-term benefits. In addition, it is worth noting that
our method follows the offline reinforcement learning paradigm.
Compared with online reinforcement learning, offline reinforce-
ment learning faces additional challenges (such as the distribution
shift problem). The impact of these challenges to the ads allocation
problem is also a potential research direction in the future.
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