
Dual-State Capsule Networks for Text Classification

Piyumal Demotte, Surangika Ranathunga
Department of Computer Science and Engineering, University of Moratuwa

Katubedda 10400, Sri Lanka
{piyumalanthony.16,surangika}@cse.mrt.ac.lk

Abstract
Text classification systems based on contex-
tual embeddings are not viable options for
many of the low resource languages. On the
other hand, recently introduced capsule net-
works have shown performance in par with
these text classification models. Thus, they
could be considered as a viable alternative for
text classification for languages that do not
have pre-trained contextual embedding mod-
els. However, current capsule networks de-
pend upon spatial patterns without consider-
ing the sequential features of the text. They
are also sub-optimal in capturing the context-
level information in longer sequences. This
paper presents a novel Dual-State Capsule
(DS-Caps) network-based technique for text
classification, which is optimized to mitigate
these issues. Two varieties of states, namely
sentence-level and word-level, are integrated
with capsule layers to capture deeper context-
level information for language modeling. The
dynamic routing process among capsules was
also optimized using the context-level infor-
mation obtained through sentence-level states.
The DS-Caps networks outperform the exist-
ing capsule network architectures for multiple
datasets, particularly for tasks with longer se-
quences of text. We also demonstrate the su-
periority of DS-Caps in text classification for
a low resource language.

1 Introduction

Recent research has shown state-of-the-art re-
sults using BERT-like contextual embedding mod-
els (Devlin et al., 2018). However, these perfor-
mances highly depend on the comprehensiveness
of the pre-trained contextual embedding models.
In other words, these models require a very large
corpus to produce optimal results in down-stream
tasks such as text classification. However, for many
low resource languages, such large corpora are not
available. Even if available, building contextual

embedding models for each and every language
has practical concerns with respect to resource re-
quirements. As a solution, multilingual models1

were introduced. However, still there are many lan-
guages that are not included in these publicly avail-
able multilingual models. It has also been shown
that these multilingual models give sub-optimal
results compared to those trained on monolingual
data (Dumitrescu et al., 2020). Thus, text clas-
sification for these languages still has to rely on
techniques that do not involve BERT-like models.

Another line of research has used language-
specific linguistic features such as Part of Speech
(POS) as auxiliary input to neural models (Qian
et al., 2016). Although these have also shown very
impressive results, low resource languages that do
not have such resources cannot take benefit of this
line of research as well.

Among the Deep Learning models for text classi-
fication that do not rely on contextual embeddings
or auxiliary linguistic features, capsule networks
are in the fore-front (Zhao et al., 2018; Kim et al.,
2020). For example, for the MR(2005) (Pang and
Lee, 2005) results produced by Capsule Network
models closely trail behind linguistically enhanced
and contextual embeddings-based Deep Learning
techniques (Zhao et al., 2018).

This paper further improves the state-of-the-art
capsule networks and presents a novel capsule net-
work architecture namely, Dual-State Capsule Net-
works (DS-Caps). In particular, this is an enhance-
ment to the existing capsule networks model with
dynamic routing, which has been employed for
text classification (Zhao et al., 2018). DS-Caps
is mainly inspired by the Sentence State LSTM
(S-LSTM) networks (Zhang et al., 2018), which
eliminates the sequential dependencies of LSTMs
to enable to capturing local n-grams as well as se-

1https://github.com/google-research/
bert/blob/master/multilingual.md

ar
X

iv
:2

10
9.

04
76

2v
1

 [
cs

.C
L

]
 1

0
Se

p
20

21

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md

quential features of the text simultaneously. The
proposed model could be represented as a sophisti-
cated language model that elevates the usage of n-
grams, sequential patterns, and capsules vector rep-
resentation for language modeling within a single
architecture. DS-Caps further mitigate the limita-
tions with the vanilla capsule network of capturing
contextual-level data of the text while sequential
processing.

We empirically show that our approach pro-
duces state-of-the-art performances against the ex-
isting capsule networks, for many publicly avail-
able datasets for text classification tasks. Further-
more, DS-Caps is evaluated against a text classifi-
cation task for a low resource language, for which
there are no pre-trained monolingual or multilin-
gual embedding models. Even for this low resource
task, DS-Caps was able to outperform other capsule
network-based methods, as well as the recurrent
models.

2 Related Work

Rather recent experiments suggest approaches
based on combinations of sequential models like
RNNs, LSTMs, and CNNs to capture both contex-
tual information and n-gram features of text (Wang
et al., 2016). Yet, these approaches still suffer
from inherent limitations of sequential text pro-
cessing with RNNs based approaches and convo-
lutions over sequences of text. Zhang et al. (2018)
argue that, in order to encode deep language rep-
resentations within a neural language model, both
n-gram features, as well as sequential information
of text, should be utilized within a single language
model. Their language modeling procedure in-
cludes S-LSTM, a graph RNN. S-LSTM encodes
each word of a sentence as a separate state, as well
as the sentence as a global state in each recurrent
step. For this, they utilize message passing over
graphs (Scarselli et al., 2008) in order to capture
the deep neural representation of languages.

Furthermore, capsule networks that were ini-
tially employed in the image processing tasks pro-
duced state-of-the-art results with the dynamic rout-
ing procedure proposed by Sabour et al. (2017).
The intention behind the capsule strategy was to
represent the features of objects within the data
as vector representation in order to identify the
exact order or pose of the information. The dy-
namic routing procedure between capsules miti-
gates the issues of information loss of CNNs due

to max-pooling and elevates the advancement of
the part-to-whole relationship between capsules for
deeper capsule representation for image classifica-
tion tasks.

Inspired by the impressive performance of the
capsule network architectures for image classifi-
cation, Wang et al. (2018) applied the same for
sentiment classifications with the combination of
RNNs, which produced state-of-the-art results at
that time. Zhao et al. (2018) conducted an em-
pirical experiment of capsule networks with dy-
namic routing to validate utilization of capsule
networks for text classification. The implemen-
tation of capsule-A and capsule-B, considering dif-
ferent n-gram variations produced the optimal per-
formances for text classification tasks. With even
deeper analysis, Kim et al. (2020) produced an ap-
proach based on static routing between capsules for
text classification tasks. This procedure alleviates
the limitations provided by the variations of text
with background noise for capsules with dynamic
routing. However, capsules that are solely built
upon convolutions do not illustrate the ability to
capture the context of the text when the length of
sequences increases.

3 Model Architecture

DS-Caps further improves the language representa-
tion capability of capsule networks (Zhao et al.,
2018) with the use of sentence-level states and
word-level states, an idea borrowed from the S-
LSTM architecture (Zhang et al., 2018). As illus-
trated in Figure 1, for the purpose of capturing
n-grams features with sequential dependencies of
the text, sentence-level states, and word-level states
were employed on top of feature embeddings.

In particular, vanilla capsule models leverage
pre-trained word-embeddings as the input features.
The idea behind the word-level states is to cap-
ture both n-gram and sequential features of the text
simultaneously and corporate with vector represen-
tation of capsules to enhance language modeling.
Therefore instead of using word-embeddings as fea-
ture inputs for vanilla capsule, feature maps based
on concatenated word-level states were utilized.

Furthermore, the sentence-level states which
carry global context-level information were fed
into the dynamic routing process between capsules.
This improves the context-sensitivity of capsules
compared to vanilla capsule networks considering
the variability of background information of text.

3.1 Sentence-level and Word-level States
For the purpose of extracting n-gram features
while preserving sequential dependencies of text,
(1.) global sentence-level states were utilized for
context-level feature extraction, and (2.) word-
level states were employed for each word to
extract dependencies among words in the se-
quences of text as n-gram features.

Generally, an encoded hidden state of a sentence
using sentence-level states (Ψt

1 and Ψt
2) and word-

level states (hti) at a given time step t could be
represented as Eq. 1.

Ht = 〈ht1, ht2, ht3,, htn,Ψt
1,Ψ

t
2〉. (1)

Here the state of the neural representation of
encoded hidden state Ht of S-LSTM layer con-
sists of a sub-state hti for each word wi. Since two
dynamic routing procedures exist between three
capsule layers in a vanilla capsule network, two
sentence-level sub-states Ψt

1 and Ψt
2 are introduced

to utilize towards the optimizations of dynamic
routing procedure.

The suggested approach for the neural encod-
ing of sentences utilizes recurrent information ex-
change between word-level states and sentence-
level states to incrementally achieve a rich neural
representation in each time step. The initial states
are set as H0 = h0

i = Ψ0
1 = Ψ0

1 = h0 in the form of
model parameters. The state transition of a word
state hti could be illustrated with the following equa-
tions.

φti = [ht−1
i−1, h

t−1
i , ht−1

i+1]

Ψ̃ = avg(Ψt−1
1 ,Ψt−1

2)

îti = σ(Wiφ
t
i + Uixi + ViΨ̃ + bi)

l̂ti = σ(Wlφ
t
i + Ulxi + VlΨ̃ + bl)

r̂ti = σ(Wrφ
t
i + Urxi + VrΨ̃ + br)

f̂ ti = σ(Wfφ
t
i + Ufxi + Vf Ψ̃ + bf

ŝti1 = σ(Ws1φ
t
i + Us1xi + Vs1Ψ̃ + bs1)

ŝti2 = σ(Ws2φ
t
i + Us2xi + Vs2Ψ̃ + bs2)

oti = σ(Woφ
t
i + Uoxi + VoΨ̃ + bo)

uti = tanh(Wuφ
t
i + Uuxi + VuΨ̃ + bu)

iti, l
t
i, r

t
i , f

t
i , s

t
i = softmax(̂iti, l̂

t
i, r̂

t
i , f̂

t
i , ŝ

t
i1, ŝ

t
i2)

cti = lti�ct−1
i−1 + f ti�ct−1

i +rti�ct−1
i+1 + sti1�ct−1

Ψ1

+ sti2�ct−1
Ψ2

+ iti�uti
hti = oti�tanh(cti)

Here, φti is the representation of concatenated
hidden vectors of the context window. Ψ̃ represents
the averaged state of two sentence-level states Ψ1

and Ψ2. Following the S-LSTM network (Zhang
et al., 2018) six gates were applied to control infor-
mation flow from cell state of previous time step,
left cell state of previous time step, right cell state
of previous time step, two global sentence states
of previous time step, and input state of a given
word to cell state of any given time step. These
gates are denoted respectively as f ti , lti , r

t
i , s

t
i1, sti2

and iti. o
t
i represents the gate that controls the in-

formation flow from the current cell state cti to the
current hidden state hti. Wx, Ux, Vx and bx are
model parameters where x ∈ {i, o, l, r, f, s1, s2, u}.

The following equations illustrate the state tran-
sitions for global sentence-level states Ψ1 and Ψ2.

h̃ = avg(ht−1
1 , ht−1

2 , ..., ht−1
n)

f̂ tΨ1
= σ(WΨ1Ψt−1

1 + UΨ1 h̃+ bΨ1)

f̂ tΨ2
= σ(WΨ2Ψt−1

2 + UΨ2 h̃+ bΨ2)

f̂ ti = σ(Wf Ψ̃ + Ufih
t−1
i + bfi)

otΨ1
= σ(Wo1Ψt−1

1 + Uo1h̃+ bo1)

otΨ2
= σ(Wo2Ψt−1

2 + Uo2h̃+ bo2)

f t1, f
t
2, .., f

t
n, f

t
Ψ2
, f tΨ2

= softmax(f̂ t1,f̂
t
2, .., f̂

t
n,

f̂ tΨ1
, f̂ tΨ2

)

ctΨ1
= f tΨ1

�ct−1
Ψ1

+
∑

f ti1�ct−1
i

ctΨ2
= f tΨ2

�ct−1
Ψ2

+
∑

f ti�ct−1
i

Ψt
1 = ot1�tanh(ctΨ1

)

Ψt
2 = ot2�tanh(ctΨ2

)

Here, f t1, f t2, ..., f tn and f tΨ1
, f tΨ2

are gates con-
trolling information respectively from ct−1

1 , ct−1
2 ,

......, ct−1
n and ct−1

Ψ1
, ct−1

Ψ2
to ctΨ1

and ctΨ2
. otΨ1

and
otΨ2

are gates that manipulate information flow
from ctΨ1

and ctΨ2
to Ψ1 and Ψ2. Wx, Ux and

bx are model parameters where x ∈ {Ψ1,Ψ2, f, o1,
o2}.

3.2 Capsule Networks
As displayed in Figure 1, As a major en-
hancement to vanilla capsule network consist-
ing of 4 layers namely n-gram convolutional
layer, primary capsules, convolutional capsules
and text capsules, concatenated word-level states,
〈ht1, ht2, ht3,, htn〉 were fed as input features.
Furthermore, two global sentence-level states (Ψ1

and Ψ2) that are consolidated with context-level-
information, are integrated with the dynamic rout-
ing process between primary capsules and convo-
lutional capsules, and between convolutional cap-
sules and text capsules (Zhao et al., 2018; Kim
et al., 2020). We empirically evaluate the usage
of the number of sentence-level states for optimal
performance in Section 5.3.

3.2.1 N-gram Convolutional Layer

Figure 1: Dual-State Capsule Networks

For the purpose of extracting n-gram features
from different positions of the concatenated word-
level states (hti), a standard convolutional layer was
applied. Let H ∈ IRd×l denotes the concatenated
word-level states with l number of d dimensional
word-level states. The convolution operation con-
sists of filters of C ∈ IRd×f , which are applied to
a context window of size f on top of the concate-
nated word states H{i : i+f}, where i is the starting
index of the context window. This produces new
features governed by the Eq. 2.

xi = σ(H{i : i+f} ◦ C + b0) (2)

Here, xi ∈ IR represents the generated feature,
and ◦ denotes the element-wise multiplication be-
tween context window and filter while σ and b0 are
the non-linear activation function (ReLu or tanh)
and bias term respectively. This whole convolution
process generatesMi ∈ IRd−f+1 as feature column
consists of features obtained through Eq. 2.With N
number of filters, ultimately N number of feature
columns were generated according to the following

Eq. 3.

M = [M1,M2, ...,MN] ∈ IR(d−f+1)×N (3)

3.2.2 Primary Capsules
To convert the scalar output of the convolutional
layer to the vector representation of capsules, a
capsule layer was applied with vi ∈ IRu as the
instantiated parameters of the capsules with dimen-
sion u. The capsules are generated based on the
matrix multiplication that includes matrix filters of
F ∈ IRN×u. (d− f + 1) number of capsules were
generated with the matrix multiplication process
governed by the following Eq. 4.

vi = squash(F ⊗Mi + b1) (4)

Here, vi consists of a map of capsules that in-
cludes (d − f + 1) number of capsules. ⊗ and
b1 denote the matrix multiplication operation and
bias term, respectively. The squash function refers
to the non-linearity displayed in Eq 10. With D
number of filters, D number of maps were created,
which consist of d dimensional (d−f +1) number
of capsules. Therefore, the primary capsule layer
could be represented as V ∈ IR(d−f+1)×D×u.

3.2.3 Convolutional Capsules
Inspired by the convolutional capsules introduced
by Zhao et al. (2018), a convolutional capsule layer
was applied immediately after the primary capsule
layer, where a local region from the primary cap-
sule layer is connected to the capsules of the con-
volutional capsule layer. This procedure improves
the model performance due to the nature of the
text, where certain objects of text within the local
regions of text could get activated when identifying
the most probable features towards the final out-
come of the classification process.
Let the primary capsules in the region l × D to
be mapped to the convolutional capsules using the
weight matrix W c ∈ IRE×u×u, where l ×D num-
ber of capsules are connected to each convolutional
capsule to incrementally learn child-to-parent rela-
tionship. Here E is the number of parent capsules
in the convolutional layer. Given each child cap-
sule, the parent convolutional capsules are gener-
ated according to the following Eq. 5.

ûj|i = W c
j ui + b̂j|i (5)

Here b̂j|i is the bias term for the mapping. The
child capsules in the region l×D are denoted as ui,

which are mapped to the parent convolutional cap-
sules. W c

j is the jth weight matrix for the learning
by agreement procedure, which maps ui to the ûj|i.
Thus, (d−f − l+2)×D total number of u dimen-
sional capsules were generated as convolutional
capsules.

3.2.4 Text Capsules
The final capsule layer was designed to contain a
number of capsules based on the number of classes
in the text classification tasks. The capsules in the
layer below were transformed based on the matrix
multiplication process. This generates text capsules
while learning the child-to-parent relationship pro-
cess through the routing procedure.
The convolutional capsules were flattened to a list
of capsules and were transformed into text capsules
by a transformation matrix W d ∈ IRZ×d×d consid-
ering the routing procedure to learn child-to-parent
relationship. The final capsules were produced as
xj ∈ IRd. Activation of the capsule denotes the
class probability of a given text category as aj ∈ IR
for each class. Here, Z denotes the number of text
capsules.

3.2.5 Dynamic Routing Algorithm
The routing by agreement procedure under the dy-
namic routing algorithm incrementally ensures that
appropriate child capsules are sent to parent cap-
sules by iteratively creating a non-linear mapping
between capsules (Sabour et al., 2017). Under this
experiment, two dynamic routing procedure ex-
ist in the proposed architecture, between primary
capsules and convolutional capsules, and between
convolutional capsules and text capsules.

The dynamic routing procedure is initiated by
initializing the log prior probabilities, which are the
core components for the routing by agreement. As
the proposed enhancement, instead of initializing
the log prior probabilities to values in statistical
distribution or zeros, the log prior probabilities
are assigned with values obtained through re-
shape operation on, global sentence-level states.
This strategy carries context-level information of
the text to validate the routing procedure which in-
crementally improves child-to-parent relationship
understanding background knowledge. The log
prior probabilities are initialized as in Eq. 6.

bij ← reshape(Ψ) (6)

Here bij represents the log prior probability be-
tween the child capsule i and the parent capsule j,

while the reshape operation includes a matrix mul-
tiplication that maps the dimensions of sentence-
level state Ψ to the dimensions of bij (Both Ψ1 and
Ψ2 sentence-level states were considered under this
operation.) The log-le prior probabilities between
each child capsule i and each parent capsule j were
normalized using the standard softmax function
during the iterative routing procedure, which sums
up coupling coefficients of each child capsule i to
all parent capsules j in the layer above, to 1 as the
Eq. 7.

cij ←
exp(bij)∑
k exp(bik)

(7)

Here, cij represents the coupling coefficient that
is used when each child capsule i in the layer below
maps to each parent capsule j in the layer above.
These log prior probabilities bij could be iteratively
learned at the same time as all other weights, where
the log prior probabilities only depend on the lo-
cation of the child and parent capsules but not on
the given sequence of the input text. Then the log
prior probabilities between the child and parent
capsules are updated in an iterative manner, consid-
ering the agreement measurement that repeatedly
measures the similarity among predicted parent
vectors by child capsules ûj|i (predicted parent
capsule j given child capsule i) and current cap-
sule sj . The similarity measurement is a simple
scalar product between the predicted and current
parent capsules.

sj =
∑
i

cij ∗ ûj|i (8)

bij ← bij + ûj|i ∗ sj (9)

The current parent capsule is calculated based on
the coupling coefficients between the child and par-
ent capsules cij , and the predicted parent capsules
by the child capsules denoted as ûj|i according to
the Eq. 8. The log prior probabilities bij are itera-
tively updated according to the Eq. 9 considering
the measurement of the agreement between current
and predicted parent capsules.

After the iterative routing procedure, the out-
put capsules are normalized using the non-linear
squash function, which transforms the length of
each vector to represent the probability of the ex-
istence of the entity present within a capsule. The
squash function converts the length of long vectors
near to 1 while shrinking the length of short vec-
tors to 0, which represents the probability as the

potential of an entity represented by each capsule.
The non-linear squash function applied for parent
capsules sj that outputs vj is defined as Eq. 10.

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖2

(10)

Here ‖sj‖ denotes the standard norm for sj , and
as illustrated in Algorithm 1, the non-linear squash
function is applied outside the iterative mapping
procedure. This results in eliminating the degra-
dation of log prior probabilities in each routing
iteration.

Algorithm 1: Dynamic Routing using Sen-
tence State

1 procedure ROUTING(ûj|i,Ψ, r, l)
2 forall capsules i in layer l and j in

layer l + 1 do
3 bij ← reshape(Ψ)

4 for r iterations do
5 forall capsules i in layer l do
6 ci ←softmax(bi)

7 forall capsules j in layer l + 1 do
8 sj ←

∑
i cij ∗ ûij

9 forall capsules i in layer l and j in
layer l + 1 do

10 bij ← bij + uj ∗ sj

11 forall capsules j in layerl+1 do
12 vj ← squash(sj)

13 return vj

3.2.6 Loss Function
For the text classification task, for each text capsule,
we used a separate margin loss (Sabour et al., 2017)
function to identify where a given text category is
present within a given capsule. For text capsule s,
the margin loss Ls is given by;

Ls = Tsmax(0,m+ − ‖vs‖)2

+ λ(1− Ts)max(0, ‖vs‖ −m−)2 (11)

Here Ts = 1 if the text category exists within
the text capsule, otherwise it is set to 0. m+ and
m− are set as 0.9 and 0.1 accordingly. The down-
weighting coefficient λ is set to 0.25 with the opti-
mal performance.

4 Experiments

4.1 Data Sets
Experiments were conducted on six benchmark
datasets covering multiple classification tasks.
These include movie review classification (
MR(2004) (Pang and Lee, 2004), MR(2005),
IMDB), news article classification (Reuters10,
MPQA (Wiebe et al., 2005)), and question cate-
gorization (TREC-QA (Li and Roth, 2002)). The
details of each dataset are shown in table 1. For
measuring the performance of the model against
low resource language processing, a publicly avail-
able Sinhala dataset (Senevirathne et al.) was uti-
lized. This includes 15059 news comments anno-
tated with 4 sentiment categories with an average
comment length of 10.

4.2 Implementation
For the experimental analysis, we utilized the 300-
dimensional GloVe2 word vectors, which consisted
of 840 billion words. Adam optimizer was used for
the optimization process with exponential learning
rate decay. The models were trained on Google
Colab with Tensorflow as the implementation tool.
The optimal hyperparameters for models in each
data set are indicated in Table 2.

For each experiment, the learning rate was set to
1e− 3, and the learning rate decay was set to 0.95.
The hidden word-level state dimension was set to
300, while sentence-level hidden state size was
set to 600 dimensions. Max sentence length was
chosen as the sentence length, considering the vari-
ations of the datasets. The n-gram convolutional
layers were instantiated to extract 3-grams from
each context window with 32 filters. Each capsule
in the primary capsule layer was instantiated with 8-
dimensional vectors, while each convolutional and
text capsule was instantiated with 16-dimensional
vectors. The length of each capsule denotes the
existence of an entity within a capsule, which is
further utilized with text capsules to identify the
text categories within a given sequence of text.

4.3 Baseline models
In this experiment, we empirically evaluated our
models against several baseline models such as
LSTM, Bi-LSTM, CNN with randomly initial-
ized vectors, CNN with non-trainable embed-
dings (CNN-static), CNN with trainable embed-

2https://nlp.stanford.edu/projects/
glove/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Data c Train Dev Test lavg |V |
MR(2004) 2 1620 180 200 779 40693
MR(2005) 2 8635 960 1067 22 18764
Reuters10 10 6472 720 2787 168 28482
TREC-QA 6 4843 539 500 9 8689
MPQA 2 8587 955 1067 3 6246
IMDB 2 22500 2500 25000 231 112540

Table 1: Properties of datasets. c: Number of text
categories, Train, Dev, Test: Size of training, develop-
ment, and test sets (respectively), lavg: Average sen-
tence length, |V |: Size of the vocabulary

Data Batch Routing Steps CW Epochs
MR(2004) 4 3 4 1 50
MR(2005) 8 3 8 2 20
Reuters10 8 2 4 2 20
TREC-QA 4 3 4 1 50
MPQA 4 4 4 1 20
IMDB 8 3 8 2 10

Table 2: Optimal hyperparameters for each dataset.
Batch: Batch size, Routing: Number of iterations in the
dynamic routing procedure, Steps: Number of recur-
rent time steps used to encode the sequence of text uti-
lizing word and sentence states, CW: Number of word-
states considered in both left and right context for en-
coding word-states in a particular time step.

dings (CNN-non-static) (Kim, 2014) and and S-
LSTM (Zhang et al., 2018) as primary baseline
models. Furthermore, we evaluated the DS-Caps
approach against several capsule networks based
techniques namely, Capsule-A, Capsule-B (Zhao
et al., 2018), and capsule networks with static rout-
ing (Kim et al., 2020). Some evaluation records for
datasets under certain baseline techniques are not
displayed in Table 3 as the results are not reported
in the literature.

5 Evaluation

5.1 Evaluation on Benchmark Data Sets
Accuracy was chosen as the evaluation metric for
our experiments, following related research in the
same domain (Zhao et al., 2018). The experiment
results are summarized in the Table 3, against the
six benchmark datasets.

Our DS-Caps network was able to achieve the
best result for four out of six benchmark results in-
cluding MR(2004), MR(2005), Reuters and IMDB
datasets, outperforming the previous studies on cap-
sule networks with static routing for MR(2004)
and MR(2005) datasets, Capsule-B for Reuters10
dataset, and CNN-non-static for IMDB dataset.
In particular, the DS-Caps network extensively

and consistently defeats sequential neural networks
such as LSTM, BiLSTM, Tree LSTM and S-LSTM
networks, and spatial models such as CNN-rand,
CNN-static, CNN-non-static on all six datasets.
The observation was expected due to the language
representation of capsules, where the vector repre-
sentation could be greatly associated with the exact
order or pose of sequences of text. The dynamic
routing procedure introduced under the capsule net-
works further eliminated the loss of information
due to the pooling strategy used under CNNs. This
observation could be justified as the ability of the
S-LSTM layer to encode the neural representation
of text more efficiently, which subsequently en-
riches the dynamic routing procedure providing
context-level information through global sentence-
level information.
Furthermore, the results obtained for datasets with
higher sequence lengths (MR(2004) and IMDB) il-
lustrate greater performance compared to the base-
line models. This provides shreds of evidence for
the capability of the DS-Caps network to classify
rather longer sequences of text utilizing sequential
features and n-gram features of the text, collaborat-
ing with the vector representations of capsules.

5.2 Evaluation on Low Resource Languages

As mentioned in Section 1, to demonstrate that DS-
Caps gives state-of-the-art results on low resource
languages, we selected Sinhala. Sinhala is a low
resource language, and the largest reported dataset
is the CommonCrawl dataset, which is just above
100M (Lakmal et al., 2020). Furthermore, Sinhala
does not have a pre-trained BERT mode, nor is it
included in multiBERT. Using auxiliary features
such as POS tags is also not an option for this lan-
guage, as the best-reported results for POS tagging
are not optimal (Fernando and Ranathunga, 2018).
The proposed DS-caps network was evaluated
against a Sinhala multi-class sentiment analysis
task (Senevirathne et al.). As the results displayed
in Table 4, DS-caps outperformed all previously
tested deep learning approaches for Sinhala senti-
ment analysis. The hyper-parameters used for the
DS-Caps networks were the same as the parame-
ter used by Senevirathne et al. for Capsule-A and
Capsule-B and fastText embeddings were used as
primary features for sentiment analysis task.

DS-caps produced promising results in the con-
text of this low resourced language, suggesting the
possibility to be effective for any language as a uni-

MR(2004) MR(2005) Reuters TREC-QA MPQA IMDB
CNN-rand (Kim, 2014) - 76.1 - 91.2 - 83.4
CNN-static (Kim, 2014) - 81.0 - 92.8 - 89.6
CNN-non-static (Kim et al., 2020) 88.0 81.5 87.4 92.7 89.9 90.4
LSTM (Zhao et al., 2018) - 75.9 - 86.8 - -
Bi-LSTM (Zhao et al., 2018) - 79.3 - 89.6 - -
Tree-LSTM (Zhao et al., 2018) - 80.7 - 91.8 - -
S-LSTM (Zhang et al., 2018) 82.4 - - - - 87.2
Capsule-A (Kim et al., 2020) 85.0 79.4 87.7 90.8 88.3 89.3
Capsule-B (Kim et al., 2020) 89.5 79.0 88.0 89.8 88.4 89.3
Capsule-static routing (Kim et al., 2020) 89.6 81.0 87.5 94.8 90.6 89.7
Dual-state capsule networks (DS-Caps) 90.5 82.1 88.6 92.8 89.2 90.6

Table 3: Text classification accuracies for benchmark datasets.

Model Accuracy Precision Recall F1-score
RNN 58.98 42.93 54.98 42.30

LSTM 62.88 70.95 51.93 54.50
GRU 62.78 60.93 62.78 54.83

Bi-LSTM 63.81 61.17 63.81 57.71
Stacked-BiLSTM 63.13 69.71 63.18 59.42

HAHNN 61.16 71.08 48.54 59.25
Capsule-A 61.89 56.12 61.89 53.55
Capsule-B 63.23 59.84 63.23 59.11
DS-Caps 64.03 61.68 64.03 61.33

Table 4: 10-fold cross-validated, weighted evaluation
metrics for performance on Sinhala multi-class senti-
ment analysis (Senevirathne et al.)

No. of Sentence states Loss function Context window Time steps Accuracy
0 Margin 2 5 80.6
0 Cross entropy 2 7 79.4
0 Spread 2 10 79.9
0 Margin + L2 3 4 80.3
1 Margin 1 3 80.5
1 Cross entropy 2 3 79.1
1 Spread 2 4 80.4
1 Margin + L2 2 4 80.1
2 Margin 1 7 82.1
2 Cross entropy 2 7 79.9
2 Spread 2 3 79.7
2 Margin + L2 2 4 80.9

Table 5: Performance of DS-Caps networks varying
no. of sentence-level states against lost function for
MR(2005) dataset.

versal approach. Even though BERT models (De-
vlin et al., 2018) indicated superior performance
in text classification tasks, they cannot be readily
applied for low resourced languages due to lack
of pre-trained models and high computation bot-
tleneck. Also, the lack of linguistic resources for
low resource languages, makes it impossible to use
highly resource-intensive methodologies. There-
fore DS-caps could be used as a proper substitution
in place of text classification models that are based
on computationally intensive BERT models.

5.3 Ablation Study

For the purpose of analyzing the performance of
the model varying different components, an abla-
tion study was conducted on MR(2005) dataset
and reported in Table 5. The performance was
analyzed with respect to loss functions proposed
by (Zhao et al., 2018) for capsule networks and
further adding L2 regularization to the optimal loss
function. Furthermore, the effect of the number of
sentence-level states was analyzed to find out the
optimal number of sentence-level states to be inte-
grated with the dynamic routing process. Under the
experiments, the batch size was kept as 8 and, the
number of epochs and dynamic routing iterations
were fixed as 20 and 3 respectively. Margin loss
with two sentence-level states produced the best
performance for MR(2005) dataset.

This result was expected due to the efficiency
of margin loss for vanilla capsule network (Zhao
et al., 2018). Further two distinct sentence-level
states facilitate separate learning procedures for
dynamic routing algorithms to learn log prior prob-
abilities which elevate part-to-whole relationship
considering low-level and high-level-capsules.

6 Conclusion and Future Work

In this paper, we proposed a novel Dual-State Cap-
sule (DS-Caps) network architecture, which incre-
mentally improves the language representation con-
sidering local and global information of the text. As
further enhancements, attention mechanisms could
be integrated with DS-Caps. It is also worthwhile
to integrate language resources such lexicons and
contextual embeddings such as BERT (Devlin et al.,
2018) with DS-Caps since most of the other deep
learning approaches have produced greater perfor-
mances with such strategies (Saha et al., 2020).

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Stefan Daniel Dumitrescu, Andrei-Marius Avram, and
Sampo Pyysalo. 2020. The birth of romanian bert.
arXiv preprint arXiv:2009.08712.

Sandareka Fernando and Surangika Ranathunga. 2018.
Evaluation of different classifiers for sinhala pos tag-
ging. In 2018 Moratuwa Engineering Research Con-
ference (MERCon), pages 96–101. IEEE.

Jaeyoung Kim, Sion Jang, Eunjeong Park, and
Sungchul Choi. 2020. Text classification using cap-
sules. Neurocomputing, 376:214–221.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Dimuthu Lakmal, Surangika Ranathunga, Saman Per-
amuna, and Indu Herath. 2020. Word embedding
evaluation for sinhala. In Proceedings of The 12th
Language Resources and Evaluation Conference,
pages 1874–1881.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. arXiv preprint
cs/0409058.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. arXiv preprint
cs/0506075.

Qiao Qian, Minlie Huang, Jinhao Lei, and Xi-
aoyan Zhu. 2016. Linguistically regularized
lstms for sentiment classification. arXiv preprint
arXiv:1611.03949.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hin-
ton. 2017. Dynamic routing between capsules. In
Advances in neural information processing systems,
pages 3856–3866.

Tulika Saha, Srivatsa Ramesh Jayashree, Sriparna
Saha, and Pushpak Bhattacharyya. 2020. Bert-caps:
A transformer-based capsule network for tweet act
classification. IEEE Transactions on Computational
Social Systems.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.

Lahiru Senevirathne, Piyumal Demotte, Binod
Karunanayake, Udyogi Munasinghe, and Surangika
Ranathunga. Sentiment analysis for sinhala us-
ing deep learning techniques. arXiv preprint
arXiv:2011.07280v1.

Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016.
Combination of convolutional and recurrent neural
network for sentiment analysis of short texts. In Pro-
ceedings of COLING 2016, the 26th international
conference on computational linguistics: Technical
papers, pages 2428–2437.

Yequan Wang, Aixin Sun, Jialong Han, Ying Liu, and
Xiaoyan Zhu. 2018. Sentiment analysis by capsules.
In Proceedings of the 2018 world wide web confer-
ence, pages 1165–1174.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2-3):165–210.

Yue Zhang, Qi Liu, and Linfeng Song. 2018. Sentence-
state LSTM for text representation. arXiv preprint
arXiv:1805.02474.

Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei
Zhang, and Zhou Zhao. 2018. Investigating capsule
networks with dynamic routing for text classifica-
tion. arXiv preprint arXiv:1804.00538.

