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Abstract. Privacy is an individual’s choice to determine which personal details
can be collected, used and shared. Individual consent and transparency are the
core tenets for earning customers’ trust and this motivates the organizations to
adopt privacy enhancing practices while creating the systems.
The goal of a privacy-aware design is to protect information in a way that does
not increase an adversary’s existing knowledge about an individual beyond what
is permissible. This becomes critical when these data elements can be linked with
the wealth of auxiliary information available outside the system to identify an in-
dividual. Privacy regulations around the world provide directives to protect indi-
vidual privacy but are generally complex and vague, making their translation into
actionable and technical privacy-friendly architectures challenging. In this paper,
we utilize Shannon’s Entropy (SE) to create an objective metric that can help sim-
plify the state-of-the-art Privacy Design Strategies proposed in the literature and
aid our key technical design decisions to create privacy aware architectures.

Keywords— Privacy-by-Design, Identifiability, Information Theory, Privacy-friendly
architectures, Differential Privacy, Shannon’s Entropy, Design Strategies, Linkability.

1 Introduction

With the increasing awareness created by privacy community, individuals are realiz-
ing that it’s their choice to determine what information can be collected, shared and
processed by an organization. As a result, regulatory requirements are getting enforced
and the organizations have started looking at different approaches to establish a privacy
baseline for their customers. Among the approaches, Privacy-by-Design helps define
privacy requirements at a high level. Also, there exists privacy enhancing technologies
which are relevant after a system is developed [14]. For the regulations, most of the
privacy laws are vague making it tough to translate them into technical solutions and
further get complicated when organizations need to comply with multiple laws (for e.g.,
GDPR and PIPEDA) [4, 15]. Although, frameworks like the NIST 800-53 v5 [6] and
the NIST Privacy Framework [3] are more prescriptive, they do not specifically cover
privacy design strategies to help with privacy-aware technical architecture solutions.
Notably, all these privacy laws and frameworks prohibit the identifiability of an indi-
vidual.
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Privacy-by-design framework focuses on embedding privacy into the design and
business practices, and aims at achieving privacy-friendly architectures. In the litera-
ture, a number of design strategies are proposed but they do not provide any objective
formulation that can support fundamental decisions for handling data at the architec-
ture level. In particular, design strategies such as data minimization, data separation,
data hiding, data abstraction, provide a generic guidance on how data can be stored to
increase privacy of a system. But these strategies do not answer “what” data should be
minimized, and “what” data attributes should be separated, hidden or abstracted [24].

In this paper, we formulate Shannon’s Entropy (SE) and apply it to the data oriented
design strategies proposed by [14]. Our formulation attempts to refine and simplify
these tactics, and provide a quantifiable measure to support key design decisions on
what data attributes need to be handled for improving individual privacy in a system.
The rest of the paper is organized as follows– Section 2 provides an overview of the
related work. We define our threat model, formulation and privacy aware design strate-
gies in Sections 3, 4 and 5 respectively. In section 6, we discuss the applications of our
formulation and the associated trade-offs, concluding our paper in section 7.

2 Related Work

Over the years, multiple surveys have been conducted [1, 5] which demonstrate cus-
tomer’s dissatisfaction with the organizations in data collection, processing and shar-
ing. Because of the lack of or limited control over their own data, concerns have in-
creased on how organizations are storing and handling all the customer data to prevent
privacy leakage. Although a number of privacy regulations and standards have been
enacted globally [2] to protect customer’s right to privacy, these regulations do not pro-
vide any technical guidance on how systems should be built [15]. Privacy enhancing
techniques [18, 26] have been proposed in the literature but are useful only for a fully
developed system and come either at the expense of utility of the system [16] or require
rigorous optimization [19]. Privacy by design strategies and privacy aware architectural
guidance [14] available in the literature, provide generic recommendations but there
exists a gap in using these strategies objectively in real life systems. In the past, SE and
Information theory concepts [8,17] have been used to define privacy and create metrics
to evaluate several privacy enhancing mechanisms [22] using mutual information but
in this paper, we propose utilizing SE as a quantifiable measure to define identifiabil-
ity & linkability which can assist objective decision making for creating privacy aware
architectures and solutions while still maintaining the utility of the system.

3 Threat Model And Assumptions

The goal of threat modeling is to identify and enumerate potential threats to a system
so that mechanisms can be implemented to prevent and avoid vulnerabilities. In this
paper, we consider identification of an individual or identifiability as our biggest threat
if a database is breached or a system is compromised. This can help us prioritize and
decide what privacy-aware architectural strategies can be used and how it can be im-
plemented. Our threat model appears to be simpler than the LINDDUN model [29] but
we understand that identifiability is the ultimate risk as the consequence of linkabil-
ity, detectability, unawareness is also identifiability and inference. We believe that our
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proposed formulation is applicable to avoid privacy risks for disclosure of information
and in data sharing. Non-Compliance is out of scope for us as we treat identifiability
as compliance agnostic and is a risk in all the regulatory frameworks. It has to be noted
that our formulation focuses primarily on the unlinkability goal out of the six ”Privacy
Protection Goals” [13]. However, we use the remaining privacy goals as our basis to
derive and optimize the privacy parameter using our formulation.

Assumptions: For the sake of simplicity of our formulation, we start with the sce-
nario that there exists a database in a system with one table containing records of in-
dividuals and the organization wants to implement a privacy-friendly architecture such
that an adversary won’t be able to identify or make inference about an individual of
interest (IoI) if the database is breached. Just for convenience, we will be using the
terms database and table interchangeably. We will be focusing on relational databases
which we assume can be extrapolated to the linkages that exist because of data being
distributed in a number of data sources within a system. Lastly, we focus on the archi-
tectural tactics and assume that the only way attacker can interact with the system is by
hacking into the server and not by asking queries to an online database.

4 Formulation

Identifiability: We start our model formulation by defining identifiability. Identifiabil-
ity of an individual i means that the attacker can sufficiently identify an IoI within a set
of individuals. Identifiability is the opposite of anonymity and has one-to-one relation-
ship with the attributes associated with i. Mathematically, if in a database, denoted by
D, θ represents a set of attributes or characteristics that uniquely identify the individual
i, and if θi1 = θi2 , then for identifiability, i1 = i2.

SE quantifies the uncertainty of an event or the amount of information gained from
an event. In simpler terms, more possibilities of an event lead to more uncertainty, and
hence more information gain when the event is revealed. Conversely, certainty of an
event increases when there are less possible outcomes. If H be the entropy, which is
defined as the number of bits required to represent possible states or outcomes, then in
order to have identifiability, H = 0, as H =−p ln(p), with p = 1; where p is probability
of identifying an individual.

Let there be a database D(A1,A2, . . . ,An), with A j denoting direct identifiers or
quasi-identifiers. Examples of direct identifiers include SSN, email address, telephone
number, or any other attribute that is unique over the distribution of attribute values
(one-to-one and onto) globally [11]. In terms of entropy, if X represents an event to
identify IoI i, given the knowledge of a direct identifier attribute value {Adirect(i)},
then the entropy equation for the event X = i, conditioned on the knowledge of direct
identifier revealing i, H(X = i|Adirect(i)) = 0. This equation holds for any combina-
tion of direct identifiers. Certain quasi-identifiers can still uniquely identify individu-
als [28]. The entropy of an event X = i, given the distributions over m quasi-identifiers
(Aquasi 1(i),Aquasi 2(i)), . . .Aquasi m(i)) can be written as

H(X = i|(Aquasi k)) with k = 1,2, . . . ,m (1)

Expanding using Bayes Rule,
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H(X = i|(Aquasi k)) =−p(X = i|(Aquasi 1(i),Aquasi 2(i), . . . ,Aquasi m(i)) log[p(X =
i|(Aquasi 1(i),Aquasi 2(i), . . . ,Aquasi m(i))];

= −p[(X=i,Aquasi 1(i)=aq1,Aquasi 2(i)=aq2,...,Aquasi m(i)=aqm)]

p(Aquasi 1(i)=aq1,Aquasi 2(i)=aq2,...,Aquasi m(i)=aqm)

log p[(X=i,Aquasi 1(i)=aq1,Aquasi 2(i)=aq2,...,Aquasi m(i)=aqm)]

p(Aquasi 1(i)=aq1,Aquasi 2(i)=aq2,...,Aquasi m(i)=aqm)
(2)

where, aqk are the attribute values for individual i. Since for identifiability, Aquasi k
uniquely identifies i, we can write,

p(X = i,Aquasi 1(i) = aq1,Aquasi 2(i) = aq2, . . . ,Aquasi m(i) = aqm) = p(Aquasi 1(i) =
aq1,Aquasi 2(i) = aq2, . . . ,Aquasi m(i) = aqm).

Therefore, (2) becomes, H(X = i|(Aquasi k)) = 1 ln(1) = 0.
It is important to account for an adversary’s knowledge of auxiliary information

(Aux.) and the context (C). Needless to say, the auxiliary information or the context is
not enough to satisfy the condition of identifiability of IoI serving as the motivation for
the attack. Context can be described as any information that can be used to characterize
the situation of an entity, like an individual’s, habits, emotions, or the metadata related
to a situation. The organization storing individual’s data has the right context but for the
attacker, it can serve as an additional piece of information along with the auxiliary infor-
mation. We would like to argue that the correctness of context can increase or decrease
the knowledge of the attacker. If an attacker has the incorrect knowledge of context, it
increases the uncertainty and conversely, it can augment the auxiliary information that
the attacker possesses leading to identifiability. Using this, we can re-write (1) as,

H(X = i|(Aquasi k),Aux.,C) (3)

This leads us into defining Individual Privacy Parameter (IPP) represented by ε . For de-
riving the privacy equation, we propose that an adversary’s knowledge of an IoI should
not increase beyond what is already known to him if the database is breached, giving us
an upper bound for H. Therefore,

0≤ H(X = i|(Aquasi k),Aux.,C)≤ H(X = i|Aux.,C),

0≤ ε ≤ 1, ε =
H(X=i|(Aquasi k),Aux.,C)

H(X=i|Aux.,C) (4)

IPP ε represents the current state privacy of the individual records in the database based
on the distribution of attributes associated with them. Differential privacy [10], which
is considered as the strongest definition of privacy, defined for a mechanism M on a
database D as, P[M(D) ∈ Y ]<= e−ε .(P[M(D′) ∈ Y ]); with |D−D′|= 1.

Comparing IPP-ε with differential privacy ε (DP-ε), adding noise to the database
increases the entropy and protects identifiability. [8] followed a similar approach to
exploit the entropy already present in the database and substitute that for external noise
to the output. However, addition of noise affects the utility of the system which is not the
case with IPP-ε . Further, unlike DP-ε , the basis of optimal value of IPP-ε is individual’s
consent and we discuss this in detail in our next section.
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Linkability: Linkability, λ , between two or more items within a system means that
the knowledge of the system can reveal the relation, denoted by v, between the items
which was not known to the adversary with their prior knowledge or auxiliary infor-
mation, Aux. [20]. The more commonly used terminology is unlinkability described
from an adversary’s perspective, specifying the before and after states of an adversary
observing the system which can be quantified as perfect preservation of unlinkability
[20]. As pointed out earlier, the ultimate privacy harm associated with linkability is that
it can lead to identifiability if too much linkable information is combined or can lead to
a potential inference if a link to a sensitive attribute is revealed [29].

We start formulating linkability for our database model by examining the possi-
ble linkages for IoI i under the notion ‘is related to’ i denoted by v(i) similar to
the definition in [25]. In a relational database, as presented in Figure 1 for IoI i0,
the two linkages are λ1 : a13 v i0 and λ2 : i2 v i0. λ1 represents another individual’s
(i1) attribute ‘is related to’ i0 and λ2 denotes another individual (i2) ‘is related to’ i0.

Fig. 1. Possible linkages for IoI i0.

For the first case, a13 can be treated as another
quasi-identifier (Aquasi−linked) which can be
plugged into eq. (3) above ultimately lead-
ing to identifiability. For λ2, if the relation be-
tween some individual and IoI i0 is revealed
to an adversary, which is very common in
online social networks [7], it can lead to in-
ferences about the attribute values associated
with i0. We propose that the knowledge of the
nature (an attribute or auxiliary information)
and the context of the relation is a necessary
but not a sufficient condition to draw a rel-
evant inference about an individual or to re-
inforce an inference leading to identification.

For the sake of simplicity of discussion, we will scope ourselves to λ1 in this paper as
λ2 relations are also actualized via underlying attributes.

5 Privacy Aware Design Strategies

Privacy regulations around the world are generally non-technical [23], and the transla-
tion of these laws into design solutions and architectures is challenging. Privacy en-
hancing techniques are suitable for systems that are already developed, complex to
implement if the organization is not mature in the area of privacy and most of these
techniques come at the cost of utility of the system.

In this paper, we explore Hoepman’s eight privacy design strategies [14] to build
privacy friendly systems. Privacy is an individual’s choice since one is the owner of
one’s information. In data processing, transparency is vital and one of the most impor-
tant goal that an organization needs to accomplish to earn their customer’s trust [9].
Out of the eight design strategies listed in the blue book of privacy [14], four strate-
gies are process-oriented, focusing on the procedural aspects of data handling in an
organization. Individuals should be informed about “what”, “why” and “when” the data
is collected, stored, processed, or shared by an organization and explainable mecha-
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nisms [21] should be developed which can help demonstrate privacy awareness, estab-
lishing trust and increasing customer’s confidence. The core tenet for our formulation
presented above and architectural discussions in this section is the individual’s control
and consent which can help derive an optimum value of IPP (ε0). It is the organization’s
responsibility to preserve every individual’s privacy and prevent identifiability. Ideally,
0 < ε0 ≤ ε , where ε is the target IPP value calculated for a user in the database. Next,
we examine the data oriented strategies in detail utilizing our formulation to help us
create a privacy friendly architecture.

Data Hiding: Based on our formulation, all the direct identifiers in the database
Adirect , whose knowledge makes H(X = i) = 0, should be hidden and stored sepa-
rately from other direct and quasi-identifiers. The access to these tables containing
direct identifiers must be restricted by utilizing authentication and authorization mech-
anisms, and data should be protected by obfuscation, anonymization, or encryption.

find-risky-comb.((Aquasi k(i)),ε0)

T : Tabulation Table,
Risky-Attribute-Set(i): Set of risky attributes for
individual i;
For every combination of Aquasi k(i)

DP-Tabulation(temp ε , {Aquasi k})← T
For every cell in T

if (temp ε ≤ ε0):
{(Aquasi l)} ← Risky-Attribute-Set(i)

Table 1. Function to identify risky combinations of
quasi-identifiers

We propose using a local identi-
fier replacing the direct identifiers
everywhere else in the system for
referencing that individual while
making it harder for an attacker
to identify an individual using a
direct identifier if the database is
breached.

Data Separation: It is crucial
to logically and physically sep-
arate personal data into multiple
databases and on different servers
to avoid linkability and prevent
identification of an individual [12].
It is important to design database schema in such a way that the risky attribute combi-
nations are separated which could otherwise lead to identification of linkages and ulti-
mately identifiability. We propose the function find-risky-comb.() in Table I, that utilizes
our formulation from section 4 and dynamic programming (tabulation) to identify the
risky combinations of quasi-identifiers.

The outcome of find-risky-comb.() can help make an informed decision on what
attribute values can be stored in a table to guarantee individual privacy. We can use
multiple strategies such as replacing the data values for the risky attributes by a pointer
to a separate table protected by security mechanisms where the actual values can be
stored. We will discuss the performance trade-offs in Section 6.

Data Minimization: Every data element can potentially contribute to the identifi-
cation of an individual. Therefore, it is safe to say minimizing data can help prevent
identifiability and avoid linkability. In order to minimize data,
(i) List all the attributes required for the current functionality of the application (data
flow map and inventory).
(ii) Check if all these attributes have individual’s consent and identify the difference.
(iii) For the attributes without user consent, re-evaluate their use in the current state and
future state of the application and inform the individual giving them the alternative of
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opting out.
(iv) Strip, or destroy all the attribute values for which the customer has not consented
for current or future use.

Data Abstraction: Based on our formulation, adding similar records (same values
for quasi-identifiers) in the database or perturbing the database decreases the probability
of identifying an individual. Other techniques such as splitting the attributes to perturb
the context, grouping of information for query based system, storing summarized or
generalized attributes, instead of granular data for every individual should be used since
H(X = i|(Aidenti f ier)) is dependent on the uniqueness of the combination of attributes
to identify i.

6 Discussion

In this section we discuss the application of the design strategies using our formulation,
and the trade-offs involved. The greatest advantage of utilizing these design strategies
is that it gives users the control over their data, without affecting the query outcome or
utility of the system. Our formulation takes user consent and context into consideration
which can help organizations fulfill some of the compliance requirements. We under-
stand the dependency for some of the strategies such as Data Separation is the universe
of data for our formulation to compute the risky combinations. However, over a period
of time, machine learning can be used to develop organization specific database schema
patterns and groupings for similar ε values generalizing the risky attributes. Another
limitation we note is the overall performance of the queries if the data is distributed
across different databases on multiple servers. We propose using logical design strate-
gies such as leveraging microservices architecture [27] and aggregating them based on
their interactions with the database which can help reduce the performance impact of
data separation. And lastly, another application of the formulation and design strategies
we propose is to create sanitized data sets for sharing it with third parties by eliminating
the risks of linkability and identifiability.

7 Conclusions

In this paper, we use SE to create an objective measure of privacy to understand and
help us take key design decisions around data attribute storage in databases in order to
achieve privacy friendly architectures. We focus on identifiability of individual as our
biggest threat and detail how we can determine risky combinations of quasi-identifiers
which can lead to individual identification and further, how we can use the design strate-
gies proposed in literature rationally and objectively using our formulation. In our future
work, we will demonstrate the model proposed in this paper by building an automated
system which can create a dashboard for the system architects helping them identify the
risky combinations of attributes and provide relevant privacy recommendations along
with their performance implications which can be used as a basis to create flexible pri-
vacy aware architectures for live systems.
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