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ABSTRACT

We explore a hidden feedback loops effect in online recommender systems. Feedback loops result
in degradation of online multi-armed bandit (MAB) recommendations to a small subset and loss of
coverage and novelty. We study how uncertainty and noise in user interests influence the existence
of feedback loops. First, we show that an unbiased additive random noise in user interests does
not prevent a feedback loop. Second, we demonstrate that a non-zero probability of resetting user
interests is sufficient to limit the feedback loop and estimate the size of the effect. Our experiments
confirm the theoretical findings in a simulated environment for four bandit algorithms.
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1 Introduction

As research and applications of machine intelligence progress, more concerns are arising questioning whether the
deployed AI systems fair, explainable, and ethical. Recommender systems are ubiquitous in social networks, streaming
services, e-commerce, web marketing and advertising, web-search to provide personalized experience. Their algorithms
use the new data from the system to improve their future performance. A positive feedback loop results in that only a
small subset of available items is presented to the user. This effect is observed when user interests are being reinforced
by previous exposure to specific items or item categories, thus producing self-induced concept drift.

The feedback loop effect is studied in real and model systems as an undesirable phenomenon related to reliable and
ethical AI. Some of the consequences of the effect are induced shift in users interests [6], loss of novelty and diversity
in recommendations [14], presence of "echo chambers" and "filter bubbles" [4, 5], induced concept drift in housing
prices prediction [8]. Nevertheless, a full description of the feedback loop effect and its existence conditions is still
lacking for many cases [10, 1].

In this paper we extend prior results [6] and explore existence conditions of feedback loops in presence of noise in
the user behavior. We specifically consider noise as a random shift in user interests to items and categories the user is
exposed to. In Section 3 we theoretically derive existence conditions for two noise models and explore our predictions
empirically in sections 4 and 5 with four bandit algorithms in a simulated environment.

2 Related work

Multi-armed bandits are commonly used in online recommendation systems and experiment design [7, 3]. Earlier
results demonstrate how feedback loops influence distribution of recommendations and user preferences. In [12] authors
show that posterior distribution in Thompson Sampling algorithms is affected by the feedback loop, which worsens
regret performance.
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In [6] authors argue that a feedback loop would exist in a stochastic multi-armed bandit recommender system under
some mild assumptions unless a set of available items does not grow at least linearly. Whereas noise and sudden shifts
in user interest are important phenomena that occur in practice, they are not usually taken into account. An important
contribution of this paper is that we show that a feedback loop would not occur even with a bounded set of available
items if user interests are affected by specific kinds of random noise.

3 Problem statement

3.1 A recommender system model

Let us consider a recommender system with a single user and available items M = {1, ..,M}. At time step t the system
selects different items At = (a1t , .., a

l
t) from the set of available items l < M and presents them to the user. User

interest to item ai at step t is described by a function µt : M→ RM . Larger values of µt(a
i) correspond to stronger

interest. After that the user examines the items and responds with ct = (c1t , .., c
l
t), cit ∈ {0, 1} sampled independently

proportionally to the user interest in item µt(a
i). Therefore, we can model the response at step t with a random variable

that has Bernoulli distribution: cit ∼ Bern(σ(µt(a
i
t))), σ(x) = 1/(1 + e−x). In the simple case [6], the evolution of

user interests abides to the monotonicity constraint for each element ai with respect to t and user interest to item ai is
updated according to the rule:

µi
t+1 − µi

t =


δt, when ai ∈ At, ct = 1,

−δt, when ai ∈ At, ct = 0,

0, when ai /∈ At,

(1)

where δt ∼ Uniform[0, 0.01] indicates how much does the user interest change at step t. The initial user interest µi
0 to

item ai is a random variable with a uniform distribution µi
0 ∼ Uniform[−1, 1]. A single user assumption is justified

when users act independently and recommendations for one user do not affect others.

Following Jiang et al. [6] we define a positive feedback loop as a situation in the behavior of a recommender system
when a 2−norm of user interests grows to infinity with step number t:

lim
t→∞

‖µt − µ0‖2 =∞. (2)

3.2 Multi-armed bandit problem statement

Let us sate an online MAB recommendation problem. There is a set of M levers and an agent. Each lever has a
probability distribution of reward associated with it. The agent can play l < M levers and get rewards from each of
the levers. The goal of the agent is to maximize the reward or, in other terms, minimize the regret, which is difference
between the achieved and the maximum total reward. We correspond levers with available items ai and rewards with
user responses cit at step t. User is the environment and the agent executes an item selection policy S. The optimization
problem that the agent is trying to solve is T · l −

∑T
t=1

∑l
i=1 c

i
t → minS . We study the following bandit algorithms.

Thompson Sampling [13]. We define Bernoulli random variables πt(θ1), .., πt(θM ) that correspond to the winning
cit = 1 probability if a lever is played and initialize them at t = 0 via prior distribution θi ∼ Beta(1, 1) = Uniform[0, 1].
The posterior distribution conditioned on user responses is then given by Beta(αi

t, β
i
t) for each ai ∈M. Distribution

parameters αi
t, β

i
t are updated for each ai ∈ At based on user response as

αi
t+1 = αi

t + cit, β
i
t+1 = βi

t + 1− cit. (3)

ε-greedy [13]. With probability ε the policy decides to explore and selects l levers at random uniformly. With
probability 1− ε it returns top l levers with the highest mean rewards dit/n

i
t, d

i
t is total accumulated rewards for item ai.

Policy state is updated from the user feedback cit ∈ {0, 1} as follows:

nit+1 = nit + I{ai ∈ At}, dit+1 = dit + cit. (4)

Optimal. The policy selects l items with the highest user interest µi
t at each step. There is no internal state for the

policy that needs to be updated. The policy is optimal in a sense that it knows the actual user interests and selects levers
with the highest expected reward.

2
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Random. The policy selects each item from M with the same probability 1/|M | at random. The policy does not have
any internal state to update.

3.3 Additive noise model

Let us drop the assumption made in Section 3 that user interests µi
t is a known real vector with a stochastic update

rule. Instead we model user interest in item ai as a random function with known mean µi
t = µ̄i

t + ωi
t, where ωi

t is an
unbiased random noise, Eωi

t = 0 and µ̄i
t = Eµi

t. The interest update rule (1) then becomes:

µ̄i
t+1 − µ̄i

t = δtc
i
t − δt(1− cit), if i ∈ At

µ̄i
t+1 − µ̄i

t = 0 otherwise,
(5)

where δt remains the same as in (1) and cit now depends on the noisy user interest µi
t. We consider a case with uniform

and bounded noise ωi
t ∼ Uniform[−w,w], w > 0. Then the response cit ∼ Bern

(
σ(µ̄i

t + ωi
t)
)
. For further analysis

we define a constant best levers condition when for all t > t0 the set of selected arms remains the same At = At0 .

Statement 1 Let the recommender system with noise (5) satisfy the constant best levers condition. Then

lim
t→∞

‖µi
t − µi

0‖2 =∞,∀w ≥ 0, ai ∈ At0 (6)

As follows from this statement any bounded unbiased additive noise in a form of [5] does not prevent a feedback loop
from occurring.

3.4 Interest restarts model

Users may sometimes lose or forget their interest to items. We call such event an interest restart. Restarts may be
caused by satisfaction of the interest, change of users agenda outside of the system or introduction of a competing
interest, disappearance of the item itself and other reasons. We consider a linear model of the aforementioned effect.
When a restart occurs with probability q, then user interest to item ai is replaced with a new random value that follows
the same uniform initial distribution as µi

0, or is reduced by 0 ≤ s ≤ 1:

µi
t+1 =

{
µi
t + ∆i

t, with probability 1− q,
(1− s)µ0 + s(µi

t + ∆i
t), otherwise,

(7)

where ∆i
t = µi

t+1 − µi
t as defined in (1). Note that now the update rule is not monotonic.

Statement 2 Let the recommender system with restarts (7),(1) satisfy the constant best levers condition. If µi
0 > 0 then

the expected user interest is bounded by

E δt

(
1

(1− s)q
− 1

)
> Eµi

t � 0. (8)

4 Experiment

4.1 Experiment design

We set up an empirical evaluation to test if our assumptions about system behavior are valid and to check whether the
theoretical results hold in practical conditions. RQ 1. A positive feedback loop occurs even when an unbiased additive
noise is added to user interests as demonstrated by Statement 1. RQ 2. The system does not need to exhibit exactly
the constant best levers regime for results of Statement 1 and Statement 2 to hold. RQ 3. Results of Statement 1 and
Statement 2 hold for a range of different lever selection polices.

We implement a recommender system [9] described in Section 3.1 and compare behavior different lever selection
policies. We include Thomson Sampling (TS) and ε-greedy trainable selection policies, and Random and Optimal
policies as baselines. Both latter policies do not require learning. The following parameters are varied during the
experiment: number of items available for recommendation M , how many items are selected l, each of the algorithms
parameters. We run the experiment for a maximum of T steps and repeat it with the same parameters in several trials to
get an estimate of the confidence interval for results. For TS policy the priors are set to αi

0 = 1, βi
0 = 1, i = {1, ..,M}

to reflect the uniform distribution. The policy samples rewards from the prior ri ∼ Beta(αi
t, β

i
t), selects l items with

3
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Figure 1: Maximum user interest (color) for Thompson Sampling (TS) policy with different M and l (y- and x- axes)
and strength of additive noise w at step t = 2000.

the highest sampled rewards At and after that updates the priors based on user feedback (3). The Random and Optimal
policies do not require initialization. The Optimal policy returns l items with the highest interests At and is updated
with new user interests µ̄i

t at each simulation step. The ε-greedy policy takes ε as a constant parameter set before the
trial starts, with probability ε selects items at random uniformly or returns l items with maximum accumulated rewards.
The policy is updated with user responses ct at each step (4). For Additive noise model we set the amount of noise w
parameter. In Interest restarts model we set a probability of restart q and scale s parameters.

The experiment proceeds as follows. A grid of experiment parameters with with l ≤M (see the experiment specification)
is set up before start and random seed is fixed. Then tuples of parameters are retrieved from the grid and a number of
trials is run. At each trial an experiment instance is initialized with parameters taken from the tuple. The selected user
interests model and policy are initialized with corresponding parameters. Only one of the models and policies are used
in each trial. At each step we store user feedback ct, interests µi

t and the state of the policy: αi
t, β

i
t for TS policy, dit for

ε-greedy policy.

4.2 Experiment results

We show how the total reward changes for the Thompson Sampling (TS) selection policy when the step number
0 ≤ t ≤ 2000 at Fig. 1 with different values of additive noise w ∈ {0.0, 0.3, 1.0, 3.0, 5.0, 10.0}. Note that the figure
uses a logarithmic scale. The maximum value of user interest maxi µ

i
t and thus amplitude of the feedback loop

‖µi
t − µi

0‖2 grows for all w and this does not contradict Statement 1. Results are averaged and confidence intervals are
estimated over 30 runs. Although the growth rate decreases with w for all values of l < M considered in the experiment.
Thus for the parameters explored in the experiment we can confirm RQ 1 for TS selection policy.

We found that constant best lever assumption holds for Thompson Sampling (TS) t gets large t > 1900 and Optimal
selection policies most of the time. While ε-greedy (ε = 0.1) and Random policies do not exhibit the constant best lever
property. At Fig. 2 we compare different selection policies for the additive noise model: Thompson Sampling (TS),
Random, ε-greedy, Optimal. The figure shows the user interest ‖µt − µ0‖2 when 0 ≤ t ≤ 2000. Results are averaged
over and confidence intervals are shown for 30 runs. We can see that all policies exhibit a feedback loop when noise
w = 3.0. The interest grows much slower for the Random selection policy but the system still exhibits a feedback loop.
At Fig. 3 we show the amplitude of the feedback loop ‖µt − µ0‖2 with respect to restart probability q and scale s. We
also plot the expected upper bound predicted by 7 on the same figure. It can be seen that at higher q and s the bound
becomes tight. When the restart probability is low, non-optimality of the selection policy and insufficient number of
steps T = 5000 limits the growth of user interests. That is, the received reward is also bounded by t ·E δt.
With this we can confirm that Statement 2 even when the constant best levers condition does not strictly hold. We also
explore the interest restarts model for different values of available M ∈ {1, .., 10} and selected l ∈ {1, .., 10} levers
and obtained similar results. Thus, RQ 2 holds.

Results for different policies with the interest restarts model are also shown at Fig. 3. Results are averaged over and
confidence intervals are shown for 30 runs. As we can see, the predicted upper bound 8 holds in all cases, although the
Random policy demonstrates smaller growth in user interest than other policies, as expected. Considering the results we
can confirm RQ 3 that Statement 1 and Statement 2 do not depend on the selection policy used.

5 Analysis and limitations

In the experiment we find that additive noise does not prevent a feedback loop from occurring for several selection
policies, and that interest restarts does limit the feedback loop. An upper bound is given by Statement 2 and it is tested

4
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Figure 2: Maximum user interest (color) for Thompson Sampling (ts), Random, Optimal and ε-greedy (greedy) selection
policies. Axes: y-available items M , x- selected items l. Total number of steps T = 2000, strength of additive noise
w = 3.0

Figure 3: Maximum user interest averaged over 10 runs (blue dots) with interest restarts model for Thompson Sampling
(ts), Random, Optimal and ε-greedy (epsilon_greedy) selection policies. Green line — expected maximum user interest
(8) for given scale and restart probability. Axes: y- scale parameter s, x- a logarithm of the restart probability log10 q.
Total number of steps T = 5000.

in the experiments. Therefore, if an interest restart is possible in the system then the feedback loop is limited. The
probability of restart and scale parameters should be estimated from the actual user behavior, which is a possible future
direction of research. We find the constant best lever assumption useful for theoretical analysis as it greatly simplifies
the proof. Results of the analysis are still valid when the assumption is violated in a feedback loop, as experiments
show, because the feedback loop just reinforces the best lever already selected by the policy.

Limitations and validity. We did not consider selection policies that expect data drift in user interests and, therefore,
rewards. Non-stationary selection policies, such as Discounted Thompson Sampling (dTS) [11, 2], might be specifically
suitable in case of sudden changes in user interests, especially for the interest restarts model. Our study is limited to
theoretical models, which parameters need to be estimated from the actual user behavior. Nevertheless, our results still
hold and useful, because we specify how predictions depend on the parameters even when assumptions are relaxed.

6 Conclusions

We state a problem of existence of feedback loops in presence of noise in user interests. We explore unbiased additive
noise model and demonstrate that such type of noise does not affect the existence of the feedback loop both theoretically
and experimentally. We also develop an interest restart model that models cases when users partly or completely lose
interest recommended items. For this model we show that there exists an upper bound on the feedback loop if a restart
is possible. We confirm our findings in the experiment. Further research could focus on parameter estimation and
studying the non-stationary multi-armed problem.
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