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Abstract

The principle of maximum entropy is a broadly applicable technique for comput-
ing a distribution with the least amount of information possible constrained to match
empirical data, for instance, feature expectations. We seek to generalize this princi-
ple to scenarios where the empirical feature expectations cannot be computed because
the model variables are only partially observed, which introduces a dependency on
the learned model. Generalizing the principle of latent maximum entropy[8], we in-
troduce uncertain maximum entropy and describe an expectation-maximization based
solution to approximately solve these problems. We show that our technique addition-
ally generalizes the principle of maximum entropy and discuss a generally applicable
regularization technique for adding error terms to feature expectation constraints in
the event of limited data. We additionally discuss the use of black box classifiers with
our technique, which simplifies the process of utilizing sparse, large data sets.

Keywords— entropy, maximum entropy, uncertainty, expectation maximization, partial ob-
servability, sparse data, deep learning, classifiers

1 Introduction

The principle of maximum entropy is a technique for finding a distribution over some given elements
X ∈ X that contains the least amount of information in it while still matching some constraints. It
has existed in various forms since the early 20th century but was formalized by Jaynes [4] in 1957. In
its commonly encountered form, the constraints consist of matching sufficient statistics, or feature,
expectations under the maximum entropy model being learned and those observed empirically.

However, in many cases the feature expectations are not directly observable. It could be the
case that the model contains hidden variables, that some data is missing or corrupted by noise, or
that X is only partially observable using some type of process or sensor.

As an example, let us take a simple natural language processing model. Using the principle
of maximum entropy, each X will be a word in a vocabulary X, and we wish to form a model
that matches the empirical distribution of words in a given document, P̃ r(X), according to the
expectation of some interesting features φk(X).

However, if the data input into such a model is a voice recording then words are never directly
observed. Instead, we may extract observations ω from the recording that only partially reveal
the word being spoken, for instance, if ω corresponds to phonemes then Pr(ω|X), the probability
of hearing a phoneme for a given word, will not be deterministic as different dialects and accents
pronounce the same word in different ways. Further, a bad quality voice recording may cause
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uncertainty in the phoneme being spoken, requiring the use of an even more general ω to correctly
model the data.

With large amounts of sensor-produced data available and applications [2][1][6][5] that may
make use of it providing the motivation, we seek to generalize the principle of maximum entropy
to scenarios with partial observability of the modeled variables.

2 Background

2.1 Principle of Maximum Entropy

Commonly, the principle of maximum entropy is expressed as a non-linear program.

max
∆

(

−
∑

X∈X

Pr(X) log Pr(X)
)

subject to
∑

X∈X

Pr(X) = 1
∑

X∈X

Pr(X)φk(X) =
∑

X∈X

P̃ r(X)φk(X) ∀k (1)

Notably, this program is known to be convex which provides a number of benefits. Particularly
relevant is that we may find a close-form definition of Pr(X), and solving the primal problem’s
dual is guaranteed to also solve the primal problem [3].

We begin by finding the Lagrangian relaxation of the program.

L(X, λ, η) = −
∑

X∈X

Pr(X) log Pr(X) + η
(

∑

X∈X

Pr(X)− 1
)

+

K
∑

k=1

λk

(

∑

X∈X

Pr(X)φk(X)−
∑

X∈X

P̃ r(X) φk(X)

)

(2)

Since the program is convex, the Lagrangian function must be as well. Therefore, when the
Lagrangian’s gradient is 0 we have found the global maximum. We now can find the definition of
Pr(X):

∂L(X, λ, η)

∂Pr(X)
= − logPr(X)− 1 + η +

K
∑

k=1

λkφk(X)

0 = − logPr(X)− 1 + η +
K
∑

k=1

λkφk(X)

Pr(X) =
e

K∑

k=1

λkφk(X)

Z(λ)
(3)

Where Z(λ) = e−1eη =
∑

X′∈X

e

K∑

k=1

λkφk(X
′)

. Plugging our definition of Pr(X) back into the

Lagrangian, we arrive at the dual.

Ldual(λ) = log Z(λ)−

K
∑

k=1

λk

∑

X∈X

P̃ r(X)φk(X) (4)

Since the dual is necessarily convex, we find the gradient for use with gradient descent.
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∂Ldual(λ)

∂λk

=
∑

X

Pr(X)φk(X)−
∑

X

P̃ r(X)φk(X)

(5)

Note that any convex optimization technique is a valid alternative to gradient descent.

2.2 Principle of Latent Maximum Entropy

First presented by Wang et al. [7], the principle of latent maximum entropy generalizes the principle
of maximum entropy to models with hidden variables that are never empirically observed.

Split each X into Y and Z. Y is the component of X that is perfectly observed, Z is perfectly
un-observed and completes Y . Thus, X = Y ∪ Z and Pr(X) = Pr(Y,Z). Latent maximum
entropy corrects for the hidden portion of X in the empirical data by summing over all Z ∈ ZY ,
which is every way of completing a given Y to arrive at a X.

max
∆

(

−
∑

X∈X

Pr(X) log Pr(X)
)

subject to
∑

X∈X

Pr(X) = 1
∑

X∈X

Pr(X)φk(X) =
∑

Y ∈Y

P̃ r(Y )
∑

Z∈ZY

Pr(Z|Y )φk(X) ∀k (6)

Since Pr(Z|Y ) includes Pr(X), the right side of the constraint contains a dependency on the
model being learned, meaning the program is no longer convex and only an approximate solution can
be found if we still desire a log-linear model for Pr(X). This leads to an expectation-maximization
approach to find a solution. To our knowledge Wang et al. 2001 [7] is the first to apply EM to the
principle of maximum entropy to account for incomplete data.

The methodology and arguments used in this work is very similar to that used in Wang et
al.’s [8] and so it will not be duplicated here. The reader is encouraged, however, to review Wang
et al. [8] for more background and proofs.

3 Principle of Uncertain Maximum Entropy

Assume we want a maximum entropy model of some hidden variables X ∈ X given we have ob-
servations ω ∈ Ω. Critically, we desire that the model does NOT include ω as the observations
themselves will pertain solely to the data gathering technique of the observing entity, not the ele-
ments or model being observed. We assume the existence of a static observation function Pr(ω|X).
Our new non-linear program is:

max
∆

(

−
∑

X∈X

Pr(X) log Pr(X)
)

subject to
∑

X∈X

Pr(X) = 1
∑

X∈X

Pr(X)φk(X) =
∑

ω∈Ω
P̃ r(ω)

∑

X
Pr(X|ω) φk(X) ∀k (7)

Notice that Pr(X|ω) = Pr(ω|X)Pr(X)
Pr(ω)

and therefore in the infinite limit of data where P̃ r(ω) =

Pr(ω) the constraints are satisfied as:
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∑

X∈X

Pr(X)φk(X) =
∑

ω∈Ω
Pr(ω)

∑

X
Pr(X|ω) φk(X)

=
∑

ω∈Ω
Pr(ω)

∑

X

Pr(ω|X)Pr(X)

Pr(ω)
φk(X)

=
∑

ω∈Ω

∑

X
Pr(ω|X)Pr(X) φk(X)

=
∑

X
Pr(X) φk(X)

∑

ω∈Ω
Pr(ω|X)

=
∑

X
Pr(X) φk(X) (8)

To attempt to solve Eq 7, we first take the Lagrangian.

L(X,Ω, λ, η) = −
∑

X∈X

Pr(X) log Pr(X) + η
(

∑

X∈X

Pr(X)− 1
)

+

K
∑

k=1

λk

(

∑

X∈X

Pr(X)φk(X)−
∑

ω∈Ω

P̃ r(ω)
∑

X

Pr(X|ω) φk(X)

)

(9)

Now we find Lagrangian’s gradient so that we can set it to zero and attempt to solve for Pr(X).

∂L(X,Ω, λ, η)

∂Pr(X)
= − logPr(X)− 1 + η +

K
∑

k=1

λk

(

φk(X)−
∑

ω∈Ω

P̃ r(ω)

(

φk(X)
Pr(ω|X)Pr(ω)− Pr(ω|X)2Pr(X)

Pr(ω)2

)

)

= − logPr(X)− 1 + η +
K
∑

k=1

λkφk(X)

−

K
∑

k=1

λk

∑

ω∈Ω

P̃ r(ω)

(

φk(X)
Pr(ω|X)Pr(ω)− Pr(ω|X)2Pr(X)

Pr(ω)2

)

(10)

Unfortunately, the existence of Pr(X|ω) on the right side of the constraints causes the derivative
to be non-linear in Pr(X). Instead, we will approximate Pr(X) to be log-linear. In other words:

∂L(X,Ω, λ, η)

∂Pr(X)
≈ − logPr(X)− 1 + η +

K
∑

k=1

λkφk(X)

0 ≈ − logPr(X)− 1 + η +

K
∑

k=1

λkφk(X)

Pr(X) ≈
e

K∑

k=1

λkφk(X)

Z(λ)
(11)

Now we plug our approximation back into the Lagrangian to arrive at an approximate Dual:

Ldual(λ) ≈ log Z(λ) −

K
∑

k=1

λk

∑

ω∈Ω

P̃ r(ω)
∑

X

Pr(X|ω)φk(X) (12)

We would now try to find the dual’s gradient and use it to minimize the dual. Unfortunately
the presence of Pr(X|ω) still admits no closed form solution in general. We will instead have to
employ another technique to minimize it.
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3.1 Expectation Maximization

Start with the log likelihood of all the observations:

L(λ) =
∑

ω∈Ω

P̃ r(ω) log Prλ(ω)

=
∑

ω∈Ω

P̃ r(ω) log
∑

X∈X

Prλ(ω,X)

=
∑

ω∈Ω

P̃ r(ω) log
∑

X∈X

Prλ(ω,X)

Prλ′(X|ω)
Prλ′(X|ω)

≥
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω) log
Prλ(ω,X)

Prλ′(X|ω)

=
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω) log Prλ(ω,X)−
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω) log Prλ′(X|ω)

=
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω) log Prλ(ω|X)Prλ(X) +H(λ′)

=
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω) log Prλ(ω|X) +
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω) log Prλ(X) +H(λ′)

=
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω) log Pr(ω|X) +Q(λ, λ′) +H(λ′) (13)

= U
∗(λ′) +Q(λ, λ′) +H(λ′) (14)

Eq 13 follows because Pr(ω|X) is the observation function which does not depend upon λ.
This leaves Q(λ, λ′) as the only function which depends upon λ. The EM algorithm proceeds by
maximizing Q, and upon convergence λ = λ′, at which time the likelihood of the data is at a local
maximum.

H(λ′) is the conditional entropy on the latent variables, and U∗(λ′) is the expected log obser-
vations, which due the the observations not being included in the model only impacts the overall
data likelihood, but not the model solution.

We now plug in a log-linear model for Pr(X) to Q(λ, λ′):

Q(λ, λ′) =
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω) log Prλ(X)

=
∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω)

(

K
∑

k=1

λkφk(X)− log Z(λ)

)

= − log Z(λ) +
K
∑

k=1

λk

∑

ω∈Ω

P̃ r(ω)
∑

X∈X

Prλ′(X|ω)φk(X) (15)

Notice that Eq. 15 is similar to Eq. 12. One important difference is that Eq. 15 is easier to
solve, as Pr(X|ω) depends on λ′ and not λ. In fact, maximizing Q(λ, λ′) is equivalent to solving
the following program:
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max
∆

(

−
∑

X∈X

Prλ(X) log Prλ(X)
)

subject to
∑

X∈X

Prλ(X) = 1
∑

X∈X

Prλ(X)φk(X) =
∑

ω∈Ω
P̃ r(ω)

∑

X
Prλ′(X|ω) φk(X) ∀k (16)

which equals Eq.7 at convergence. We now arrive at the following Expectation-Maximization
algorithm:

Initial Start: Randomly initialize λ′

E Step: Using λ′, compute φ̂k =
∑

ω∈Ω P̃ r(ω)
∑

X
Prλ′(X|ω) φk(X)

M Step: Solve the following convex program to arrive at a new λ:

max
∆

(

−
∑

X∈X

Prλ(X) log Prλ(X)
)

subject to
∑

X∈X

Prλ(X) = 1
∑

X∈X

Prλ(X)φk(X) = φ̂k ∀k (17)

Then set λ′ = λ

Repeat: Until λ converges

4 Specializations

Here we demonstrate that the principle of uncertain maximum entropy generalizes both the prin-
ciple of maximum entropy and the principle of latent maximum entropy[8] by showing that we
recover these earlier methods when certain specific conditions are met.

4.1 Principle of Maximum Entropy:

We recover the Principle of Maximum Entropy if Pr(X|ω) ∈ {0, 1} ∀X,ω and ∃ ω ∋ Pr(X|ω) = 1 ∀X.
In other words, each ω specifies a single X deterministically. Note that the reverse is not necessarily
true, Pr(ω|X) need only be deterministic if |Ω| = |X|. However, for a given X specified by a given
ω:

Pr(X|ω) =
Pr(ω|X)Pr(X)

Pr(ω)

1 =
Pr(ω|X)Pr(X)

Pr(ω)

Pr(ω) = Pr(ω|X)Pr(X)

Therefore, in Eq 10 (the Lagrangian’s gradient), the final term is always zero and we find Pr(X)
is log linear (without approximation), and Eq. 12 is exact. Furthermore, as Pr(X|ω) is unaffected
by λ the gradient of Eq. 12 may now be found as:
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∂Ldual(λ)

∂λk

=
∑

X

Pr(X)φk(X)−
∑

ω∈Ω

P̃ r(ω)
∑

X

Pr(X|ω)φk(X) (18)

Thus, we do not need to use EM to solve this problem, and we have arrived at a principle of
Maximum Entropy solution. To see terms that exactly match, let |Ω| = |X|, then P̃ r(Ω) = P̃ r(X)
and

∑

X

Pr(X|ω) =
∑

X′

Pr(X ′|X).

Ldual(λ) = logZ(λ)−
K
∑

k=1

λk

∑

X∈X

P̃ r(X)
∑

X′

Pr(X ′|X)φk(X)

= logZ(λ)−

K
∑

k=1

λk

∑

X∈X

P̃ r(X)φk(X)

(19)

4.2 Principle of Latent Maximum Entropy:

[8] This technique breaks up X into two components, Y which is perfectly observed, and Z which
is missing (perfectly un-observed) and X = Y ∪ Z. To show that Maximum Entropy with Un-
certain Observations generalizes latent maximum entropy, we must show a reduction of the right
side of the main constraint to

∑

Y

P̃ r(Y )
∑

Z∈ZY

Pr(Z|Y )φk(X) when Pr(Y |ω) ∈ {0, 1} ∀ Y, ω and

∃ ω ∋ Pr(Y |ω) = 1 ∀ Y . In other words, each ω specifies a single Y deterministically. Note that
the reverse is not necessarily true, Pr(ω|Y ) need only be deterministic if |Ω| = |Y|.

Using this definition,

Pr(Y |ω) =
Pr(ω|Y )Pr(Y )

Pr(ω)

1 =
Pr(ω|Y )Pr(Y )

Pr(ω)

Pr(ω) = Pr(ω|Y )Pr(Y )

Now note that Pr(X) = Pr(Y,Z), we have

Pr(X|ω) =
Pr(ω|Y,Z)Pr(Y,Z)

Pr(ω)

=
Pr(ω|Y,Z)Pr(Z|Y )Pr(Y )

Pr(ω|Y )Pr(Y )

=
Pr(ω|Y,Z)Pr(Z|Y )

Pr(ω|Y )

=
Pr(ω|Y )Pr(Z|Y )

Pr(ω|Y )
(20)

= Pr(Z|Y ) (21)

Since Z is perfectly unobserved, Pr(ω|Y,Z) = Pr(ω|Y ) on eq 20. To match terms exactly, let
|Ω| = |Y |, then P̃ r(Ω) = P̃ r(Y ). Notice, whenever Pr(Y |ω) = 0, P r(X|ω) = 0. Therefore we may
ignore the summation term in these cases, and only consider Z ∈ ZY :
∑

ω

P̃ r(ω)
∑

X

Pr(Z|Y )φk(X) =
∑

Y

P̃ r(Y )
∑

Z∈ZY

Pr(Z|Y )φk(X)
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5 Large, sparse observation sets

The desire to automate inference has driven the use of extremely large, sparse datasets produced
by machine sensors as the input into various learning models. Often techniques such as deep neural
networks are used to transform the sparse dataset into dense data, perhaps the model elements
directly. These techniques may be trained by making use of supervised learning on a subset of the
available data that has been manually labeled. As the output learned model may be a black box,
no human discernible observation features may be available for examination for use in uMaxEnt.
Here we extend the principle of uncertain maximum entropy to these black box scenarios.

Suppose we have an enormous, sparse dataset R from which samples r are produced from the
model element’s true observation features, ie. Pr(r|ω) (r stands for raw data). These r samples
are what is received by the observer, as Ω is unknown to the observer, and may be thought of as
encoded (possibly partially) into r. For example, if the observer is using a RGB camera, ω may be
a 3D mesh describing the full visual representation of a particular X and r is a 2D RGB image of
the mesh.

Suppose we are given a set of samples from R labeled by a human. To increase generality, we
allow the labels to be from a different, though related, set than X. Let ξ ∈ Ξ be these labels and
define a function d(X, ξ) −→ {0, 1} that is 1 when a given X maps to a given ξ. For simplicity
of argument we restrict d such that each X maps to only one ξ deterministically. Note that the
opposite need not be true, one ξ may map probabilistically to many X. Extension to more general
configurations is straightforward and only involves modifying Pr(ξ|X) appropriately, we will not
discuss this further here.

Now, we may employ some method to classify all received r into ξ. Let F (r) −→ ξ be the function
learned by this method, and let us further assume this method comes with statistical performance
metrics such as precision and recall. Then, we use F to classify all available sparse data into P̃ r(ξ)
and our new uMaxEnt constraints for this scenario are:

∑

X∈X

Pr(X)φk(X) =
∑

ξ∈Ξ

P̃ r(ξ)
∑

X

Pr(X|ξ)φk(X) (22)

Where Pr(X|ξ) = Pr(ξ|X)Pr(X)
Pr(ξ)

, and Pr(ξ|X) is the probability that F outputs ξ when the
true, underlying model element present is X. This is given by the method’s performance metrics,
though possibly with appropriate modification to account for the difference between Ξ and X. Note
that in the event the classification method used is perfect, these new constraints revert to either
latent maximum entropy (when Ξ ⊂ X) or standard maximum entropy (when Ξ = X).

5.1 Uncertain classification

Suppose that the classification method used cannot be certain as to which ξ should be output for a
given r and instead produces a distribution over ξ, Pr(ξ|r). This provides only partial information
of which ξ is present, but has an advantage in that the method encodes the accuracy of its output
into the output distribution itself. This in turn greatly simplifies Pr(ξ|X) = d(X, ξ).

Our first attempt at using this distribution may be to find the expected ξ as follows:

∑

X∈X

Pr(X)φk(X) =
∑

r

P̃ r(r)
∑

ξ∈Ξ

Pr(ξ|r)
∑

X

Pr(X|ξ)φk(X) (23)

However, this faces an issue as the distribution Pr(ξ|r) is produced using the training data
set, and not the specific dataset under consideration. To see this, suppose the method used is
parameterized with θ, and we provide an infinite amount of data such that P̃ r(r) = Pr(r):

8



∑

r

Pr(r)
∑

ξ∈Ξ

Prθ(ξ|r)
∑

X

Pr(X|ξ)φk(X)

=
∑

r

∑

ξ∈Ξ

Prθ(ξ, r)
∑

X

Pr(X|ξ)φk(X)

=
∑

ξ∈Ξ

Prθ(ξ)
∑

X

Pr(X|ξ)φk(X)

6=
∑

ξ∈Ξ

∑

X

Pr(X, ξ)φk(X) (24)

(25)

Because the training distribution over ξ, Prθ(ξ), can vary dramatically from the target dis-
tribution Pr(ξ), we cannot guarantee that this method produces an effective approximation. For
instance, suppose in the training set the distribution over ξ was deliberately chosen to be uniform
in order to prevent bias in the learning, whereas this distribution is highly unlikely to be the correct
one in an inference task.

To correct for this, we examine Prθ(ξ|r) using Baye’s law. Note that even if the method used
does not allow for these components to be separated as shown they still must be represented in
some capacity in order to produce a valid distribution.

Prθ(ξ|r) =
Prθ(r|ξ)Prθ(ξ)

Prθ(r)
(26)

We note that Prθ(r) is a normalizer, and so we target Prθ(ξ) and replace it with Pr(ξ), then
normalize to obtain an updated distribution.

Prθ(ξ|r)
Pr(ξ)

Prθ(ξ)
=

ν Prθ(r|ξ)Prθ(ξ)Pr(ξ)

Prθ(ξ)

= ν
′
Prθ(r|ξ)Pr(ξ)

=
Prθ(r|ξ)Pr(ξ)

∑

ξ′
Prθ(r|ξ′)Pr(ξ′)

(27)

Where ν and ν′ are normalizers, and differ as we require renormalization after the correction.
Now, notice Pr(r) =

∑

ξ

Pr(r|ξ)Pr(ξ), which differs from the normalizer above only in the term

Prθ(r|ξ), which is the observation model being learned by the classification technique. This term
is expected to approximate the true observation model as closely as possible, as that is the whole
purpose of employing the technique!

So we arrive at, in the case of infinite data:
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∑

X∈X

Pr(X)φk(X) =
∑

r

Pr(r)
∑

ξ∈Ξ

Prθ(ξ|r)Pr(ξ)

Prθ(ξ)

∑

X

Pr(X|ξ)φk(X)

≈
∑

r

∑

ξ∈Ξ

Prθ(r|ξ)Pr(ξ)
∑

X

Pr(X|ξ)φk(X)

=
∑

ξ∈Ξ

Pr(ξ)
∑

X

Pr(X|ξ)φk(X)
∑

r

Prθ(r|ξ)

=
∑

ξ∈Ξ

Pr(ξ)
∑

X

Pr(X|ξ)φk(X)

=
∑

ξ∈Ξ

∑

X

Pr(X, ξ)φk(X)

=
∑

X

Pr(X)φk(X) (28)

The quality of the approximation is now controlled by the quality of the classification technique,
this a desirable trait as the classification technique’s quality is controlled by the engineers building
or training it.

This variant of uMaxEnt incorporates Pr(X) twice since Pr(ξ) =
∑

X

Pr(ξ|X)Pr(X). Notice

that even in the event that Ξ = X we still have a uMaxEnt problem, due to the presence of this
second Pr(X) and ultimately caused by the uncertainty in Prθ(ξ|r).

6 Discussion

The principle of uncertain maximum entropy makes explicit that the choice of model influences
results by including Pr(X) in the empirical side of the constraints. In cases where uncertainty
exists in Pr(X|ω) this technique ensures a model is found that is consistent with the available
information and not over-committed to the specific observations received, as would be the case
with ignoring the uncertainty and using the principle of maximum entropy, perhaps by taking the
expectation, mean, or maximum X given ω.

Another benefit of this technique is existing Pr(X) priors may be used in the first E step of the
expectation-maximization algorithm, somewhat similar to how it is done with Bayesian methods,
as opposed to uninformative priors. This can help bias the results to reflect earlier experiences that
cannot, for whatever reason, be included in P̃ r(ω).
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