
1

Ergodic Limits, Relaxations, and Geometric
Properties of Random Walk Node Embeddings

Christy Lin, Daniel Sussman, and Prakash Ishwar

Abstract—Random walk based node embedding algorithms learn vector representations of nodes by optimizing an objective function
of node embedding vectors and skip-bigram statistics computed from random walks on the network. They have been applied to many
supervised learning problems such as link prediction and node classification and have demonstrated state-of-the-art performance. Yet,
their properties remain poorly understood. This paper studies properties of random walk based node embeddings in the unsupervised
setting of discovering hidden block structure in the network, i.e., learning node representations whose cluster structure in Euclidean
space reflects their adjacency structure within the network. We characterize the ergodic limits of the embedding objective, its
generalization, and related convex relaxations to derive corresponding non-randomized versions of the node embedding objectives.
We also characterize the optimal node embedding Grammians of the non-randomized objectives for the expected graph of a
two-community Stochastic Block Model (SBM). We prove that the solution Grammian has rank 1 for a suitable nuclear norm relaxation
of the non-randomized objective. Comprehensive experimental results on SBM random networks reveal that our non-randomized
ergodic objectives yield node embeddings whose distribution is Gaussian-like, centered at the node embeddings of the expected
network within each community, and concentrate in the linear degree-scaling regime as the number of nodes increases.

F

1 INTRODUCTION

MOST statistical and computational tools originally de-
veloped for vector-valued data do not leverage the

unique structured form of network data. Tools that exploit
the graph-structure of network data could be custom-made
for each network problem. A powerful alternative, however,
is to develop a Euclidean-space embedding of a network
that enables methods and tools developed for Euclidean-
space data to effectively reason about various network
properties.

Node embedding algorithms [1] aim to map nodes of a
given graph into points in Euclidean space (i.e., vectors in
Rd) such that their relative positions capture their propensi-
ties for adjacency within the network. These embeddings

make it possible to apply to network data, tools and al-
gorithms from multivariate statistics and machine learning
that were developed for Euclidean-space data. For example,
with suitable embeddings, node classification, community
detection, and vertex nomination problems reduce, respec-
tively, to standard classification, clustering, and ranking
problems. Therefore, developing new node embedding al-
gorithms, establishing the theoretical properties of these
embeddings, and demonstrating how connectivity proper-
ties are reflected in the embedding space is fundamental to
developing principled network inference procedures.

Random walk embeddings [2], [3], [4], [5] are a class of
recently developed node embedding techniques which use

• Christy Lin is with the Division of Systems Engineering, College of
Engineering, Boston University, 15 St Marys St, Boston, MA, 02215.

cy93lin@bu.edu
• Daniel Sussman is with the Department of Mathematics & Statistics,

College of Arts and Sciences, Boston University, 111 Cummington Mall,
Boston, MA, 02215. sussman@bu.edu

• Prakash Ishwar is with the Division of Systems Engineering and De-
partment of Electrical & Computer Engineering, College of Engineering,
Boston University, 8 St Marys St, Boston, MA, 02215. pi@bu.edu

random walks on graphs to capture notions of proximity be-
tween nodes. They may be viewed as network counterparts
of techniques used for learning word embeddings [6], [7] in
the field of natural language processing. In fact, by viewing
samples of random walks in the network as sentences, with
nodes playing the role of words, word embeddings can
be directly applied to networks to yield node embeddings.
Nodes which appear nearby within a sample of a random
walk are analogous to words that appear nearby within a
sentence. Word embeddings have been found to accurately
capture the relationships between words and have been
highly successful in several natural language processing
tasks such as topic modeling, translation, and word anal-
ogy [8]. Random walk node embeddings too have been ap-
plied to a number of supervised and unsupervised learning
problems such as link prediction, node classification and
community detection and have demonstrated state-of-the-
art performance [2], [3], [4], [5].

Unfortunately, despite excellent empirical performance
in a number of supervised learning problems, random walk
embeddings remain poorly understood. This is in stark con-
trast to the well-known spectral embeddings whose prop-
erties for the unsupervised learning problem of community
detection have been extensively studied and characterized
under a variety of statistical network models, specifically
the Stochastic Block Model (SBM) and its generalizations [9],
[10], [11], [12], [13], [14]. Attempts of theoretical analysis so
far have focused on building connections between random
walk embeddings algorithms and matrix factorization [15].
The properties of the resulting embedding vectors, however,
still remain unexplored.

Contributions: This paper proposes a framework for
random walk based node-embedding algorithms for graphs.
This is based on learning node embeddings by optimizing
objective functions involving skip-bigram statistics com-
puted from random walks on a graph. This framework

ar
X

iv
:2

10
9.

04
52

6v
1 

 [
st

at
.M

L
] 

 9
 S

ep
 2

02
1



2

subsumes several existing algorithms as special cases and
introduces extensions and techniques that simplify theoret-
ical analysis. We establish ergodic limits of the proposed
node-embeddings. We analyze Grammian re-parameterized
convex relaxations and characterize the solution for the
expected graph of a two-community SBM and the uncon-
strained solution for any graph. We prove that the solution
of the expected graph of a two-community SBM has rank at
most 2. We develop algorithms for computing solutions to
our proposed embedding objectives for general graphs and
conduct numerical experiments to understand the geomet-
ric structure of embedding vectors (community clustering
and separation properties) for SBM random graphs. We
also empirically study the concentration properties of node
embeddings for SBM random graphs in the linear and
logarithmic scaling regimes. We find empirically that the
distribution of embeddings are Gaussian-like, centered at
the node embeddings of the expected graph within each
community, and that they concentrate in the linear degree
scaling regime as the number of nodes increases.

Paper organization: Section 2 overviews recent work
on random walk embeddings, sets up basic notation, and
provides background on SBMs. Section 3 describes our
proposed theoretical framework, results on ergodic limits
(Section 3.1), various relaxations (Section 3.3), and the char-
acterization of the solution for the expected graph of a two-
community SBM (Section 3.4). Section 4 describes the setting
of all our experiments in full detail. The geometric and
concentration properties of the distribution of embedding
vectors of our proposed algorithms under 2-community
SBM are presented and discussed in Section 5. Concluding
remarks appear in Section 6.
Notation: In this work we consider graphs that are undi-
rected and simple with a node set V = [n] := {1, 2, . . . , n}
and an edge set E ⊂ {{i, j} : i, j ∈ V, i 6= j}. The edges may
be possibly weighted. We denote such a graph by G = (V, E)
and its adjacency matrix by A ∈ {0, 1}n×n, where Aij = 0
if, and only if, {i, j} ∈ E .

We denote the set of all real numbers by R, the set of all
natural numbers by N, the set of all n × n real symmetric
matrices by Sn, the set of all real, symmetric, and positive
semidefinite matrices by Sn+, and the natural logistic-loss
function by σ(t) := ln(1 + e−t), t ∈ R. Matrix transpose is
denoted by >.

2 BACKGROUND AND RELATED WORK

In this section we overview recent work on random walk
node embeddings with a focus on the unsupervised algo-
rithm VEC. We also summarize key aspects of the Stochastic
Block Model (SBM) used in our experiments.

2.1 Random walk node embedding algorithms
A random walk node embedding algorithm typically con-
sists of three steps: 1) Generating multiple random walks
over the graph via Markov chains with the set of nodes as
the state space, specified probability transition matrices at
each step, and specified initial distributions. 2) Computing
various statistics from the sample paths of the random
walks. 3) Generating embeddings by optimizing a function

that only involves the computed statistics and node embed-
ding variables of the input graph.

Among the random walk node embedding algorithms,
[2], [4], [16] make use of node embeddings within the con-
text of supervised learning problems such as node attribute
prediction and link prediction and accordingly design prob-
ability transition matrices that depend on the supervised
labels. In contrast, the VEC algorithm [5] focuses on the
unsupervised community detection problem [17]. The unsu-
pervised setting of [5] is ideal for studying random walk
node embeddings that capture pure network connectivity
properties unsullied by node labels. We therefore select VEC
as our prototypical algorithm for analysis and introduce it
in detail in the next subsection.

While our focus is on unsupervised setting, the general
Markov-Chain based framework we develop can be used
to analyze the supervised setting as well through transition
matrices that are label dependent.

In addition to the node embedding algorithms discussed
above, the use of a random walks and their steady-state-
distributions for graph clustering has been studied in [18]
and [19]. Subsequent work [20] further proposed to exploit
multi-step transition probabilities between nodes for clus-
tering.

In terms of theoretical results, [21] have analyzed the
stationary distribution of second-order random walks in
[4] for specific types of networks. We provide a complete
characterization of the ergodic limits for general random
walk node embedding objectives in Section 3. For the task
of community detection, [22] have provided large-sample
error bounds for consistent community recovery from the
perspective of matrix factorization. Their setting is a special,
unconstrained case of our general problem stated in Defini-
tion 6 of Section 3.3.

2.2 VEC: unsupervised random walk node embedding
VEC learns a low-dimensional vector representation for
each node of a graph such that the local neighborhood
structures of the graph are encoded within the Euclidean
geometry of node vectors. Specifically, the inner product
between the embedding vectors of node pairs encode their
propensity to appear nearby in random walks on the graph.

VEC generates r random walks on G of fixed length `

starting from each node. We let {X(m,p)
s }`s=1, p = 1, . . . , r,

denote the p-th random walk starting from node m. All ran-
dom walks follow the “natural” transition matrix W where
the next node is chosen from the immediate neighbors of
the current node with probability proportional to the edge
weight between them.

VEC learns node embedding using the negative-
sampling framework of noise-contrastive estmation [6]. The
statistics used for learning node embeddings are based on
two multisets of node pairs that are computed from the
sample paths of the random walks as follows. The positive
multiset D+ consists of all node pairs (X

(m,p)
s , X

(m,p)
s′ ), in-

cluding repetitions, that occur within w steps of each other,
i.e., |s − s′| ≤ w, in all the generated sample paths. Such
node pairs are called w-skip bigrams in Natural Language
Processing with words viewed as nodes and sentences as
sample paths of random walks. The algorithm parameter



3

w controls the size of the local neighborhood of a node in
the given graph. The negative multiset D− is constructed as
follows. For each node pair (i, j) in D+, we append k node
pairs (i, j1), . . . , (i, jk) to D−, where the k nodes j1, . . . , jk
are drawn in an IID manner from all the nodes according
to the empirical unigram node distribution computed from
all the sample paths. Let n+

ij and n−ij denote the number of
(i, j) pairs, counting repetitions, in D+ and D− respectively.

VEC finds the embedding vector ui ∈ Rd for each node
i by solving the following minimization problem:

Definition 1 (VEC optimization problem).

arg min
{ui∈Rd,i∈V}

∑
(i,j)∈V2

[
n+
ij σ(u>i uj) + n−ij σ(−u>i uj)

]
(1)

One approach to solve Eq. (1) is via stochastic gradient
descent (SGD) [23], [24]. This approach is followed in [6]
and implemented in Python gensim package. Besides its
conceptual simplicity, SGD can be parallelized and nicely
scaled to large datasets [25]. The per-iteration computational
complexity of the SGD algorithm used to solve Eq. (1) is
O(d), i.e., linear in the emebdding dimension. The number
of iterations is O(r`wk).

2.3 Stochastic Block Model
The Stochastic Block Model (SBM) [26], [27], [28] is a
canonical generative probabilistic model for random graphs
that reflects block (community) structures among the nodes
wherein nodes within the same block have the same tenden-
cies for connecting to all other nodes. Free of node or edge
labels, it serves as a clean platform for generating graphs
to empirically study and compare the properties of various
node embedding algorithms and conduct a theoretical anal-
ysis. For example, SBM has helped in understanding the
behavior of spectral embeddings [12].

For any given K ∈ N, a K-block SBM is parameterized
by the latent block membership labels y1, . . . , yn ∈ [K],
and the edge probability matrix, a symmetric matrix B ∈
[0, 1]K×K . The latent labels {yi} partition the nodes into
communities indexed by each k ∈ [K]. We note that there
are versions of SBM in which the yi’s are treated as random.
This, however, poses minor additional difficulties. To ease
the subsequent discussion, unless noted otherwise, the yi’s
will always be viewed as fixed deterministic unknowns
throughout this work. For a node in block k1 and a different
node in block k2 (where k2 may equal k1), the probability
that an edge is present between the two nodes is Bk1k2 ,
and all edges appear independently. We use this model for
generating graphs in all our experiments.

The goal of any community detection algorithm is to
learn the latent communities of nodes purely from the graph
structure. Thus community detection is an unsupervised
learning problem which aims to uncover the underlying
block structure. A series of work [29], [30], [31], [32],
[33], [34] characterizes the information-theoretic limits of
community detection in SBMs in different degree-scaling
regimes. Some of our experiments are designed to operate
with respect to these information-theoretic limits.

3 ANALYTICAL FRAMEWORK AND RESULTS

There are three distinct challenges which complicate the
analysis of VEC embedding vectors and their relationship
to the latent graph community structure. First, the objective
function Eq. (1) is nonlinear due to the logistic loss function.
Second, even though the function σ(t) is strictly convex,
the overall objective is not convex with respect to the node
embedding vectors. Finally, the objective function is itself
random, partly due to intrinsic randomness in network
connectivity, but also due to algorithmic randomness from
the random walks and the Stochastic Gradient Descent
algorithm.

VEC GramVEC
equivalent

PMI
no constraints

ErgoVEC

lim
l→
∞

GramErgoVEC

lim
l→
∞

equivalent
ErgoPMI

no constraints

lim
l→
∞

NucGramErgoVEC

rank→
‖
· ‖
∗

Projected ErgoPMI

rank-d
p.s.d. proj.

Fig. 1: Relationships between analysis strategies.

To tackle these challenges, in this section we intro-
duce and develop techniques, generalized formulations, and
their extensions which are more amenable to theoretical
analysis. We leverage three distinct strategies whose inter-
relationships are succinctly depicted in Fig. 1. These are:
(1) ErgoVEC: Ergodic limits of random walks (lim`→∞). We

begin by noting that the sampled coefficients, n+
ij ’s and

n−ij ’s in Eq. (1), inherit the randomness of the random
walks and depend on a number of algorithm param-
eters that are described in Sec. 2.2. Previous empirical
results [5] demonstrate that the parameters such as the
number of random walks r and their length ` do not
substantially impact performance. Motivated by this
observation, as a first step, in Sec. 3.1, we eliminate
algorithmic randomness by taking the ergodic limits
(` → ∞) of the coefficients. This gives rise to a more
principled formulation, which we call ErgoVEC, that
removes dependence on sampled random walks and
parameters r and `.

(2) GramErgoVEC and PMI: reparameterize, unconstrain and
project. Like VEC, ErgoVEC is a nonconvex optimiza-
tion problem since the objective is a noconvex func-
tion of the embedding vectors ui. We leverage a re-
parametrization trick which is similar in spirit to that
used in [35] to arrive at an equivalent problem, named
GramErgoVEC, that has a convex objective function
with respect to new matrix variables and additional
constraints. GramErgoVEC has a convex objective, but
is still a nonconvex optimization problem due to the
rank constraint. In order to gain insight into the
structure of the solution, we characterize the solution
to GramErgoVEC without any constraints and then
project the unconstrained solution onto the constraint
set. It turns out that the solution to the unconstrained
GramErgoVEC objective is directly related to the so-



4

called Pointwise Mutual Information (PMI) matrix [36].
We study GramErgoVEC and PMI in Sec. 3.3

(3) NucGramErgoVEC: reparameterize and convexify. Another
strategy to convexify GramErgoVEC is to replace the
non-convex rank constraint by a convex nuclear norm
constraint. We term the resulting optimization problem
NucGramErgoVEC and study its properties in the later
part of Sec. 3.3

In the rest of this section, we will formally study and es-
tablish important theoretical properties of these alternative
formulations and their inter-relationships.

3.1 Ergodic limits
As described in Sec. 2.2, n+

ij and n−ij are the number of
the (i, j) node pairs in the positive and negative multisets,
D+ and D−, respectively. These depend on 5 algorithm
parameters: r (number of random walks per node), ` (length
of each walk), w (context window size) and k (number
of negative w-skip bigrams per positive w-skip bigram).
Specifically, n+

ij , as a w-skip bigram count over r IID sets
of n random walks, increases proportionally with r and n
and roughly proportionately with `, for large `, since the
number of segments of w consecutive steps in a length-`
walk equals (l − w + 1). They also increase as w increases
however their distribution can change substantially with
w. As for the negative multiset, note that |D−| = k|D+|,
so n−ij increases proportional to k, r, and `. Among these
parameters, the results in [5] show that r and ` have little
effect on the final performance of VEC, whilew plays a more
important role.

Besides their dependence on the algorithm parameters,
n+
ij ’s and n−ij ’s inherit the randomness intrinsic to the ran-

dom walks. Additionally, the number of negative (i, j) pairs
n−ij also inherit randomness from the categorical sampling
of appended nodes j1, . . . , jk in the negative pairs. In order
to gain an algorithmic-randomness-free understanding of
network properties captured by n+

ij and n−ij , we study their
ergodic limits.

Definition 2 (Ergodic limits of n+
ij and n−ij). Let n+

ij and n−ij
be defined as above. The (normalized) ergodic limits of n+

ij and n−ij
are defined as

n̄+
ij :=

1

rn
lim
`→∞

n+
ij

`
, (2)

n̄−ij :=
1

rn
lim
`→∞

n−ij
`
, (3)

whenever these limits exist in the almost sure sense.

The Ergodic limits in Definition 2 provide, for a given
graph, a deterministic version of n+

ij and n−ij , normalized
by the cumulative length of all random walks. We note that
letting ` go to infinity may seem like incorporating global
information about the entire graph instead of the more
useful local connectivity patterns, but this is not the case.
Regardless of the value of `,D+ only contains pairs of nodes
which appear within w steps from each other. Therefore, the
positive pairs sampled still reflect local information.

In VEC we launch r random walks starting determinis-
tically from each node which yields a total of rn random
walks. Dividing the w-skip bigram counts by rn averages

them across all random walks. The averaged counts can be
loosely viewed as arising from a single random walk with a
uniform initial distribution over nodes, i.e., with probability
1/n for each node. If the Markov Chain underlying the
random walk is ergodic, as ` tends to infinity, the n+

ij ’s and
n−ij ’s, suitably normalized, will converge to their respective
expected values under the sampling distribution of random
walks. This intuition is formalized in Theorem 1 below. The
theorem encompasses disconnected graphs that consist of
several connected components that are often encountered in
practice. In such cases, the random walks can be launched
within and confined to each connected component. The
theorem also covers the case where edges in the graph have
real-valued (non-binary) nonnegative weights. The theorem
provides explict closed-form expressions for the ergodic
limits n̄+

ij and n̄−ij .

Theorem 1 (Ergodic limits of n+
ij and n−ij)

Let G be a weighted graph with connected components {Gt}mt=1,
where for each t, Gt has nt nodes and a nonnegative weighted
adjacency matrix At. Let the VEC algorithm be executed on G
with parameters w and k and transition matrix Wt := D−1

t At
in component t, where Dt is a diagonal matrix with ith diagonal
element Dt,ii =

∑
j At,ij =: di, i.e., the degree of node i. Then

the ergodic limits n̄+
ij ’s and n̄−ij ’s in Definition 2 exist and are

given by

n̄+
ij =

{
πi
∑w
v=1(W v

t )ij , if i, j ∈ Gt;
0 otherwise.

, (4)

n̄−ij = kwπiπj , (5)

where π is a stationary distribution of the random walk with πi =
nt∑
t nt

Dt,ii∑
iDt,ii

for each t and all i ∈ Gt.

The proof of Theorem 1 is based on convergence re-
sults for irreducible Markov chains and is presented in
Appendix A.1. The key ideas are as follows. For the posi-
tive pairs we expand the state-space of the Markov chain
and show that it is irreducible. This implies that the long
term average of distributions converges to the stationary
distribution. For the negative pairs the major obstacle is
to deal with the second-layer of randomness conditioned
on the positive samples. We overcome this difficulty by
applying McDiarmid’s inequality conditionally to establish
almost complete convergence.

Theorem 1 states that the ergodic limits n̄+
ij and n̄−ij

can be evaluated directly without having to actually launch
any random walks. The additional randomness from the
random walks and dependence on the algorithm parameters
r and ` are removed. As a result, the coefficients, in the form
of ergodic limits, are deterministic functions of the graph
adjacency matrix and two algorithm parameters w and k.
Replacing the coefficients in Eq. (1) with their limiting val-
ues (scaled down by the factor 1/(rn`)) yields the following
optimization problem that we name ErgoVEC:

Definition 3 (ErgoVEC optimization problem).

arg min
{ui∈Rd,i∈V}

∑
(i,j)∈V2

[
n̄+
ij σ(+u>i uj) + n̄−ij σ(−u>i uj)

]
(6)

A practical approach to compute the embedding vectors
of ErgoVEC can be described as follows. Given a graph



5

and algorithm parameters w and k, first calculate n̄+
ij ’s and

n̄−ij ’s using Theorem 1. Then use them to solve the ErgoVEC
optimization problem in Definition 3 via stochastic gradient
descent to find embedding vectors ui’s. A neural-network
implementation is described in Section 4.2 and Appendix B.

ErgoVEC calculates the coefficients of the optimization
objective in a more principled way compared to VEC and
completely bypasses the random walk sampling process.
The r and ` algorithm parameters of VEC are not needed
at all in ErgoVEC. However, when the graph is dense or w
is large, evaluating n̄+

ij from Eq. (4) can be computationally
very expensive. In these cases, n+

ij computed from random
walks could serve as an approximation. Thus VEC can
may be viewed as a practical approximation to the more
principled ErgoVEC.
Relationship to modularity maximization. When the graph
is connected and we set w = 1, Eq. (6) reduces to

arg min
{ui,i∈V}

∑
(i,j)∈V2

[
Aij σ(+u>i uj) + k

didj∑
k dk

σ(−u>i uj)
]
, (7)

where di denotes the degree of node i. If instead we set
σ(t) := t, and constrain the embedding vectors so that
for all i, j, u>i uj ∈ {0, 1}, then the minimization becomes
equivalent to the modularity maximization problem [37] for
two communities defined by

arg max
{yi∈{0,1},i∈V}

∑
(i,j)∈V2

(
Aij −

didj
2|E|

)
1(yi = yj)

where yi denotes the community assignment for node i, 1(·)
is the indicator function, and |E| is the number of edges. This
is often relaxed to (7) and solved via spectral approaches
followed by clustering [38].

3.2 Walk-distance weighting and large r asymptotics
Walk-distance-weighted count statistics: In VEC, n+

ij is the
count of all instances where node i appears within w steps
of node j in all the random walks. Instances where nodes i
and j appear exactly 1 step from each other and instances
where they appear in exactly w steps from each other, both
contribute a count of 1 to the value of n+

ij . A nuanced
alternative must account for the number of steps between
appearances of nodes.

As a general approach to construct such a statistic, we
propose associating a walk-distance weight αv to the counts
of instances of node pairs that occur exactly v steps from each
other. With this modification, the walk-distance-weighted
positive-pair counts will become n+

ij :=
∑∞
v=1 αvn

+
ij(v),

where n+
ij(v) is the count of instances where node i appears

exactly v steps from node j in all the random walks. The
original count statistic for positive pairs can be recovered
as a special case of our proposed general framework by
choosing αv = 1 for all v ≤ w and αv = 0 for all
v > w. Choosing a nonnegative decreasing sequence of
walk-distance weights αv can be viewed as providing a “soft
cutoff” for the bigram counts when compared to the “hard
cutoff” of the original counts.

To compute walk-distance weighted counts for negative-
pairs, we propose the following modification to the original
negative sampling process. For each positive pair of nodes

that occur exactly v steps apart, we append k node pairs
drawn in an IID manner exactly as in the original sampling
process. However, these k negative node pairs will now con-
tribute the value αv to the walk-distance weighted negative-
pair counts as opposed to the value of 1 previously.
Large r asymptotics: The effect of increasing ` is similar to
that of increasing r. In a random walk on a graph, the choice
of the next node depends only on the current node. From
this point of view, we may loosely visualize a long random
walk as being formed by joining many shorter segments
which are nearly independent random walks. In this sense,
an infinitely long random walk is similar to an infinite
sequence of short random walks with each starting node
chosen from the stationary distribution of the Markov chain.
Thus, in addition to the large ` asymptotics characterized in
Theorem 1, we can also study other types of asymptotics
such as r → ∞ or, more generally, ` and r both going to
infinity together in some manner.

The counterpart of Theorem 1 for the proposed walk-
distance-weighted counts is the following general result
which is proved in Appendix A.2.

Theorem 2 (Limits of walk-distance weighted counts)
Let G be a weighted connected graph with n nodes and W be
the probability transition matrix of the natural random walk
on G with stationary distribution π. Let the VEC algorithm be
executed with G as input, walk-distance weights {αv}∞v=1, and
negative sampling rate k. If {αv}∞v=1 is absolutely convergent,
i.e.,

∑∞
v=1 |αv| <∞, the following limits of n̄+

ij ’s and n̄−ij ’s exist
in the almost sure sense:

1) When r is fixed and `→∞ (ergodic limits):

1

rn
lim
`→∞

n+
ij

`
= πi

∞∑
v=1

αv(W
v)ij , (8)

1

rn
lim
`→∞

n−ij
`

= kπiπj

∞∑
v=1

αv. (9)

2) When ` is fixed and r →∞:

1

`n
lim
r→∞

n+
ij

r
=

1

`n

n∑
m=1

∞∑
v=1

αv(W
v)ij

`−v∑
s=1

(W )s−1
mi , (10)

1

`n
lim
r→∞

n−ij
r

=
kπ

(`)
j

`n

n∑
m=1

∞∑
v=1

αv

`−v∑
s=1

(W )s−1
mi (11)

where π(`)
j = 1

`

∑`
u=1

1
n1
>
nW

u−1ej .1

3) Double limits:

1

n
lim
r→∞

lim
`→∞

n+
ij

r`
=

1

n
lim
`→∞

lim
r→∞

n+
ij

r`
= πi

∞∑
v=1

αv(W
v)ij ,

(12)

1

n
lim
r→∞

lim
`→∞

n−ij
r`

=
1

n
lim
`→∞

lim
r→∞

n−ij
r`

= kπiπj

∞∑
v=1

αv.

(13)

Theorem 2 is stated for a connected graph, but it holds
for each connected component of a disconnected graph.
The main changes are that the expressions πi

∑w
v=1(W v)ij

and kπiπjw in Lemma 1 change to πi
∑∞
v=1 αv(W

v)ij and

1. We follow the convention that when the upper limit of a summa-
tion is smaller than its lower limit, the sum is 0.



6

kπiπj(
∑∞
v=1 αv) respectively and the large-r asymptotic

limits of the normalized count statistics are also character-
ized. To establish these results, we need to assume that the
walk-distance weight series is absolutely convergent. Walk-
distance weighting makes it possible to realize different
nonlinear functions of the transition matrix as the ergodic
limit of count statistics, not just polynomial functions. For
instance, if we choose αv = 1/v! for all v, then for all
i, j, n̄+

ij = πi(exp{W})ij , where exp{W} denotes matrix
exponential, and n̄−ij = kπiπje. We note that the large-
` asymptotic limits are independent of r but the large-r
asymptotic limits depend on `. Yet, the double limits where
r is sent to infinity first before ` equal the corresponding
large-` limits.

3.3 Reparameterized relaxations and their properties
In this subsection, we study matrix re-parameterizations
and convex relaxations of the VEC and ErgoVEC optimiza-
tion problems. We follow [35] and begin by defining the
n×nmatrixX to be the Gram matrix of the node embedding
vectors, i.e., for all i, j, Xij := u>i uj . Let N+ and N−

denote the n× n matrices of the positive-pair and negative-
pair counts respectively, i.e., for all i, j, [N+]ij = n+

ij and
[N−]ij := n−ij . If

f(N+,N−, X) :=
∑

(i,j)∈V2

n+
ijσ(+Xij) +

∑
(i,j)∈V2

n−ijσ(−Xij),

then the VEC optimization problem (Eq. (1)) reduces to the
following equivalent optimization problem in the matrix
variable X named GramVEC:

Definition 4 (GramVEC optimization objective).

argmin
X∈Sn+, rank(X)≤d

f(N+, N−, X). (14)

In Eq. (14), the constraintX ∈ Sn+ arises from the fact that
the Gram matrix of embedding vectors is real, symmetric,
and positive semi-definite. The rank constraint comes from
the fact that ui ∈ Rd. The equivalence of the VEC (Eq. (1))
and GramVEC (Eq. (14)) optimization problems can be
seen as follows. For any set of feasible ui’s in (1), setting
Xij = u>i uj for all i, j, makes X a rank-d matrix in Sn+ and
yields the same cost as in (14). In the other direction, for
any feasible choice of X in (14), let X = V >d ΣdVd denote
its rank-d reduced SVD with diagonal Σd ∈ Sd+ and define
U = [u1, . . . ,un] :=

√
ΣdVd. Then, X = U>U and for all

i, j, Xij = u>i uj and ui ∈ Rd, and we obtain the same
cost in (1). The choices for the ui’s are not unique since
X = U>F>FU for any real orthonormal matrix F . The ui’s
are unique only up to a real orthonormal transformation,
just as in (1).

The same re-parameterization can also be applied to
ErgoVEC (Eq. (6)). Let N̄+ and N̄− be n × n matrices such
that for all i, j, [N̄+]ij := n̄+

ij and [N̄−]ij := n̄−ij . Then the
GramErgoVEC optimization problem is defined as follows.

Definition 5 (GramErgoVEC optimization problem).

argmin
X∈Sn+, rank(X)≤d

f(N̄+, N̄−, X). (15)

Although Eq. (14) and Eq. (15) are equivalent to Eq. (1)
and Eq. (6), respectively, they are more convenient to work
with and analyze. The matrix re-parameterization transfers
the non-convexity from the objective function to the con-
straint set which makes it possible to relax or convexify the
problem as we do next.

Relaxing all constraints on X in GramErgoVEC leads to
the following optimization problem named GramErgoPMI
(relaxing constraints in GramVEC similarly will yield a
corresponding optimization problem GramPMI):

Definition 6 (GramErgoPMI optimization problem).

argmin
X∈Rn×n

f(N̄+, N̄−, X). (16)

In general, GramErgoPMI is not equivalent to GramEr-
goVEC. The relaxation enlarges the feasible set and the
optimal solution may not satisfy the constraints in Eq.(15).
Nonetheless, Eq. (16) admits a closed-form solution:

Proposition 1
Let X∗ be the solution to Eq. (16). Then, X∗ is unique, symmet-
ric, and given by

X∗ij = X∗ji =

ln

(
n̄+
ij

n̄−ij

)
if n̄+

ij 6= 0;

−∞ if n̄+
ij = 0.

(17)

Let p`(i, j) denote the probability that a randomly sampled pair
from the positive set D+ equals (i, j) and let p`1(i) and p`2(j)
denote, respectively, the first- and second-component marginal
probabilities of i and j that are consistent with the joint pmf
p`(i, j).2 Let PMI`(i, j) := ln

(
p`(i,j)

p`1(i)p`2(j)

)
denote the Point-

wise Mutual Information (PMI) of (i, j) [36]. Then for all
i, j,

X∗ij = lim
`→∞

PMI`(i, j)− ln k. (18)

The proof of Proposition 1 is presented in Appendix A.3.
Although X∗ is symmetric, there is no guarantee that
X∗ will satisfy the positive semi-definiteness constraint of
GramErgoVEC, let alone the rank constraint. Without posi-
tive semi-definiteness, the square root of X∗’s nonzero sin-
gular values will be imaginary and there will not exist any
real-valued embedding vectors, even in Rn, whose Gram
matrix equals X∗. A practical solution then is to compute
the `2 projection of X∗ into the rank-d real positive semi-
definite cone of n × n matrices and factorize the projected
matrix Proj(X∗, d) to get embeddings. Still, there is no
guarantee that the projected matrix Proj(X∗, d) or the em-
beddings ui’s obtained from it will be a solution to GramEr-
goVEC. We compare the GramErgoVEC and GramErgoPMI
embedding vectors experimentally in Section 5.

An alternative approach to deal with the non-convexity
of the GramErgoVEC is to replace the non-convex rank
constraint with a nuclear norm constraint which is convex.
The nuclear norm ‖X‖∗ of a matrix X is defined as the
sum of its singular values. Its relationship with the rank
of a matrix has been extensively studied in the literature.
For example, nuclear norm level sets have been shown to
be the convex-envelope of rank level sets [39]. A bounded

2. That is, p`1(i) :=
∑

j∈V p`(i, j) and p`2(j) :=
∑

i∈V p`(i, j). Note
that p`(i, j) may not be symmetric when ` is finite.



7

nuclear norm constraint has been used as a proxy for a
bounded rank constraint in a number of problems such
as low rank matrix completion [40], tensor robust PCA
[41], and compressed sensing [42]. For some problems there
exists an exact equivalence between these constraints but
the conditions under which this occurs varies from problem
to problem. Relaxing the rank constraint of GramErgoVEC
via a bound on the nuclear norm leads to the following
optimization problem that we term NucGramErgoVEC (we
can similarly define NucGramVEC):

Definition 7 (NucGramErgoVEC optimization problem).

argmin
X∈Sn+, ‖X‖∗≤νn

f(N̄+, N̄−, X) (19)

A larger νn implies a looser nuclear norm constraint.
When νn goes to ∞, the solution to NucGramErgoVEC
will approach the `2 projection of the GramErgoPMI so-
lution onto the real positive semi-definite cone of n × n
matrices. However, when νn goes to 0, the solution to
NucGramErgoVEC will reduce to the all zeros matrix which
has rank 0. In general, we should expect smaller values of
νn to yield solutions with approximately lower rank. This
is corroborated by our experiments in Section 5.1. Thus the
rank of the solution matrix, and consequently the dimension
of the embedding vectors, can be controlled by the value of
νn. Note that we allow the nuclear norm threshold νn to
depend on n. In Section 3.4 we show that the nuclear norms
of the solutions to GramErgoPMI and GramErgoVEC for
idealized graphs that have community structure scale with
n as νn = Θ(n).

There are numerous algorithms available to numerically
compute a solution to the NucGramErgoVEC optimization
problem. We modified and implemented Hazan’s algo-
rithm [43] to generate all our experimental results.

3.4 Embeddings of expected SBM graphs
As an important step toward analyzing concentration prop-
erties of embeddings, in this section we study the embed-
ding solutions of different optimization problems focusing
on the expected graph of a two-community SBM. Such
graphs have an ideal community structure: all edges be-
tween nodes belonging to any specified pair of communities
have the same edge weight. Our main result is summarized
in the following theorem:

Theorem 3 (Embeddings of an expected SBM graph)
Let G be an SBM graph with n = 2m, m ≥ 2, nodes and two
balanced communities. For all i ∈ V , let yi ∈ {0, 1} denote
the community label of node i. Let a and b be the edge forming
probabilities for within- and cross-community edges, respectively,
with a > m

m−1b. Let E[G] denote the expected graph and n̄+
ij ’s

and n̄−ij ’s the ergodic limits for E[G] as in Definition 2, with
k ≥ 1 and w ≥ 1. Let

X∗(H) := argmin
X∈H

f(N̄+, N̄−, X), (20)

where H ⊂ Rn×n. Let E0 := {(i, j) ∈ E : yi = yj} and E1 :=
E\E0. Then:

1) Structure of ergodic limits: The values of n̄+
ij and n̄−ij depend

only on the community membership of (i, j), i.e.,

n̄+
ij =


α1, if (i, j) ∈ E0
α2, if (i, j) ∈ E1
α3, if i = j

n̄−ij = β, ∀(i, j),

where β = kw
n2 and αi = Ci/n

2 + o(1/n2) for i = 1, 2, 3,
where Ci’s are functions of only a, b and w.

2) GramErgoPMI solution: Let H = Rn×n. Then X∗(H) has
full rank with the same structure as n̄+

ij with

X∗(Rn×n) =


ln
(
α1

β

)
, if (i, j) ∈ E0

ln
(
α2

β

)
, if (i, j) ∈ E1

ln
(
α3

β

)
, if i = j

3) NucGramErgoVEC solution for νn = ∞: Let H = Sn+ and
ν1 := ln

(
ᾱ13+β
α2+β

)
where ᾱ13 := m−1

m α1 + 1
mα3. Then

X∗(H) has rank 1. Moreover, if νn = ν1n, then

X∗(Sn+) =

{
ν1, if (i, j) ∈ E0 or i = j

−ν1, if (i, j) ∈ E1.

4) The nuclear norms of X∗(Rn×n) and X∗(Sn+) scale with n
as Θ(n).

The full proof of Theorem 3 is presented in Appendix
A.4, but the key ideas are as follows. Part 1) holds as a
result of Theorem 1 which characterizes the ergodic limits
of normalized bigram counts in terms of the random walk
transition matrix. Since the transition matrix of the expected
graph has block-wise constant entries, this property is car-
ried forward to the normalized ergodic counts. Part 2)
follows directly from part 1) and Proposition 1. Part 3) is
the major piece of this theorem and is proved via an intricate
analysis of the structure of the solution.

The Θ(n) scaling of nuclear norms of X∗(Rn×n) and
X∗(Sn+) arises from the block structure and the fact that
all entries are of constant order. Theorem 3 also shows that
N̄+ and X∗(Rn×n), the solution to GramErgoPMI, have the
structure of a rank 2 matrix minus a scalar multiple of the
identity matrix making them full rank. In contrast, X∗(Sn+),
the solution to NucGramErgoVEC, has rank 1 due to the
positive semi-definite constraint.

Part 3) of Theorem 3 may seem surprising on first glance
because we are getting a rank 1 solution without any rank or
nuclear norm constraints. The surprise dissipates when we
note that the solution is for an expected graph which has
an ideal community structure. Such a result would not hold
true for a random graph realization. Nonetheless, we can
directly obtain the GramErgoVEC and NucGramErgoVEC
solutions for the expected graph from part 3) of Theorem 3:

Corollary 1. Under the assumptions of Theorem 3,
1) GramErgoVEC solution for any positive rank: Let H =
{X ∈ Sn+ : rank(X) ≤ d} with d ≥ 1. Then X∗(H) has
rank 1 and equals the GramErgoVEC solution for νn = ∞
characterized in part 3) of Theorem 3.



8

2) NucGramErgoVEC solution for all νn ≥ ν1n: Let H =
{X ∈ Sn+ : ‖X‖∗ ≤ νn}. If νn ≥ ν1n, then X∗(H) has
rank 1 and equals the GramErgoVEC solution for νn = ∞
characterized in part 3) of Theorem 3.

When given the expected SBM graph as input, GramEr-
goVEC and NucGramErgoVEC will return a Gram matrix of
rank 1 or 2 which when factorized will provide two distinct
embedding vectors, each representing one community in the
original graph. In short, the algorithms will give embed-
dings that are perfectly separated across communities and
perfectly concentrated within communities.

In part 2) of Corollary 1, with νn ≥ ν1n, the nuclear
norm constraint becomes inactive. Suppose that νn = ν0n.
If ν0 ≤ ν1, we conjecture that the solution will scale propor-
tionally with ν0:

Conjecture 1
Under the assumptions of Theorem 3, let H = {X ∈ Sn+ :
‖X‖∗ ≤ ν0n}. If ν0 < ν1, then

X∗(H) =

{
ν0, if (i, j) ∈ E0 or i = j

−ν0, if (i, j) ∈ E1.

Conjecture 1 makes an assertion about the solution to the
NucGramErgoVEC optimization problem when the nuclear
norm constraint is active. For a suitable nuclear norm con-
straint, we conjecture that the solution will be a scaling of
the solution in part 3) of Theorem 3. If this conjecture holds,
then, we can conclude that the solution to NucGramEr-
goVEC is always rank 1 with perfect separation of the
communities regardless of the sparsity level of the graph.
This would provide a solid starting point for analyzing the
concentration properties of solutions as n increases to∞.

4 EXPERIMENTAL SETUP

In the following sections, we compare the node embeddings
from different algorithms qualitatively and quantitatively
through extensive experiments. This section details our
experimental setup, including the generation of random
graphs, details of implementation and parameter choices for
algorithms, and evaluation metrics for embedding vectors.
Section 5.1 explores the geometric properties of embedding
vectors for a fixed graph size. Specifically, we study how
the nuclear norm linear scaling factor ν0 of the nuclear
norm limit νn = ν0n impacts the embedding geometry
in NucGramErgoVEC. In Section 5.2 we investigate how
embedding vectors change as the graph size n increases and
whether they tend to concentrate.

4.1 SBM graph generation
For simplicity, we focus on assortative, equal-sized, planted-
partition SBM graphs with 2 communities. We generate
random graphs with n = 100, 200, 500, 1000 nodes. We
consider two scaling regimes for the within-community
edge forming probability p and the cross-community edge
forming probability q: 1) Linear regime: Here, p and q are held
constant, with values p = 0.6 and q = 0.06, for all graph
sizes. As a result, the expected node degree scales linearly
with n. 2) Logarithmic regime: Here, p and q diminish with

increasing graph size n as a multiple of (lnn)/n, specifically
as p = 9(lnn)/n and q = 2(lnn)/n. The expected node
degree then increases proportionally with lnn. Our choices
of scaling factors p̃ = 9 and q̃ = 2 in the logarithmic
regime ensure that the information-theoretic threshold for
exact community recovery for two communities, given by√
p̃−
√
q̃ >
√

2 [30], is slightly surpassed.
To ensure graph connectivity and improve community

detection performance, we follow the prescription in [44]
and apply ε-smoothing to all generated graphs. For a given
ε ≥ 0, the ε-smoothing of G, denoted by Gε, is the weighted
complete graph with adjacency matrix Aε, where for all
i, j, Aεij := Aij + ε. In addition to analytical convenience,
graph-smoothing also improves the performance of spec-
tral clustering in practice [44]. The ergodic limit of the
coefficients under ε-smoothed graphs can be computed by
Theorem 1 with a modified probability transition matrix Wε

that corresponds to the new graph.
The optimal choice of ε for various performance mea-

sures such as signal-to-noise ratio, community detection
accuracy, etc., varies across different random graph real-
izations and embedding algorithms. Since our focus is on
embedding algorithms, we apply ε-smoothing to all random
graphs that we generate with the fixed choice ε = 1/10n

instead of optimizing ε for each algorithm and each perfor-
mance measure. This is a relatively small value of ε as it
changes the degrees from the original graph by at most 1/10

whereas the expected degrees in the linear and logarithmic
regimes scale as n and ln(n), respectively.

4.2 Algorithm parameter choices and implementation
We implement and compare ErgoVEC, GramErgoPMI, and
NucGramErgoVEC, that were proposed in Section 3, with
VEC and Spectral Clustering (SC). SC serves as a classical
benchmark due to its widespread usage.
Parameter choices. For ease of visualization, we compute
and plot 2-dimensional embedding vectors for all algo-
rithms, i.e. d = 2.

For all algorithms other than SC, we set the window size
to w = 8, and the negative sampling rate to k = 5. Settings
that are specific to SC, VEC, and NucGramErgoVEC are as
follows:

1) SC: We use the first two eigenvectors of the sym-
metrically normalized Laplacian, i.e., D−1/2AD−1/2,
[45]. Since the unit-norm eigenvectors are in Rn, their
components, and therefore also the node embedding
vectors, scale as O(1/

√
n). In order to simultaneously

visualize and compare embedding vectors across differ-
ent values of n, we scale them by

√
n.

2) VEC: We launch r = 10 walks starting from each node,
each of length ` = 100.

3) NucGramErgoVEC: In light of the linear scaling of the
nuclear norm of the gram matrix of node embedding
vectors for an expected SBM graph, (cf. Theorem 3 and
Corollary 1), we set νn = ν0n and sweep ν0 over
the range 0.018 through 0.216, in steps of 0.018, in
order to illustrate changes in the geometric structure
of embedding vectors (cf. Fig. 4 and Fig. 5).

Implementation of VEC and ErgoVEC. Both VEC and
ErgoVEC have non-convex objectives for which there is



9

no optimization procedure available which guarantees con-
vergence to a global minimizer. A practical way forward
is to use Stochastic Gradient Descent (SGD). We can con-
sider two distinct approaches for implementing SGD in
VEC or ErgoVEC 1) Map them to an equivalent Word2Vec
problem by identifying nodes as words and random walks
as sentences and then obtain word embeddings using a
Word2Vec package such as Gensim [46]. 2) Reformulate each
optimization problem as the training of a neural network
with an appropriate architecture and cost and then train
the neural network using a neural network package such as
Keras [47]. Since the Gensim package cannot handle non-
integer coefficients that arise in ErgoVEC, we use Keras
to implement ErgoVEC and VEC. Details of our neural
network implementation are presented in Appendix B. In
section 5.2 we also compare the Gensim and Keras imple-
mentations of VEC.

Since both algorithms involve optimizing non-convex
objectives, convergence is not guaranteed. We assess the
convergence of the objective function value and the solution
by evaluating the change in the objective function value and
the embeddings after each epoch. To quantify the change
in embeddings, we first perform a Procrustes alignment
of the embedding solutions from successive epochs and
then compute the Frobenius norm of the difference between
the aligned sets of embeddings. We found that the change
in the objective function value diminishes as the number
of epochs increases, but the change in the corresponding
embeddings retains a small fluctuation after diminishing
initially (cf. Appendix B). This suggests that although the
objective function value converges, the embeddings may
be oscillating around a local optimizer. Note that the Keras
implementation, which implements SGD, is not designed to
minimize changes in the solution (arguments), but rather in
the objective function.
Implementation of NucGramErgoVEC. We use Hazan’s
algorithm [43] (suitably modified to handle inequality con-
straints) to solve the NucGramErgoVEC optimization prob-
lem. The algorithm is iterative and is guaranteed to con-
verge to the global minimum. We also empirically confirmed
the convergence of both the objective function value and
the solution matrix using the approach used for VEC and
ErgoVEC described above.

We note, however, that even though Hazan’s algorithm
is guaranteed to converge to a global minimum, its conver-
gence rate is slow. In order to improve convergence speed,
we initialize with the GramErgoPMI solution suitably scaled
to fit the nuclear norm limit. We also terminate the algorithm
after 1000 iterations which is adequate for all our experi-
ments.

4.3 Visualization and performance evaluation
Representation and alignment of embeddings: The abso-
lute positions and orientations of embedding vectors may
vary across algorithms, graph realizations, and graph sizes.
Even for a given graph and algorithm the embedding vec-
tors are not unique due to invariance of the objective func-
tion under orthogonal transformations. However clustering
and separation properties of embeddings only depend on
the relative positions and orientations of embedding vectors.

Thus, in order to visualize and simultaneously compare
different embeddings qualitatively and quantitatively, we
first represent the embedding vectors using their SVD co-
ordinates and then align them with Procrustes analysis.
Specifically, let U be an n×dmatrix whose i-th row u>i is the
embedding of node i. Let U = ŨΣṼ > be the SVD decom-
position of U . Then, the SVD coordinates of the embedding
vectors are given by UṼ . To align two sets of embedding
points U1 and U2, we do Procrustes analysis, which finds
the orthogonal matrix P that minimizes ‖U1 − U2P‖2F . The
aligned points are given by U1 and U2P .
Quantifying community separation. We quantify the sepa-
ration of nodes belonging to different communities using a
signal-to-noise ratio (SNR) measured along the line joining
the embedding centroids of the two communities. Specifi-
cally, for embeddings of nodes in community i (i = 1, 2),
let µ̂i denote their empirical mean and K̂i their empirical
covariance matrix. Then we define SNR-1D as follows:

SNR-1D :=
‖µ̂1 − µ̂2‖22
1
2 (η̂2

1 + η̂2
2)

where η̂2
i := (µ̂1 − µ̂2)>K̂i(µ̂1 − µ̂2) is the empirical

variance of the embeddings of nodes in community i when
projected onto the line joining the embedding centroids of
the two communities.

5 NODE EMBEDDING GEOMETRY OF SBM GRAPHS

In this section, we present and compare embeddings for
SBM graphs produced by different algorithms and how they
are positioned relative to the embeddings of the expected
graph (indicated by black crosses in all our plots). Section 5.1
focuses on the comparing the geometry of embeddings
across different algorithms and parameter choices whereas
Section 5.2 focuses on the large graph asymptotic behavior
of embeddings.

5.1 Geometry of embeddings
The geometry of node embedding vectors from SC, VEC,
GramErgoPMI and ErgoVEC are shown in Fig. 2. We plot
the 2D 95% confidence ellipse for each embedding cluster
(red-colored elliptical curves) based on a maximum like-
lihood Gaussian fit to the data. For SC, ErgoVEC, and
GramErgoPMI, the embeddings of the expected SBM graph
are two distinct points (characterized in Theorem 3 and
Corollary 1) which are marked as black crosses in Fig. 2.
Since the VEC objective is based on empirical skip bigram
counts from random walks, for a finite random walk length
`, the embedding vectors of the expected graph will not
collapse to two just distinct points, but will be distributed
around the embedding vectors of ErgoVEC which are indi-
cated as black crossses in the VEC subplot of Fig. 2.

In Fig. 2, we observe that in all four algorithms, the
node embeddings in each cluster have an elliptical distribu-
tion around the cluster centroid and they can be perfectly
separated linearly by the bisector of the line joining the
two cluster centroids. However, the major axes of the SC
embedding ellipses are nearly parallel to their inter-centroid
line whereas the major axes of embedding ellipses in the
other three algorithms are nearly perpendicular to their
respective inter-centroid lines.



10

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.5

0.0

0.5

1.0

1.5

2.0

2.5 95% contour
Expected graph

SC

1.5 1.0 0.5 0.0 0.5 1.0 1.5
First SVD component

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Se
co

nd
 S

VD
 c

om
po

ne
nt

95% contour
Expected graph

VEC

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
95% contour
Expected graph

ErgoPMI

1.5 1.0 0.5 0.0 0.5 1.0 1.5
First SVD component

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Se
co

nd
 S

VD
 c

om
po

ne
nt

95% contour
Expected graph

ErgoVEC

Fig. 2: 2D-visualization of embeddings for SC, VEC, ErgoPMI
and ErgoVEC. All four algorithms receive the same graph
input with n = 500 nodes generated using within community
edge probabilities p = 9 lnn/n and across community edge
probabilities q = 2 lnn/n.

We also notice that the embedding ellipses of VEC and
ErgoVEC in Fig. 2 look very similar. This is to be expected
as the ErgoVEC objective is exactly the large ` ergodic
limit of the VEC objective introduced in Section 3.1. To
empirically confirm that the ErgoVEC embeddings converge
to the VEC embeddings in the large ` limit, in Fig. 3 we plot
the distance between VEC and ErgoVEC embeddings for
increasing values of ` and different graph sizes.

0 200 400 600 800 1000
Random walk length 

0.05

0.10

0.15

0.20

0.25

X V
EC

X E
rg

oV
EC

F
/

X E
rg

oV
EC

F

n=100
n=200
n=500
n=1000

Fig. 3: Convergence of VEC embeddings: Frobenius norm dis-
tance between the Gram matrices of VEC and ErgoVEC versus
random walk length `.

In order to measure the distance between embeddings
up to any orthogonal transformation, we use the normalized

Frobenius norm distance between the Gram matrices of the
embeddings. For each n, graphs are generated using within-
community edge probabilities p = 9 lnn/n and across-
community edge probabilities q = 2 lnn/n. The plot depicts
the mean distance and associated error bar averaged over 5
independent graph realizations. Observe that for all graph
sizes n = 100, 200, 500, 1000, as the length of the random
walk increases, the distance between VEC and ErgoVEC
Gram matrices shrinks. However, due to the non-convexity
of the VEC and and lack of global convergence guarantees
for SGD methods used to optimize VEC and ErgoVEC
objectives (cf. Section 4.2), the distance seems to be strictly
bounded away from zero even at ` = 1000. However,
the positive and negative w-skip bigram counts and the
objective function of VEC do converge to their respective
ErgoVEC counterparts as ` increases to infinity.

We now discuss the embedding geometry of Nuc-
GramErgoVEC. We separated this discussion from the pre-
vious four algorithms because although the embeddings
of NucGramErgoVEC are also elliptically distributed and
separate well into two clusters, the specific shape depends
on the nuclear norm linear scaling factor ν0 as shown in
Fig. 4.

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
95% contour
Expected graph

ν0 = 0.036

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
95% contour
Expected graph

ν0 = 0.054

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
95% contour
Expected graph

ν0 = 0.072

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
95% contour
Expected graph

ν0 = 0.108

Fig. 4: 2D-visualization of NucGramErgoVEC embeddings for
different nuclear norm linear scaling factors. The input graph is
the same as the one used in Fig. 2.

When ν0 is very small, the embeddings are one dimen-
sional (cf. Fig. 4(a)). As ν0 increases slightly, the embeddings
remains one dimensional but spread out within each cluster
and the cluster centroids move apart (cf. Fig. 4(b)). This
continues until ν0 reaches a threshold. When ν0 increases
beyond the threshold, the embeddings stop extending in the
first dimension and start to spread in the second dimension
(cf. Fig. 4(c)(d)).

In order to obtain a more quantitative understanding of



11

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0

0.000

0.002

0.004

0.006

0.008

0.010
Va

r i
n 

2n
d 

di
m

.

(a) Variance in 2nd dim.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0

75

80

85

90

95

100

105

1D
-S

NR

(b) 1D-SNR

Fig. 5: The change in (a) variance in second dimension and
(b) 1D-SNR of NucGramErgoVEC embeddings as the nuclear
norm linear scaling factor ν0 increases. The input graph has
n = 200 nodes generated with within community edge prob-
abilities p = 9 lnn/n and across community edge probabilities
q = 2 lnn/n.

how ν0 influences the embedding geometry, we plot the
1D-SNR of embeddings and their variance in the second
dimension for a range of values of ν0 in Fig. 5.

Fig 5(a) shows how the variance of embeddings in the
second dimension changes as the nuclear norm linear scal-
ing factor ν0 increases. When ν0 is very small, the variance in
the second dimension is 0, suggesting that embeddings are
1 dimensional. As ν0 increases, the variance in the second
dimension remains zero until ν0 crosses a threshold that lies
somewhere between ν0 = 0.054 and ν0 = 0.072 and then
thereafter the variance increases monotonically. The exact
value of ν0 where the second dimension variance emerges
depends on the input graph in general and specifically on
the edge forming probability.

Fig 5(b) shows how ν0 affects 1D-SNR of the embed-
dings. Here, we see a clear increase of 1D-SNR as ν0 increase
from 0.018 to 0.072. A relative maximum level is reached
when the ν0 is around the transition point where the second
dimension variance emerges. Beyond the transition point,
the 1D-SNR holds steady around the maximum level. These
properties are consistent with our observations for Fig. 4.

5.2 Concentration of embeddings
After understanding how the geometry of embeddings of
a single graph differs across embedding algorithms and
changes with ν0, in this section, we explore how the em-
beddings change as n, the number of nodes, increases.
To focus on the effect of increasing the number of nodes,
throughout this section, we fix the scaling factors of edge
forming probabilities within and across communities in each
set of experiments. In addition, we omit the results of VEC
because of their similarity to ErgoVEC (cf. Fig. 3). As we will
see, the asymptotic behavior of embeddings largely depends
on the edge forming probability.

To gain a qualitative perspective, we first plot the em-
beddings and their 95% Gaussian contours for graph sizes
n = 100, 500, 1000 for each algorithm. Fig. 6 shows the
embedding contours in the linear degree scaling regime.
We can see that all the contours shrink as n increases. This
suggests that empirically, the embeddings of all the four
algorithms concentrate to their centroids. In the logarithmic
degree scaling regime, as shown in Fig. 7, the Gaussian
contours for different graph sizes mostly overlap on top
of each other, suggesting a convergence in distribution as

opposed to a concentration that we observed in the linear
regime.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.4

0.6

0.8

1.0

1.2

1.4

1.6 n=100
n=500
n=1000
Expected graph

SC
1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6 n=100
n=500
n=1000
Expected graph

ErgoVEC

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6 n=100
n=500
n=1000
Expected graph

ErgoPMI
1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6 n=100
n=500
n=1000
Expected graph

NucGramErgoVEC
ν0 = 0.108

Fig. 6: 95% Gaussian contours of 2D-embeddings from four
algorithms in the linear regime. All algorithms receive the same
sets of graphs with n = 100, 500 and 1000 nodes generated
using within-community edge probabilities p = 0.6 and across
community edge probabilities q = 0.06.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
n=100
n=500
n=1000
Expected graph

SC

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
n=100
n=500
n=1000
Expected graph

ErgoVEC

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
n=100
n=500
n=1000
Expected graph

ErgoPMI

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4
n=100
n=500
n=1000
Expected graph

NucGramErgoVEC
ν0 = 0.108

Fig. 7: 95% Gaussian contours of 2D-embeddings from four
algorithms in the logarithmic regime. All algorithms receive
the same sets of graphs with n = 100, 500 and 1000 nodes gen-
erated using within-community edge probabilities p = 9 lnn/n
and across community edge probabilities q = 2 lnn/n.

We turn to quantitative metrics to gain a more nuanced
understanding. In Fig. 8, we plot the 1D-SNR of embeddings
for increasing values of n for each algorithm. Note that
a higher 1D-SNR indicates either a smaller within group
variance along the line that joins the cluster centroids or a
greater distance between cluster centroids. Fig. 8(a) shows



12

results for the linear degree scaling regime, where we see
that 1D-SNR increases as n increases, with NucGramEr-
goVEC leading, followed by SC, ErgoVEC and ErgoPMI.
The VEC embeddings obtained from both implementations
(Keras and Gensim) reside at the bottom. In the logarithmic
degree scaling regime, as shown in Fig. 8(b), the 1D-SNR is
relatively steady across different n as opposed to a clear a
growth trend observed in the linear degree scaling regime.
This is consistent with our observations for Fig. 6 and
Fig. 7 that the embeddings concentrate in linear regime but
converges to a fixed distribution in the logarithmic regime.
While VEC embeddings still under perform, ErgoPMI and
ErgoVEC surpasses SC and catches NucGramErgoVEC’s
lead.

200 400 600 800 1000
0

500

1000

1500

2000

2500

3000
Nuc( 0 = 0.072)
Nuc( 0 = 0.108)
SC
VEC(Gensim)
VEC(Keras)
ErgoVEC
ErgoPMI

(a) Linear regime

200 400 600 800 1000
50

60

70

80

90

100

Nuc( 0 = 0.054)
Nuc( 0 = 0.072)
SC
VEC(Gensim)
VEC(Keras)
ErgoVEC
ErgoPMI

(b) Logarithmic regime

Fig. 8: 1D-SNR versus graph size in the linear and logarithmic
scaling regimes.

6 CONCLUDING REMARKS

In this paper, we proposed a novel framework consisting
of ergodic limits of random walks and a Grammian re-
parameterization of the embedding objective to analyze a

large class of random walk based node-embedding algo-
rithms. In particular, we derived a closed-form expression
for the ergodic limit of the random walk node embedding
objective and proved that under the positive semi-definite
constraint, the Gram matrix of optimum embedding vectors
for two-community expected SBM graphs has either rank
1 or rank 2. In addition, through an empirical study we
demonstrated that the embeddings based on ergodic limits,
while forming better clusters, in terms of 1D-SNR, compared
to the original random walk embeddings, concentrate to
the embeddings of the expected graph in the linear degree
scaling regime and seem to converge to a fixed distribution
in the logarithmic regime.

Computational costs can vary substantially across differ-
ent algorithms. For example, the Gram matrix of the optimal
embedding vectors in ErgoPMI has a simple closed-form
solution, whereas the better performing NucGramErgoVEC
requires a computationally expensive iterative optimization
procedure to compute the optimal Grammian. This suggests
a possible trade-off between computational cost and accu-
racy of algorithms. Although not the focus of this paper,
understanding these trade-offs would benefit the end users
of these methods.

The results of this paper can be further improved and
extended on both theoretical and practical fronts. For sim-
plicity we focused on SBM graphs with two balanced
communities. Our theoretical and experimental results can
be potentially extended to more complex graph models
that have a community structure. On the theoretical side,
although we have shown perfect separation of the em-
beddings of the expected graph, there is no theoretical
guarantee that the embeddings of SBM random graphs
will concentrate to those of the expected graph. Further
analysis of random walk embedding algorithms, especially
the concentration properties of their solutions in various
degree scaling regimes, would bring us more insight and
understanding. On the practical side, the convergence of
our Keras implementations for VEC and ErgoVEC depend
highly on tuning parameters and may not converge very
well, and the Hazan’s algorithm for NucGramErgoVEC
suffers from slow convergence. Developing more scalable
implementations of algorithms with faster and more stable
convergence can bring these generalized formulations into
large-scale real-world problems and also guide the theoreti-
cal analysis endeavor.

APPENDIX A
A.1 Proof of Theorem 1
Natural random walks will remain within the connected
components in which they start. Since only pairs of nodes
within the same connected component will occur in any
random walk, we can analyze each connected component
separately. Within each connected component Gt, the ran-
dom walk has transition matrix Wt = D−1

t At. The proof
of the theorem will follow immediately from the following
lemma which focuses on connected graphs.

Lemma 1. Let W be the probability transition matrix of an
irreducible Markov chain on the (finite) node space of G. Let the
VEC algorithm be executed on G with random walk transition



13

matrix W and parameters w and k. Then for all i, j, the ergodic
limits n̄+

ij and n̄−ij in Definition 2 exist and are given by

n̄+
ij = πi

w∑
v=1

(W v)ij ,

n̄−ij = kwπiπj ,

where π is the unique stationary distribution of the random walk.
Moreover, the Ergodic limiting coefficients are symmetric, i.e.,

n̄+
ij = n̄+

ji,

n̄−ij = n̄−ji.

The proof of Lemma 1 is based on convergence results
for irreducible Markov chains.

First, we prove the result for positive pairs. Let
{X(m,p)

s }∞s=1 be the p-th random walk starting from node
m following the transition matrix W . We examine the first `
steps in each random walk. Since the n+

ij ’s consist of positive
pairs extracted from all rn random walks (r walks from each
of the n nodes), we have

n+
ij

nr`
=

1

nrl

n∑
m=1

r∑
p=1

w∑
v=1

`−v∑
s=1

1{X(m,p)
s =i,X

(m,p)
s+v =j}. (21)

Letting ` go to infinity on both sides, we have

1

rn
lim
`→∞

n+
ij

`

=
1

nr

n∑
m=1

r∑
p=1

w∑
v=1

lim
`→∞

1

`

`−v∑
s=1

1{X(m,p)
s =i,X

(m,p)
s+v =j}.

The key step is to compute
lim
`→∞

1
`

∑`−v
s=1 1{X(m,p)

s =i,X
(m,p)
s+v =j}. To begin, we

define a new Markov Chain {Y (m,p)
s }∞s=1, where

Y
(m,p)
s = (X

(m,p)
s , X

(m,p)
s+1 , . . . , X

(m,p)
s+v ). The state space of

{Y (m,p)
s }∞s=1 is the set of all length-(v + 1) walks under W ,

i.e., Sv = {(i1, i2, . . . , iv+1)
∣∣ ik+1 is accessible from ik, k =

1, . . . , v} ⊂ [n]v+1.
We claim that {Y (m,p)

s }∞s=1 is a positive recurrent
Markov Chain. To see this, we first note that the state space
is finite as |Sv| ≤ |[n]v+1| = nv+1 < ∞. Then, we notice
that ∀a, b ∈ Sv , since W is irreducible, b1 is reachable from
av+1 in X(m,p)

s . Therefore, b is also reachable from a, which
shows that Y (m,p)

s is irreducible. An irreducible Markov
chain on a finite state space must be positive recurrent.

Applying standard results from renewal theory, specif-
ically [48, Proposition 3.3.1, p.102] to Markov chain
{X(m,p)

s }∞s=1 and [48, Theorem 3.3.4, p.107] to Markov chain
{Y (m,p)

s }∞s=1, we get

lim
`→∞

∑`
s=1 1{X(m,p)

s =i}

`
= πi, a.s.,

lim
`→∞

E
∑`
s=1 1{X(m,p)

s =i}

`
= πi, (22)

lim
`→∞

∑`
s=1 1{Y (m,p)

s =a}

`
= ηa, a.s., (23)

lim
`→∞

E
∑`
s=1 1{Y (m,p)

s =a}

`
= ηa,

where π and η are the stationary distributions of X(m,p)
s

and Y (m,p)
s , respectively, and do not depend onm, p because

of the positive recurrence and irreducibility of the Markov
chains. Note that the relationship between state counts of
X

(m,p)
s and Y (m,p)

s is given by

1{X(m,p)
s =i,X

(m,p)
s+v =j} =

∑
a: a1=i,av+1=j

1{Y (m,p)
s =a}.

And thus,

lim
`→∞

1

`

∑̀
s=1

1{X(m,p)
s =i,X

(m,p)
s+v =j}

= lim
`→∞

1

`

∑
a: a1=i,av+1=j

1{Y (m,p)
s =a}

(23)
=

∑
a: a1=i,av+1=j

ηa

=
∑

a: a1=i,av+1=j

lim
s→∞

P[Y (m,p)
s = a]

= lim
s→∞

P(X(m,p)
s = i,X

(m,p)
s+v = j)

= lim
`→∞

∑`
s=1 P(X

(m,p)
s = i,X

(m,p)
s+v = j)

`

= (W )vij lim
`→∞

∑`
s=1 P(X

(m,p)
s = i)

`

= (W )vij lim
`→∞

E
∑`
s=1 1{X(m,p)

s =i}

`
(22)
= (W v)ijπi.

Therefore, we have

lim
`→∞

1

`

∑̀
s=1

1{X(m,p)
s =i,X

(m,p)
s+v =j} = (W v)ijπi,

and

1

rn
lim
`→∞

n+
ij

`
=

1

nr

n∑
m=1

r∑
p=1

w∑
v=1

(W v)ijπi = πi

w∑
v=1

(W v)ij .

We now analyize the ergodic limits of negative pairs. We
first count the number of (i, j) pairs in the negative multi-
set.

Let Z
(m,p,v,s)
c be the second node in c-th negative

pair generated from the positive pair (X
(m,p)
s , X

(m,p)
s+v ) (for

each positive pair we generate k negative pairs). Since
all negative pairs are generated in an i.i.d. manner, for
all m, p, v, s, c, Z(m,p,v,s)

c , c = 1, . . . , k are i.i.d. random
variables with a distribution specified by the unigram node
frequencies computed from the collection of random walks
X =

⋃n
m=1

⋃r
p=1{X(m,p)}. As in Equation (21), the counts

of negative pairs is given by

n−ij
nr`

=
1

nr`

n∑
m=1

r∑
p=1

w∑
v=1

`−v∑
s=1

1{X(m,p)
s =i}

k∑
c=1

1{Z(m,p,s,v)
c =j}.

(24)
Letting ` go to infinity on both sides, we get

1

nr
lim
`→∞

n−ij
`



14

=
w∑
v=1

k∑
c=1

lim
`→∞

1

nr`

n∑
m=1

r∑
p=1

`−v∑
s=1

1{X(m,p)
s =i}1{Z(m,p,s,v)

c =j}.

(25)

The remainder of the proof will focus on calculating the
right hand side. For this purpose, we introduce the follow-
ing proposition:
Notation: [n] := {1, . . . , n} and X[n] := X1, . . . , Xn.

Proposition A.1.1
Let {X`, ` ∈ N} be a sequence of random variables with X` ∈
[n] for every `. Let ϕ : [n] → [0, 1]. For every L ∈ N, let
q̂L : [n]L → [0, 1] and V (L)

[L] ∈ {0, 1} be a sequence of random
variables such that

V
(L)
[L] | X[L]

i.i.d∼ Ber
(
q̂L(X[L])

)
,

If for some p, q ∈ [0, 1],

1

L

L∑
`=1

ϕ(X`)
a.s.−−−−→
L→∞

p, (26)

and
q̂L(X[L])

a.s.−−−−→
L→∞

q (27)

then
1

L

L∑
`=1

ϕ(X`)V
(L)
`

a.s.−−−−→
L→∞

pq.

Proof.

1

L

L∑
`=1

ϕ(X`)V
(L)
` =

(
1

L

L∑
`=1

ϕ(X`)V
(L)
` − 1

L

L∑
`=1

ϕ(X`)q̂L

)

+ q̂L
1

L

L∑
`=1

ϕ(X`).

Due to Equations (26) and (27) we immediately have

q̂L

(
1

L

L∑
`=1

ϕ(X`)

)
a.s.−−−−→
L→∞

pq.

We will prove that

1

L

L∑
`=1

ϕ(X`)V
(L)
` − 1

L

L∑
`=1

ϕ(X`)q̂`
a.s.−−−−→
L→∞

0.

For any fixed x[L] ∈ [n], define g : [0, 1]L → [0, 1] as

g(v[L]) :=
1

L

L∑
`=1

ϕ(x`)v`.

We can show that g(·) satisfies the so-called coordinate-wise
bounded difference property. In fact, for any i ∈ [L] and any
v[L], v

′
i ∈ [0, 1], since ϕ(x) ∈ [0, 1], we have∣∣g(v[L])− g(v[L]\{i}, v

′
i)
∣∣

=
1

L
|ϕ(xi)| |(vi − v′i)|

≤ 1

L
.

Since , V (L)
[L] are i.i.d. conditioned on X[L] and g(·) is

coordinate-wise bounded, we can apply McDiarmid’s in-
equality [49] to V (L)

[L] and g(·) under the conditional proba-

bility measure: ∀ε > 0,

P

[∣∣∣g(V
(L)
[L] )− E

[
g(V

(L)
[L] )

∣∣∣X[L]

]∣∣∣ ≥ ε∣∣∣∣∣X[L]

]
≤ 2e−2Lε2 .

Since the right hand side is constant and independent of
X[L], the above bound also holds for unconditional proba-
bility:

P
[∣∣∣g(V

(L)
[L] )− E

[
g(V

(L)
[L] )

∣∣∣X[L]

]∣∣∣ ≥ ε] ≤ 2e−2Lε2 .

Since

g(V
(L)
[L] ) =

1

L

L∑
`=1

ϕ(X`)V
(L)
` ,

we have

E
[
g(V

(L)
[L] )

∣∣∣X[L]

]
= E

[
1

L

L∑
`=1

ϕ(X`)V
(L)
`

∣∣∣X[L]

]

=
1

L

L∑
`=1

ϕ(X`)E
[
V

(L)
`

∣∣∣X[L]

]
=

1

L

L∑
`=1

ϕ(X`)q̂`.

In other words, we have shown

P

[∣∣∣∣∣ 1L
L∑
`=1

ϕ(X`)V
(L)
` − 1

L

L∑
`=1

ϕ(X`)q̂`

∣∣∣∣∣ ≥ ε
]
≤ 2e−2Lε2 .

Therefore,
∞∑
L=1

P

[∣∣∣∣∣ 1L
L∑
`=1

ϕ(X`)V
(L)
` − 1

L

L∑
`=1

ϕ(X`)q̂`

∣∣∣∣∣ ≥ ε
]

≤
∞∑
L=1

2e−2Lε2

=
2e−2ε2

1− e−2ε2

<∞

which proves that 1
L

∑L
`=1 ϕ(X`)V

(L)
` − 1

L

∑L
`=1 ϕ(X`)q̂` is

converges to zero completely. Since complete convergence
implies almost sure convergence [50, Theorem 4 (c),p.310],
it follows that

1

L

L∑
`=1

ϕ(X`)V
(L)
` − 1

L

L∑
`=1

ϕ(X`)q̂`
a.s.−−−−→
L→∞

0,

which completes the proof of this proposition.

To compute the right hand side of Equation (25), for each
fixed c, v, we apply Proposition A.1.1 in the following way:

Identifying variables: Let Γ := {1, . . . , n}×{1, . . . , r}×
{1, . . . , `}. For γ = (m, p, s), we define

L := |Γ| = nr`,

Xγ := X(m,p)
s

V (L)
γ := 1{Z(m,p,s,v)

c =j}

ϕ(Xγ) := 1{Xγ=i}



15

q̂L(X[L]) :=
1

L

∑
γ∈Γ

1{Xγ=j}.

Verification of assumptions:

V
(L)
[L]

∣∣∣ X[L]
i.i.d∼ Ber (q̂L(XL)) ,

1

L

∑
γ∈Γ

ϕ(Xγ)
a.s.−−−−→
L→∞

πi,

q̂L(X[L]) =
a.s.−−−−→
L→∞

πj

Therefore, by Equation (25), we have

1

L

∑
γ∈Γ

ϕ(Xγ)V
(L)
[L]

a.s.−−−→
`→∞

πiπj .

Or equivalently, for each c, v,

1

nr`

n∑
m=1

r∑
p=1

∑̀
s=1

1{X(m,p)
s =i}1{Z(m,p,s,v)

c =j}
a.s.−−−→
`→∞

πiπj .

Dropping a finite number of terms in the summation will
not affect the limit as `→∞. Thus,

1

nr`

n∑
m=1

r∑
p=1

`−v∑
s=1

1{X(m,p)
s =i}1{Z(m,p,s,v)

c =j}
a.s.−−−→
`→∞

πiπj .

Together with Equation (25), we have

1

nr
lim
`→∞

n−ij
`

=
w∑
v=1

k∑
c=1

lim
`→∞

1

nr`

n∑
m=1

r∑
p=1

`−v∑
s=1

1{X(m,p)
s =i}1{Z(m,p,s,v)

c =j}

=
w∑
v=1

k∑
c=1

πiπj a.s.

= kwπiπj . a.s.

This concludes the proof of expressions for n̄+
ij and n̄−ij in

Lemma 1 and also shows that n̄−ij = n̄−ji . In order to show
that n̄+

ij is symmetric, it suffices to show that for any v,

πi(W
v)ij = πj(W

v)ji.

Since πi is proportional to the node degree, this is equivalent
to showing that

di(W
v)ij = dj(W

v)ji

We will prove this via induction. For v = 1, by definition,
diWij = Aij = djWji (initial case). If di(W s)ij = dj(W

s)ji,
for v = s+ 1 (induction hypothesis), then

di(W
s+1)ij =

n∑
k=1

di(W
s)ikWkj

=
n∑
k=1

dk(W s)kiWkj

=
n∑
k=1

dkWkj(W
s)ki

=
n∑
k=1

djWjk(W s)ki

=dj(W
s+1)ji.

which proves the inductive step and concludes the proof of
symmetry of n̄+

ij . �

A.2 Proof of Theorem 2
We will follow the same ideas as in the proof of Lemma 1.
With walk-distance weights {αv}∞v=1, the positive pair count
Equation (21) becomes:

n+
ij

nr`
=

1

nrl

n∑
m=1

r∑
p=1

∞∑
v=1

αv

`−v∑
s=1

1{X(m,p)
s =i,X

(m,p)
s+v =j}. (28)

And the negative pair count Equation (24) becomes:

n−ij
nr`

=
1

nr`

n∑
m=1

r∑
p=1

∞∑
v=1

αv

`−v∑
s=1

1{X(m,p)
s =i}

k∑
c=1

1{Z(m,p,s,v)
c =j}.

(29)
This provides the starting point for our proof.
1) The proof closely parallels the proof of Lemma 1 with mi-
nor modifications to account for the walk-distance weight-
ing. We note that the exchange of the limit and the infinite
sum is ensured by the dominated convergence theorem.
2) From (28), we have

1

`n
lim
r→∞

n+
ij

`

=
1

rn

n∑
m=1

∞∑
v=1

αv

`−v∑
s=1

lim
r→∞

1

r

r∑
p=1

1{X(m,p)
s =i,X

(m,p)
s+v =j}

=
1

rn

n∑
m=1

∞∑
v=1

αv`−v∑
s=1

lim
r→∞

1

r

r∑
p=1

1{X(m,p)
s =i}1{X(m,p)

s+v =j | X(m,p)
s =i}

 .
Note that

lim
r→∞

1

r

r∑
p=1

1{X(m,p)
s =i}1{X(m,p)

s+v =j | X(m,p)
s =i}

= lim
r→∞

1

r

r∑
p=1

1{X(m,p)
s =i | X(m,p)

1 =m}1{X(m,p)
s+v =j | X(m,p)

s =i}

= E1{X(m,p)
s =i | X(m,p)

1 =m}1{X(m,p)
s+v =j | X(m,p)

s =i}

= E1{X(m,p)
s =i | X(m,p)

1 =m}E1{X(m,p)
s+v =j | X(m,p)

s =i}

= (W s−1)mi(W
v)ij

Therefore, we have

1

`n
lim
r→∞

n+
ij

r
=

1

`n

n∑
k=1

w∑
v=1

αv(W
v)ij

l−v∑
s=1

(W )s−1
mi ,

where the exchange of the limit and infinite sum is allowed
by the dominated convergence theorem.

For the negative terms, from (29), we have

1

`n
lim
r→∞

1

r
n−ij =

1

`n

n∑
m=1

∞∑
v=1

αv`−v∑
s=1

k∑
c=1

lim
r→∞

1

r

r∑
p=1

1{X(m,p)
s =i}1{Z(m,p,s,v)

c =j}





16

Proceeding as we did in the proof of Lemma 1,, we apply
Proposition A.1.1 to obtain

lim
r→∞

1

r

r∑
p=1

1{X(m,p)
s =i}1{Z(m,p,s,v)

c =j}

= (W )s−1
mi

(
1

`

∑̀
u=1

1

n
1>nW

u−1ej

)
:= (W )s−1

mi π
(`)
j

Therefore,

1

`n
lim
r→∞

n−ij
r

=
kπ

(`)
j

`n

n∑
m=1

∞∑
v=1

αv

`−v∑
s=1

(W )s−1
mi

3) From 1), we know that 1
rn lim`→∞

n+
ij

` and
1
rn lim`→∞

n−ij
` does not depand on r, and therefore the

first part of the equality holds.
An irreducible Markov chain on a finite state space with

a time-homogeneous transition matrix W has a unique sta-
tionary distribution π. Moreover, for any initial distribution
on states π0, the Cesaro-average: π̄` := π>0

1
`

∑`
s=1W

s,
` = 1, 2, . . ., converges to the unique stationary distribution
π (even if the Markov chain is not aperiodic). While this
is a somewhat well-known result, we were unable to find
a reliable reference that explicitly states or proves it. So
for completeness we briefly sketch its proof. We argue that
π̄` must converge to π. If not, there is an ε > 0 and a
subsequence that lies strictly outside an ε-ball around π.
But, the probability simplex in finite-dimensional Euclidean
space is compact and has the Bolzano-Weierstrass prop-
erty: there is a subsequence of the subsequence (a sub-
subsequence) which converges. Below we will show that
the limit of this sub-subsequence must be π which would
result in a contradiction (since the subsequence is outside an
ε ball around π). Therefore, π̄` must converge to the unique
stationary distribution π. We will now show that any con-
vergent subsequence of π̄` (a convergent sub-subsequence
is also convergent subsequence) must converge to π. Let π̄`t
denote a convergent subsequence and π̄∞ its limit. Then,

π̄∞W = lim
t→∞

(
π̄`tW

)
= lim
t→∞

(
π>0

1

`t

`t∑
s=1

W s ·W
)

= lim
t→∞

(`t + 1

`t
π̄`t+1 −

1

`t
π>0 W

)
= π̄∞

where in the first equality we made use of the fact that
linear maps between finite-dimensional Euclidean spaces
are continuous. Thus, π̄∞ is a stationary distribution of
W since the above analysis shows that π̄∞W = π̄∞.
Since W has a unique stationary distribution π, we have
π̄∞ = π. We reiterate that aperiodicity is not needed. This
is important since it is not guaranteed that the connected
component subgraphs of a given graph will be aperiodic.

The following results follow immediately:

lim
`→∞

1

`

l−v∑
s=1

(W )ski = πi.

and

lim
`→∞

π
(`)
j = lim

`→∞

1

`

∑̀
u=1

1

n
1>nW

u−1ej = πj .

And therefore,

1

n
lim
`→∞

lim
r→∞

n+
ij

r`
= πi

∞∑
v=1

αv(W
v)ij ,

1

n
lim
`→∞

lim
r→∞

n−ij
r`

= kπiπj

∞∑
v=1

αv.

�
Remark: The characterization of ergodic limits of walk-
distance weighted counts stated in Theorem 2 are for con-
nected graphs. For disconnected graphs the characterization
is similar, but confined to each connected component, as in
Theorem 1, and can be proved similarly.

A.3 Proof of Proposition 1
Proof. Equation (16) is separable with respect to the Xij

variables, and for each Xij , the problem reduces to the
following univariate optimization problem:

argmin
x∈R

fij(x) := n̄+
ij ln

(
1 + e−x

)
+ n̄−ij ln

(
1 + e+x

)
. (30)

Since

d2fij
dx2

= n̄+
ij

e−x

(1 + e−x)2
+ n̄−ij

ex

(1 + ex)2
> 0,

it follows that fij is a twice-differentiable convex function
and therefore attains a global minimum at values of x where
the derivative vanishes, i.e,

dfij
dx

= −n̄+
ij

e−x

1 + e−x
+ n̄−ij

ex

1 + ex
= 0,

or equivalently

n̄−ije
2x + (n̄+

ij − n̄
−
ij)e

x − n̄+
ij = 0.

Note that from Equation (5) of Theorem 1 we know n̄−ij > 0.
Therefore, when n̄+

ij 6= 0, we have a unique solution

ex =
n̄+
ij

n̄−ij
, i.e., x = ln

(
n̄+
ij

n̄−ij

)
. When n̄+

ij 6= 0, fij(x) is

monotonically increasing over the entire real line, and we
take x = −∞ as the solution. Thus,

X∗ij =

ln

(
n̄+
ij

n̄−ij

)
if n̄+

ij 6= 0;

−∞ if n̄+
ij = 0.

From Lemma 1, we have n̄+
ij = n̄+

ji and n̄−ij = n̄−ji. Therefore
we have X∗ij = X∗ji.

For rn random walks each of length `, the total number
of node pairs within w steps of each other is |D`,+| =

rn
(
`w − w(w+1)

2

)
. First note that, when n̄+

ij = 0, (i, j) are

in two different connected components, and thus n+
ij = 0,

or equivalently, p`(i, j) = 0. Therefore, PMI`(i, j) = −∞ =
X∗ij − ln k holds. For the rest of the proof, we only consider
the case when n̄+

ij 6= 0 or, equivalently, when (i, j) are in the
same connected component. For the joint distribution, we
have

p`(i, j) =
n+
ij

|D`,+|
`→∞ a.s.−−−−−−→
Eq. (2)

n̄+
ij

w
.



17

For the marginal distributions,

p`1(i) =
∑
j∈V

p`(i, j) =

∑
j∈V n

+
ij

|D`,+|
`→∞ a.s.−−−−−−→

Eq. (2)

∑
j∈V n̄

+
ij

w

Eq. (4)
=== πi

and

p`2(j) =
∑
i∈V

p`(i, j) =

∑
i∈V n

+
ij

|D`,+|
`→∞ a.s.−−−−−−→

Eq. (2)

∑
i∈V n̄

+
ij

w
.

Note that since π is the stationary distribution of the ran-
dom walk, for any v,

∑
∈V πi(W

v)ij = πj . Combining this
with Eq. (4), we get∑

i∈V
n̄+
ij =

w∑
v=1

∑
i∈V

πi(W
v)ij =

w∑
v=1

πj = wπj .

Therefore, p`2(j)
`→∞−−−→
a.s.

πj and

PMI`(i, j) == ln

(
p`(i, j)

p`1(i)p`2(j)

)
`→∞−−−→
a.s.

ln

(
n̄+
ij

wπiπj

)
Eq.(5)
=== ln

(
n̄+
ij

n̄−ij

)
+ ln k

== X∗ij + ln k

A.4 Proof of Theorem 3
The main structure of the proof is as follows:

1) Part 1 will be shown using Lemma 1 and the eigenvalue
decomposition of the diagonal-blockwise-constant (DBC)
matrices (defined below).

2) Part 2 is a direct consequence of combining Part 1) and
Proposition 1.

3) Part 3 is intricate and will be proved in 3-steps:
1) First, we will show that the solution must be a
DBC matrix, and thus can be re-parameterized by the
three scalars that define a DBC matrix. This will be
established by showing that for any feasible solution,
a DBC matrix can be constructed that is both feasible
and yields a lower objective cost.
2) Second, we will prove that among the 3 scalar
variables in the re-parameterized problem, the optimal
value of two of them must equal. This implies that the
matrix solution must have a block structure. We will
then eliminate one variable and re-parameterize the
optimization problem in terms of the remaining two
variables.
3) Lastly, we will show that the optimal values of the
two variables will be opposite numbers of each other
which will imply that the solution matrix has rank 1.

4) Part 4 is a direct consequence of parts (1)—(3).
Before getting into the derivations, we set up some nota-

tion and define diagonal-blockwise-constant (DBC) matrices.
Without loss of generality, we assume that nodes in

the two balanced communities are {1, . . . ,m} and {m +

1, . . . , 2m}. Under this labeling, we define the following two
subsets of node pairs (edges)

E0 := {(i, j) : i 6= j, i, j ≤ m or i, j ≥ m+ 1}
E1 := {(i, j) : i ≤ m, j ≥ m+ 1}⋃

{(i, j) : i ≥ m+ 1, j ≤ m}.

Then, |E0| = 2m(m− 1) and |E1| = 2m2.

Next, we define diagonal-blockwise-constant (DBC) matrices.

Definition A.4.1 (DBC matrix)
Let 1m := (1, 1, . . . , 1)> ∈ Rm. Let y1 = (1>m,1

>
m)> and

y2 = (1>m,−1>m)>. For m ≥ 2, a 2m × 2m matrix is called
diagonal-blockwise-constant (DBC) if it has the form

Z2m(c1, c2, c3) :=
c1 + c2

2
y1y

>
1 +

c1 − c2
2

y2y
>
2 +(c3−c1)I2m.

(31)

Certain key properties of DBC matrices that we use in our
proof are described in the following proposition.

Proposition A.4.1 (Properties of DBC matrices)
Let E0 and E1 be as stated above and let X be a 2m× 2m matrix
for m ≥ 2. Then, X = Z2m(c1, c2, c3) if, and only if, any one of
the following holds:

1) X has the following block structure:

Xij =


c1 if (i, j) ∈ E0;

c2 if (i, j) ∈ E1;

c3 if i = j

2) The eigenvalues and eigenvectors of X satisfy:
a) λ3 = λ4 = . . . = λ2m;
b) u1 = 1√

2m
y1, u2 = 1√

2m
y2.

In addition, the set of all DBC matrices is closed under matrix
addition and multiplication operations.

Proof.
Proof of equivalence.
1) Both if and only if parts can be obtained directly from
Equation (31) in Definition A.4.1:

Xij =


c1+c2

2 + c1−c2
2 = c1 if (i, j) ∈ E0;

c1+c2
2 − c1−c2

2 = c2 if (i, j) ∈ E1;
c1+c2

2 + c1−c2
2 + (c3 − c1) = c3 if i = j

2) IfX = Z2m(c1, c2, c3), directly from equation (31), we can
compute the spectral decomposition of X . Let u1 = 1√

2m
y1,

u2 = 1√
2m
y2 and u3, . . . ,u2m be any set of orthonormal

vectors that together with u1 and u2 form an orthonormal
basis for R2m. Then,

X = m(c1 + c2)u1u
>
1 +m(c1 − c2)u2u

>
2 + (c3 − c1)

2m∑
i=1

uiu
>
i

= (m(c1 + c2) + (c3 − c1))u1u
>
1 +

(m(c1 − c2) + (c3 − c1))u2u
>
2 +

2m∑
i=3

(c3 − c1)uiu
>
i .

Therefore, u1, . . . ,u2m are the eigenvectors of X and the
eigenvalues satisfy λ3 = λ4 = . . . = λ2m = c3 − c1.



18

Reversely, if the eigenvalues and eigenvectors of X have
the given property, letting U = [u1, . . . ,u2m], we have

X = U Diag{λ1, λ2, λ3, . . . , λ3}U>

= U Diag{λ1 − λ3, λ2 − λ3, 0, . . . , 0}U> + Uλ3I2mU
>

=
λ1 − λ3

2m
y1y

>
1 +

λ2 − λ3

2m
y2y

>
2 + λ3I2m

= Z2m

(
λ1 + λ2 − 2λ3

2m
,
λ1 − λ2

2m
,
λ1 + λ2 + (2m− 2)λ3

2m

)
Proof of set closure

Let X1, X2 be two DBC matrices. From part 2), defining
U = [u1, . . . ,u2m] where u1 = 1√

2m
y1, u2 = 1√

2m
y2

and {u3, . . . ,u2m} is any set of orthonormal vectors that
together with u1 and u2 form an orthonormal basis for R2m,
we have

X1 = U Diag{λ1, λ2, λ3, . . . , λ3}U>

X2 = U Diag{µ1, µ2, µ3, . . . , µ3}U>.

Therefore,

X1 +X2 = U Diag{λ1 + µ1, λ2 + µ2, λ3 + µ3, . . . , λ3 + µ3}U>

X1X2 = U Diag{λ1µ1, λ2µ2, λ3µ3, . . . , λ3µ3}U>

satisfy the conditions a) and b) in part 2), and they are both
DBC matrices.

Notation. For ease of reference, for a DBC matrix X , we
denote λi(X) as its eigenvalues and ci(X) (i = 1, 2, 3) as
its entry values in E0, E1 and diagonal, respectively. I.e.,
X = Z2m(c1(X), c2(X), c3(X)). The derivation in the proof
above gives the transformation formula between them.
Specifically, given X = Z2m(c1, c2, c3), we have

λ1(X) = (m− 1)c1 + c3 +mc2, (32)
λ2(X) = (m− 1)c1 + c3 −mc2, (33)
λ3(X) = c3 − c1. (34)

And given the eigenvalues λ1, λ2, λ3 = . . . = λ2m of X , we
have

c1(X) =
λ1 + λ2 − 2λ3

2m
(35)

c2(X) =
λ1 − λ2

2m
(36)

c3(X) =
λ1 + λ2 + (2m− 2)λ3

2m
. (37)

Proposition A.4.2 (P.S.D. condition of DBC matrices)
Let X = Z2m(c1, c2, c3) be a DBC matrix with c3 ≥ c1. Denote
c̄13 := m−1

m c1 + 1
mc3 and let Y = Z2m(c̄13, c2, c̄13). Then, if

Y � 0, we have X � 0.

Proof.
By Equations (32) and (33), we have

λ1(Y ) = (m− 1)c̄13 + c̄13 +mc2

= (m− 1)c1 + c3 +mc2

= λ1(X)

λ2(Y ) = (m− 1)c̄13 + c̄13 −mc2
= (m− 1)c1 + c3 +mc2

= λ2(X)

Since Y � 0, we have λ1(X) ≥ 0 and λ2(X) ≥ 0. Since
c3 ≥ c1, we have λ3(X) = c3 − c1 ≥ 0. And therefore,
X � 0.

Now, we are ready to prove Theorem 3.
Part 1)

Note that for expected graph, the adjacency matrixA and
random walk transition matrix W are both DBC matrices,
and the stationary distribution π is uniform distribution.
Specifically, we have

A = Z2m(a, b, 0)

W = Z2m

(
a

(m− 1)a+mb
,

a

(m− 1)a+mb
, 0

)
π =

1

2m
12m

By Lemma 1, we can compute the positive and negative
coefficient matrices N̄+ and N̄− as

N̄+ =
1

2m

w∑
v=1

W v, (38)

N̄− = kwππ> =
kw

4m2
12m1>2m. (39)

Equation (39) gives us n̄−ij = kw
4m2 = kw

n2 =: β. It remains to
show n̄+

ij .
Since N̄+ is a sum of products of DBC matrices, by

closure of DBC set (Proposition A.4.1), N̄+ is a DBC matrix.
In order to compute c1(N̄+), c2(N̄+), and c3(N̄+), we
begin from its eigenvalues. Since W is a DBC matrix, by
Equations (32)–(34), we have

λ1(W ) = 1,

λ2(W ) =
(m− 1)a−mb
(m− 1)a+mb

,

λ3(W ) = . . . = λ2m(W ) = − a

(m− 1)a+mb
.

Note that since we assumed a > m
m−1b, we have λ1(W ) > 0,

λ2(W ) > 0, λ3(W ) < 0.
From Equation (38), we obtain the eigenvalues of N̄+

λ1(N̄+) =
w

2m
,

λ2(N̄+) =
1

2m

w∑
v=1

λ2(W )v,

λ3(N̄+) = . . . = λ2m(W ) =
1

2m

w∑
v=1

λ3(W )v.

Given the sign of λi(W ), we have λ3(N̄+) < 0 < λ2(N̄+) <
λ1(N̄+). With Equations (35)–(37), the entry values are
given as

c1(N̄+) =
1

4m2

[
w +

w∑
v=1

λ2(W )v − 2
w∑
v=1

λ3(W )v
]

(40)

:= α1,

c2(N̄+) =
1

4m2

[
w −

w∑
v=1

λ2(W )v
]

(41)

:= α2,



19

c3(N̄+) =
1

4m2

[
w +

w∑
v=1

λ2(W )v + (2m− 2)
w∑
v=1

λ3(W )v
]

(42)
:= α3.

This completes the proof of Part 1). Note that λ1(W ) = 1,
λ2(W ) = 1 − O(1/n), λ3(W ) = O(1/n). Therefore, from
Equations (40)–(42), we have αi = Ci/n

2 + o(1/n2) for i =
1, 2, 3, where Ci’s are functions of only a, b and w. Given
the sign of λi(W ), we have

α1 > α3 > 0, (43)
α1 > α2 > 0.

Part 2)
Applying Proposition 1, since n̄+

ij > 0 and n̄−ij > 0 hold
for all i, j, we have

X∗ij = ln

(
n̄+
ij

n̄−ij

)
=


ln
(
α1

β

)
, if (i, j) ∈ E0

ln
(
α2

β

)
, if (i, j) ∈ E1

ln
(
α3

β

)
, if i = j

Part 3)
When H = {X | X � 0}, we first establish structures

that X∗ must have, and then solve it explicitly. We take
three major steps:

Step 1 We show that X∗ must be a DBC matrix, and thus
we can re-parameterize the optimization problem into
three scalars variables: c1, c2, and c3.

Step 2 We prove that among the optimal solution of this re-
parameterized problem must satisfy c∗1 = c∗3. Then,
we substitute c3 by c1 and only keep c1 and c2 as
optimizing variables.

Step 3 We show that c∗1 = −c∗2 must hold. After eliminating
c2, we solve the optimization explicitly.

Step 1.
For any matrix X ∈ S+, let c1, c2, and c3 be the average

of its entries in region E0, E1 and on diagonal, respectively.
I.e.,

x1 :=
1

2m2 − 2m

∑
(i,j)∈E0

Xij , (44)

x2 :=
1

2m2

∑
(i,j)∈E1

Xij , (45)

x3 :=
1

2m

2m∑
i=1

Xii. (46)

Then, we construct a DBC matrix X̃ as

X̃ = Z2m(x1, x2, x3).

Denoting our objective function in Equation (20) as f , i.e.,

f(X) :=
∑
(i,j)

[
n̄+
ij ln

(
1 + e−Xij

)
+ n̄−ij ln

(
1 + eXij

)]
,

we claim that
a) X̃ � 0. I.e., X̃ ∈ H is feasible.
b) f(X̃) ≤ f(X). I.e., X̃ will be no worse than X .

Combining a) and b) will show that the optimal solution X∗

must be a DBC matrix. Below, we will prove these claims.

a) We begin by computing the eigenvalues of the DBC
matrix X̃ and substituting the Equations (44)–(46):

λ1(X̃) = (m− 1)x1 + x3 +mx2

=
1

2m

∑
(i,j)∈E0

Xij +
1

2m

2m∑
i=1

Xii +
1

2m

∑
(i,j)∈E1

Xij

=
1

2m

∑
i,j

Xij

=
1

2m
1>2mX12m

≥ 0

λ2(X̃) = (m− 1)x1 + x3 −mx2

=
1

2m

∑
(i,j)∈E0

Xij +
1

2m

2m∑
i=1

Xii −
1

2m

∑
(i,j)∈E1

Xij

=
1

2m

[
1>m,−1>m

]
X

[
1m
−1m

]
≥ 0

λ3(X̃) = x3 − x1

=
1

2m2 − 2m

(m− 1)
2m∑
i=1

Xii −
∑

(i,j)∈E0

Xij

 .

To show that λ3(X̃) ≥ 0, we first prove the below
propostion:

Proposition A.4.3
If an m×m matrix X � 0, then

Tr(X) ≥ 1

m
1>mX1m

Proof. Let the eigen-decomposition of X be given as follows

X = UΛU>,

where U = [u1, . . . ,um] and Λ = Diag{λ1, . . . , λm}. Then,
we have

Tr(X) = Tr(UΛU>) = Tr(ΛU>U) =
n∑
i=1

λi.

And
1

n
1>mX1m =

(
1√
n
1>mU

)
Λ

(
U>

1√
n
1m

)
=

n∑
i=1

λi

(
1√
n
1>mui

)2

≤
n∑
i=1

λi

∥∥∥∥ 1√
n
1m

∥∥∥∥ ‖ui‖
=

n∑
i=1

λi.



20

Therefore,

Tr(X) ≥ 1

n
1>mX1m.

We divide X into 4 m×m block matrices as

X =

(
X11 X12

X21 X22

)
.

Note that X11 � 0 and X22 � 0. To see this, for any a ∈ Rm,

we have a>X11a =
[
a>,0

]
X

[
a
0

]
≥ 0 and a>X22a =[

0,a>
]
X

[
0
a

]
≥ 0. Therefore, by Proposition A.4.3, we have

Tr(X11) ≥ 1

m
1>mX1m.

Or equivalently,

(m− 1)
m∑
i=1

Xii ≥
∑

i6=j, i,j≤m
Xij .

Similarly with X22, we have

(m− 1)
2m∑

i=m+1

Xii ≥
∑

i6=j, i,j≥m+1

Xij .

Note that E0 = {i 6= j | i, j ≤ m or i, j ≥ m+1}. Adding
the above two equations yields

(m− 1)
2m∑
i=1

Xii ≥
∑

(i,j)∈E0

Xij ,

which shows that λ3(X̃) ≥ 0. This concludes our proof of
X̃ � 0.

b) To show that X̃ has a better cost, we will use convexity.
Specifically, we define

Ψ(x;α, β) := α ln(1 + e−x) + β ln(1 + ex).

And we can rewrite f(X) as

f(X) =
∑
(i,j)

[
n̄+
ij ln

(
1 + e−Xij

)
+ n̄−ij ln

(
1 + eXij

)]
=

∑
(i,j)∈E0

Ψ(Xij ;α1, β) +
∑

(i,j)∈E1

Ψ(Xij ;α2, β)+

2m∑
i=1

Ψ(Xii;α3, β).

Since for any α, β > 0,

Ψ′′(x;α, β) =
ex(α+ β)

(1 + ex)2
> 0.

We know that Ψ(x;α, β) is strictly convex with respect to x
for any positive α and β. With Equations (35)–(37) in mind,
we have

1

2m2 − 2m

∑
(i,j)∈E0

Ψ(Xij ;α1, β) ≥ Ψ (x1;α1, β) ,

1

2m2

∑
(i,j)∈E1

Ψ(Xij ;α2, β) ≥ Ψ (x2;α2, β) ,

1

2m

2m∑
i=1

Ψ(Xii;α3, β) ≥ Ψ (x3;α3, β) .

Therefore

f(X̃) =
∑

(i,j)∈E0

Ψ(x1;α1, β) +
∑

(i,j)∈E1

Ψ(x2;α2, β)+

2m∑
i=1

Ψ(x3;α3, β)

= (2m2 − 2m)Ψ(x1;α1, β) + 2m2Ψ(x2;α2, β)+

2mΨ(x3;α3, β)

≤
∑

(i,j)∈E0

Ψ(Xij ;α1, β) +
∑

(i,j)∈E1

Ψ(Xij ;α2, β)+

2m∑
i=1

Ψ(Xii;α3, β)

= f(X).

By far, we have shown that the DBC matrix X̃ we
constructed is in the feasible set and has a lower cost.
Therefore, we conclude that the optimal solution matrix X∗

must be a DBC matrix. Without the loss of generality, we
can assume X = Z2m(c1, c2, c3), and f(X) reduces to (up
to a constant scaling)

f3(c1, c2, c3) :=

(m− 1)Ψ(c1, α1, β) +mΨ(c2, α2, β) + Ψ(c3, α3, β).

The optimization problem Equation (20) is equivalently
transformed into

(c∗1, c
∗
2, c
∗
3) = argmin f3(c1, c2, c3) (47)

s.t: c1 ≤ c3

|c2| ≤
m− 1

m
c1 +

1

m
c3.

Step 2.
In this step, we will prove that the optimal solution to

(47) must satisfy c∗1 = c∗3. Specifically, we have the below
proposition:

Proposition A.4.4
Let c̄13 := m−1

m c1 + 1
mc3. If (c1, c2, c3) is a feasible solution to

optimization problem (47), then (c̄13, c2, c̄13) is also feasible, and
its cost is no worse than (c1, c2, c3). I.e.,

f3(c̄13, c2, c̄13) ≤ f3(c1, c2, c3).

Proof.
We first show that (c̄13, c2, c̄13) is feasible. The first

constraint of (47) holds as we have the same value in the
first and third argument. It remains to verify the second
constraint

m− 1

m
c̄13 +

1

m
c̄13 = c̄13 =

m− 1

m
c1 +

1

m
c3 ≥ |c2|,

where the last inequality is exactly the second constraint for
(c1, c2, c3) and holds because of its feasibility.

Next, we show that f3(c̄13, c2, c̄13) ≤ f3(c1, c2, c3). Ex-
panding both sides, our goal is equivalent to

(m− 1)Ψ(c̄13, α1, β) + Ψ(c̄13, α3, β)

≤ (m− 1)Ψ(c1 , α1, β) + Ψ(c3 , α3, β).



21

Collecting terms, it is equivalent to show that

(m− 1)(Ψ(c̄13, α1, β)−Ψ(c1, α1, β))

≤ Ψ(c3, α3, β)−Ψ(c̄13, α3, β). (48)

Let δ := c̄13 − c1, and expanding c̄13 we can verify that
c3 − c̄13 = (m − 1)δ. The right hand side of Equation (48)
can be rewritten as

Ψ(c3, α3, β)−Ψ(c̄13, α3, β)

=Ψ(c̄13 + (m− 1)δ, α3, β)−Ψ(c̄13, α3, β)

=
m−1∑
i=1

Ψ(c̄13 + iδ, α3, β)−Ψ(c̄13 + (i− 1)δ, α3, β).

In order to show that it is greater or equal than the left
hand side of Equation (48), it suffices to show that ∀i ∈
{1, . . . ,m− 1},

Ψ(c̄13 + iδ, α3, β)−Ψ(c̄13 + (i− 1)δ, α3, β)

≥Ψ(c̄13, α1, β)−Ψ(c̄13 − δ, α1, β). (49)

Both sides of Equation (49) are in the form of the difference
between the Ψ() function value of two points. Since Ψ() is
smooth with respect to x, the difference can be written as
an integral of the derivative Ψ′() between the two points.
Specifically, the left hand side of (49)

Ψ(c̄13 + iδ, α3, β)−Ψ(c̄13 + (i− 1)δ, α3, β)

=

∫ c̄13+iδ

c̄13+(i−1)δ
Ψ′(t, α3, β)dt

=

∫ c̄13

c̄13−δ
Ψ′(t+ iδ, α3, β)dt.

And the right hand side

Ψ(c̄13, α1, β)−Ψ(c̄13 − δ, α1, β)

=

∫ c̄13

c̄13−δ
Ψ′(t, α1, β)dt.

Thus, Equation (49) is equivalent to∫ c̄13

c̄13−δ
Ψ′(t+ iδ, α3, β)dt ≥

∫ c̄13

c̄13−δ
Ψ′(t, α1, β)dt. (50)

To prove (50), it suffices to show that ∀t ∈ [c̄13 − δ, c̄13],

Ψ′(t+ iδ, α3, β) ≥ Ψ′(t, α1, β). (51)

We can compute Ψ′(x, α, β) explicitly as

Ψ′(x, α, β) = β − α+ β

1 + ex
.

Thus, (51) is equivalent to

β − α3 + β

1 + et+iδ
≥ β − α1 + β

1 + et

or
α3 + β

1 + et+iδ
≤ α1 + β

1 + et
.

Given α1 ≥ α3 (cf.Equation (43)) and t ∈ [c̄13 − δ, c̄13], this
inequality holds, which concludes the proof.

Proposition A.4.4 shows that the optimal solution to (47)
must satisfy c∗1 = c∗3. Therefore, we can substitue c1 = c3

and remove c3 in (47). This reduces f3(c1, c2, c3) to (up to a
constant scaling)

f2(c1,c2) :=

(m− 1)Ψ(c1, α1, β) +mΨ(c2, α2, β) + Ψ(c1, α3, β).

And the optimization problem Equation (47) is equivalently
transformed into

(c∗1, c
∗
2) = argmin f2(c1, c2) (52)

s.t: |c2| ≤ c1.

Step 3.
We first consider the unconstrained optimal solution

(c̃1, c̃2) of optimization problem (52). Since α1, α2, α3, β >
0, all the Ψ() functions are strictly convex and thus f2(c1, c2)
is strictly convex. The unconstrained optimal solution is
unique and can be computed by the∇f2(c1, c2) = 0. Denote
ᾱ13 := m−1

m α1 + 1
mα3, we have

∂f2(c1, c2)

∂c1
= mβ − mᾱ13 +mβ

1 + ec1
= 0

∂f2(c1, c2)

∂c2
= mβ − mα2 +mβ

1 + ec1
= 0,

which gives us

c̃1 = ln

(
ᾱ13

β

)
c̃2 = ln

(
α2

β

)
.

We claim that (c̃1, c̃2) is infeasible. I.e., |c̃2| > c̃1. Given k ≥
1, with Equation (41), we have

α2 =
1

4m2

[
w −

w∑
v=1

λ2(W )v
]
<

w

4m2
≤ kw

4m2
= β.

Thus, c̃2 < 0 and |c̃2| = −c̃2. Therefore, to show that (c̃1, c̃2)
is infeasible, we only need to prove

ln

(
β

α2

)
> ln

(
ᾱ13

β

)
.

Or equivalently,
β2 ≥ α2ᾱ13. (53)

Recall the definition of α1, α2, and α3 in Equations (40)–(42),
we have

ᾱ13 :=
m− 1

m
α1 +

1

m
α3 =

1

4m2

[
w +

w∑
v=1

λ2(W )v
]

(54)

and

ᾱ2 =
1

4m2

[
w −

w∑
v=1

λ2(W )v
]
.

Therefore,

ᾱ13α2 =
1

(4m2)2

[
w2 −

(
λ2(W )− λ2(W )w+1

1− λ2(W )

)2
]

<
w2

(4m2)2

≤ k2w2

(4m2)2



22

= β2.

Thus, we have shown Equation (53) and thus, (c̃1, c̃2) is
infeasible.

Since the unconstrained optimal solution (c̃1, c̃2) is infea-
sible, the constrained optimal solution (c∗1, c

∗
2) must activate

the constraint. Next, we will show that the activated con-
straint must be c1 = −c2.

Denote L the line segment joining (c∗1, c
∗
2) and (c̃1, c̃2),

and G the feasible set of (52). We first claim that L
⋂
G =

{(c∗1, c∗2)} must hold. If not, assume there exists (c01, c
0
2) 6=

(c∗1, c
∗
2) and (c01, c

0
2) ∈ L

⋂
G. Since (c01, c

0
2) ∈ L, there exist

γ ∈ (0, 1) such that

(c01, c
0
2) = γ(c∗1, c

∗
2) + (1− γ)(c̃1, c̃2).

Then, by convexity of f2 and global optimality of (c̃1, c̃2),

f2(c01, c
0
2) ≤ γf2(c∗1, c

∗
2) + (1− γ)f2(c̃1, c̃2) < f2(c∗1, c

∗
2).

It gives us a feasible (c01, c
0
2) that has a lower cost, which

contradicts with the constrained optimality of (c∗1, c
∗
2). And

thus, by contradiction, we have shown that L
⋂
G =

{(c∗1, c∗2)}.
Note that, for the global optimizer (c̃1, c̃2), we have

c̃1 > c̃2. To see this, note it is equivalent to ᾱ13 > α2, which
is shown from Equations (41) and (54). For any points on the
{(c1, c2)| c1 = c2 > 0}, the line segment joining (c1, c2) and
(c̃1, c̃2) will intersect the feasible set G on infinite points,
which contradicts with the claim we just proved above.
Therefore, the constrained optimizer (c∗1, c

∗
2) must satisfy

c∗1 = −c∗2.
Therefore, we can substitue c1 = −c2 and remove c2 in

(52). This reduces f2(c1, c2) to (up to a constant scaling)

f1(c1) :=

(m− 1)Ψ(c1, α1, β) +mΨ(c1, α2, β) + Ψ(c1, α3, β).

And the optimization problem reduces to

c∗1 = argmin f1(c1). (55)

Optimization problem (55) has a unique optimal solution
given by f ′1(c1) = 0:

c∗1 = ln

(
ᾱ13 + β

α2 + β

)
.

This gives the optimal solution X∗ to (20) when H =
{X | X � 0}:

X∗ =

 ln
(
ᾱ13+β
α2+β

)
, if (i, j) ∈ E0 or i = j

− ln
(
ᾱ13+β
α2+β

)
, if (i, j) ∈ E1.

Part 4)
Since both X∗(Rn×n) and X∗(Sn+) are DBC matrices,

we can compute their nuclear norms from the proof of
Proposition A.4.1. Specifically, for a DBC matrix X =
Z2m(c1, c2, c3), we have

‖X‖∗ = |m(c1 + c2) + (c3 − c1)|+ |m(c1 − c2) + (c3 − c1)|
+ (2m− 2)|c3 − c1|.

Since from part 2) we have

X∗(Rn×n) = Z2m

(
ln

(
α1

β

)
, ln

(
α2

β

)
, ln

(
α3

β

))

with

α1 > α3 > 0

α1 > α2 > 0,

we have

‖X∗(Rn×n)‖∗ = m ln

(
α1α2

β2

)
+ ln

(
α3

α1

)
+∣∣∣∣m ln

(
α1

α2

)
+ ln

(
α3

α1

)∣∣∣∣+
(2m− 2) ln

(
α1

α3

)
.

Note that αi = Θ(1/n2) and β = Θ(1/n2). Therefore,
‖X∗(Rn×n)‖∗ = Θ(n). Similarly, from part 3) we have

X∗(Sn+) = Z2m (ν1,−ν1, ν1)

where ν1 := ln
(
ᾱ13+β
α2+β

)
with ᾱ13 := m−1

m α1 + 1
mα3. We can

get ᾱ13 = Θ(1/n2) which leads to ν1 = Θ(1). And

‖X∗(Sn+)‖∗ = 2mν1 = Θ(n).

�

APPENDIX B
NEURAL NETWORK IMPLEMENTATION

In this appendix we detail our neural network implementa-
tion of VEC (or ErgoVEC). We first list the structure of the
neural network. After that, we will detail our construction
of training set (samples and labels). Next, we show that the
neural network optimization objective is exactly the objec-
tive of VEC (or ErgoVEC). Lastly, we provide the learning
and optimization settings we used in training.

Structure of the neural network. Figure 9 illustrates the
structure of our neural network. There are four layers in the
neural network.

1) Input layer. This layer receives a one-hot vector en-
coders for each nodes in a pair (i, j) ∈ V2 as the input
of this neural network

2) Embedding layer. The embedding layer is a n × d
matrix where the rows represent the d dimensional
embedding vectors of nodes. These vectors are updated
in the optimization iteration after each epoch. After the
optimization process, they will be used as final output
of the VEC (or ErgoVEC) algorithm. Please note that
this is the only layer that will be updated in the entire
optimization process. In the neural network, this layer
takes the two one-hot vectors from the input layer and
returns the two corresponding row vectors to the next
layer.

3) Dot Product layer. This layer takes two embedding
vectors and returns the dot product between them.

4) Output layer. This layer takes a scalar (the dot product
from previous layer), and returns the sigmoid function
value S(x) := 1

1+e−x of it as the output of this neural
network.

To sum up, this neural network takes a pair of nodes (i, j) as
input and returns the sigmoid function of their dot product
ŷ(i,j)as output.



23

Input One-hot Vector

Fully  Connected Layer

Embedding Layer

Dot
Product

Dot Product Layer

Sigmoid

Output

n × 1 

n × 1

node i

node j
Fully  Connected Layer

Same Weights

d × 1

d × 1 

Embedding Vector

Fig. 9: Structure diagram of the neural network implemented
with Keras package.

Training set and loss function. We use a weighted
training set D = {((i, j), w(i,j), y(i,j))} obtained from the
union of two parts: a weighted positive set and a weighted
negative set. Both sets contain all node pairs (i, j) ∈ V2,
but label and weigh them differently. All node pairs in
the positive set arelabeled 1 with weights equal n+

ij (n̄+
ij

for ErgoVEC), whereas node pairs in the negative set are
labeled as 0 with weights equal n−ij (n̄−ij for ErgoVEC).
The training set is randomly shuffled and fed in the neural
network during each epoch. For the loss function, we choose
binary cross entropy

H(D) :=
1

N

∑
(i,j)∈D

H(i, j),

where

H(i, j) = −w(i,j)

[
y(i,j) ln(ŷ(i,j))+(1−y(i,j)) ln(1− ŷ(i,j))

]
.

(56)
Equivalence proof. Here we show that the neural network
equipped with this training set and loss function has the
exact same objective as VEC. (For ErgoVEC, the same holds
after replacing n+

ij with n̄+
ij in the following equations.) First

note that, for (i, j) in positive set, y(i,j) = 1,

H(i, j) = −n+
ij ln(ŷ(i,j)) = −n+

ij ln (S(u>i uj))

= n+
ijσ(+u>i uj)

and for (i, j) in negative set, y(i,j) = 0,

H(i, j) = −n−ij ln(1− ŷ(i,j)) = −n−ij ln(1− S(u>i uj))

= n+
ijσ(−u>i uj).

Therefore,

H(D) :=
1

N

∑
(i,j)∈D

H(i, j)

=
∑

(i,j)∈V2

[
n+
ij σ(u>i uj) + n−ij σ(−u>i uj)

]
,

which is the same as (1).
Optimization paramters. We used the Adam optimizer

with default parameter choice except for learning rate. We
set learning rate as described in Table 1, although we want
to make a note that the optimal learning rates do depend on
specific graph realizations.

Remarks on convergence. In our experiments, we note

Algorithm n l.r. # epochs

Linear

Degree

Regime

VEC 100 0.001 400

VEC 200 0.001 200

VEC 500 0.001 80

VEC 1000 0.001 40

ErgoVEC 100 0.02 400

ErgoVEC 200 0.02 200

ErgoVEC 500 0.02 80

ErgoVEC 1000 0.02 40

Logarithmic

Degree

Regime

VEC 100 0.001 400

VEC 200 0.00021 1500

VEC 500 0.001 200

VEC 1000 0.001 200

ErgoVEC 100 0.0025 400

ErgoVEC 200 0.00021 1500

ErgoVEC 500 0.0025 200

ErgoVEC 1000 0.0025 200

TABLE 1: Learning rates and number of epochs used in each
experiment.

that the objective functions seem to converge after a number
of epochs, but the embedding vectors do not. The con-
vergence behavior over epochs is shown in Fig. 10 with
the plot of the loss function as a function of number of
epochs displayed in Fig. 10 (a). Changes in the embedding
vectors measured by the ratio of the Procrustes distance
between embedding vectors in consecutive epochs and the
Frobenius norm of the embedding vectors in the previous
epoch are displayed in Fig. 10 (b). We observe that the
loss function drops quickly after the first few epochs and
remains essentially flat after 1000 epochs, but the change in
the embedding vectors is bounded away from 0 even after
1500 epochs. A possible explanation for this behavior is that
many neural network implementations and optimization
procedures, including the Keras package that we used, focus
on the convergence of the objective loss rather than the
convergence of layer weights. Although this is very useful
in various applications, it may be inadequate for finding
the optimal numerical solution (the minimizing weights).
Future work could attempt improving our implementation
to overcome such limitations.



24

0 200 400 600 800 1000 1200 1400
Epoch Number

0.0004155

0.0004156

0.0004157

0.0004158

0.0004159

Lo
ss

(a) Loss function value as a function of number of epochs.

0 200 400 600 800 1000 1200 1400
Epoch Number

0.01

0.02

0.03

0.04

0.05

0.06

D
pr

oc
(X

(i)
,X

(i
+

1)
)/

X(
i)

F

(b) Change in embedding vectors versus epochs. The
change is computed as the ratio of the Procrustes distance
between embedding vectors in epoch i and i+ 1 and the
Frobenius norm of the embedding vectors in epoch i.

Fig. 10: Illustrating potential convergence issues associated
with neural-network-based optimization of node embedding
objectives.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National
Science Foundation under grant 1527618, the Department
of Electrical and Computer Engineering, and the Division
of Systems Engineering at Boston University. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the supporting institutions.

REFERENCES

[1] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive sur-
vey of graph embedding: Problems, techniques, and applications,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 9,
pp. 1616–1637, 2018.

[2] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[3] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-
supervised learning with graph embeddings,” in International
conference on machine learning. PMLR, 2016, pp. 40–48.

[4] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016, pp.
855–864.

[5] W. Ding, C. Lin, and P. Ishwar, “Node embedding via word
embedding for network community discovery,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 3, no. 3, pp.
539–552, 2017.

[6] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[7] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[8] A. Bakarov, “A survey of word embeddings evaluation methods,”
arXiv preprint arXiv:1801.09536, 2018.

[9] K. Rohe, S. Chatterjee, B. Yu et al., “Spectral clustering and
the high-dimensional stochastic blockmodel,” Annals of Statistics,
vol. 39, no. 4, pp. 1878–1915, 2011.

[10] D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe, “A con-
sistent adjacency spectral embedding for stochastic blockmodel
graphs,” Journal of the American Statistical Association, vol. 107, no.
499, pp. 1119–1128, 2012.

[11] T. Qin and K. Rohe, “Regularized spectral clustering under the
degree-corrected stochastic blockmodel,” in Advances in Neural
Information Processing Systems, 2013, pp. 3120–3128.

[12] A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T.
Vogelstein, K. Levin, V. Lyzinski, and Y. Qin, “Statistical inference
on random dot product graphs: a survey,” Journal of machine
learning research: JMLR, vol. 18, no. 1, pp. 8393–8484, Jan. 2017.

[13] K. Chaudhuri, F. Chung, and A. Tsiatas, “Spectral partitioning of
graphs with general degrees and the extended planted partition
model,” in Proceedings of the 25th conference on learning theory, vol.
2906, 2012.

[14] J. Cape, M. Tang, and C. E. Priebe, “On spectral embedding perfor-
mance and elucidating network structure in stochastic blockmodel
graphs,” Network Science, vol. 7, no. 3, pp. 269–291, 2019.

[15] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec,” in Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining. ACM, 2018, pp. 459–
467.

[16] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th international conference on world wide web. International World
Wide Web Conferences Steering Committee, 2015, pp. 1067–1077.

[17] M. Girvan and M. Newman, “Girvan, m. & newman, m. e. j.
community structure in social and biological networks. proc. natl
acad. sci. usa 99, 7821-7826,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 99, pp. 7821–6, 07 2002.

[18] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems,” in Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing. ACM, 2004, pp. 81–90.

[19] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning
using pagerank vectors,” in Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on. IEEE, 2006, pp. 475–
486.

[20] R. Lambiotte, J.-C. Delvenne, and M. Barahona, “Random walks,
markov processes and the multiscale modular organization of
complex networks,” IEEE Transactions on Network Science and Engi-
neering, vol. 1, no. 2, pp. 76–90, 2014.

[21] L. Meng and N. Masuda, “Analysis of node2vec random walks on
networks,” Proceedings of the Royal Society A, vol. 476, no. 2243, p.
20200447, 2020.

[22] Y. Zhang and M. Tang, “Consistency of random-walk based
network embedding algorithms,” arXiv preprint arXiv:2101.07354,
2021.

[23] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp.
177–186.

[24] ——, “Online algorithms and stochastic approximations,” in
Online Learning and Neural Networks, D. Saad, Ed. Cambridge,
UK: Cambridge University Press, 1998, revised, oct 2012. [Online].
Available: http://leon.bottou.org/papers/bottou-98x

[25] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent,” in Advances
in Neural Information Processing Systems, 2011, pp. 693–701.

http://leon.bottou.org/papers/bottou-98x


25

[26] H. White, S. Boorman, and R. Breiger, “Social structure from
multiple networks, blockmodels of roles and positions,” American
Journal of Sociology, pp. 730–780, 1976.

[27] P. Holland, K. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social Networks, vol. 5, no. 2, pp. 109–137, 1983.

[28] R. Boppana, “Eigenvalues and graph bisection: An average-case
analysis,” in Proc. of the 28th Anuual Symposium on Foundations of
Computer Science (FOCS), 1987, pp. 280–285.

[29] E. Abbe, A. S. Bandeira, and G. Hall, “Exact recovery in the
stochastic block model,” IEEE transactions on information theory /
Professional Technical Group on Information Theory, vol. 62, no. 1, pp.
471–487, Jan. 2016.

[30] E. Abbe and C. Sandon, “Community detection in general stochas-
tic block models: Fundamental limits and efficient algorithms for
recovery,” in Proc. of the 56th Annual Symposium on Foundations of
Computer Science (FOCS), Sep. 2015, pp. 670–688.

[31] ——, “Detection in the stochastic block model with multiple
clusters: proof of the achievability conjectures, acyclic bp, and the
information-computation gap,” in Advances in Neural Information
Processing Systems (NIPS), Dec. 2016.

[32] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, “Asymptotic
analysis of the stochastic block model for modular networks and
its algorithmic applications,” Physical Review E, vol. 84, no. 6, p.
066106, 2011.

[33] E. Mossel, J. Neeman, and A. Sly, “Belief propagation, robust
reconstruction and optimal recovery of block models,” in Proc.
of the 27th Conference on Learning Theory (COLT), 2014, pp. 356–370.

[34] ——, “Reconstruction and estimation in the planted partition
model,” Probability Theory and Related Fields, vol. 162, no. 3-4, pp.
431–461, Aug. 2015.

[35] O. Levy and Y. Goldberg, “Neural word embedding as implicit
matrix factorization,” in Advances in neural information processing
systems, 2014, pp. 2177–2185.

[36] K. Church and P. Hanks, “Word association norms, mutual infor-
mation, and lexicography,” Computational linguistics, vol. 16, no. 1,
pp. 22–29, 1990.

[37] M. E. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Physical review E, vol. 69, no. 2, p.
026113, 2004.

[38] M. E. J. Newman, “Spectral methods for community detection and
graph partitioning,” Physical review. E, Statistical, nonlinear, and soft
matter physics, vol. 88, no. 4, p. 042822, Oct. 2013.

[39] M. Fazel, H. Hindi, and S. Boyd, “Rank minimization and ap-
plications in system theory,” in American Control Conference, 2004.
Proceedings of the 2004, vol. 4. IEEE, 2004, pp. 3273–3278.

[40] J. Dong, Z. Xue, J. Guan, Z.-F. Han, and W. Wang, “Low rank
matrix completion using truncated nuclear norm and sparse regu-
larizer,” Signal Processing: Image Communication, vol. 68, pp. 76–87,
2018.

[41] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysis with a new tensor nuclear norm,”
IEEE transactions on pattern analysis and machine intelligence, vol. 42,
no. 4, pp. 925–938, 2019.

[42] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimiza-
tion,” SIAM review, vol. 52, no. 3, pp. 471–501, 2010.

[43] E. Hazan, “Sparse approximate solutions to semidefinite pro-
grams,” in Latin American symposium on theoretical informatics.
Springer, 2008, pp. 306–316.

[44] A. Joseph, B. Yu et al., “Impact of regularization on spectral
clustering,” The Annals of Statistics, vol. 44, no. 4, pp. 1765–1791,
2016.

[45] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[46] R. Řehůřek and P. Sojka, “Software Framework for Topic Mod-
elling with Large Corpora,” in Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA,
May 2010, pp. 45–50.

[47] F. Chollet et al., “Keras,” https://keras.io, 2015.
[48] S. M. Ross, J. J. Kelly, R. J. Sullivan, W. J. Perry, D. Mercer, R. M.

Davis, T. D. Washburn, E. V. Sager, J. B. Boyce, and V. L. Bristow,
Stochastic processes. Wiley New York, 1996, vol. 2.

[49] C. McDiarmid, “On the method of bounded differences,” Surveys
in combinatorics, vol. 141, no. 1, pp. 148–188, 1989.

[50] G. Grimmett and D. Stirzaker, Probability and random processes, 3rd
Edition. Oxford university press, 2001.

https://keras.io

	1 Introduction
	2 Background and related work
	2.1 Random walk node embedding algorithms
	2.2 VEC: unsupervised random walk node embedding
	2.3 Stochastic Block Model

	3 Analytical framework and results
	3.1 Ergodic limits
	3.2 Walk-distance weighting and large r asymptotics
	3.3 Reparameterized relaxations and their properties
	3.4 Embeddings of expected SBM graphs

	4 Experimental setup
	4.1 SBM graph generation
	4.2 Algorithm parameter choices and implementation
	4.3 Visualization and performance evaluation

	5 Node embedding geometry of SBM graphs
	5.1 Geometry of embeddings
	5.2 Concentration of embeddings

	6 Concluding remarks
	Appendix A
	A.1 Proof of Theorem 4.1
	A.2 Proof of Theorem 2
	A.3 Proof of Proposition 1
	A.4 Proof of Theorem 3

	Appendix B: Neural Network Implementation
	References

