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Abstract— Researchers have demonstrated that Deep Rein-
forcement Learning (DRL) is a powerful tool for finding policies
that perform well on complex robotic systems. However, these
policies are often unpredictable and can induce highly variable
behavior when evaluated with only slightly different initial
conditions. Training considerations constrain DRL algorithm
designs in that most algorithms must use stochastic policies
during training. The resulting policy used during deployment,
however, can and frequently is a deterministic one that uses
the Maximum Likelihood Action (MLA) at each step. In this
work, we show that a direct random search is very effective
at fine-tuning DRL policies by directly optimizing them using
deterministic rollouts. We illustrate this across a large collection
of reinforcement learning environments, using a wide variety
of policies obtained from different algorithms. Our results
show that this method yields more consistent and higher
performing agents on the environments we tested. Furthermore,
we demonstrate how this method can be used to extend our
previous work on shrinking the dimensionality of the reachable
state space of closed-loop systems run under Deep Neural
Network (DNN) policies.

I. INTRODUCTION

In recent years, researchers have leveraged Deep Rein-
forcement Learning (DRL) to solve a wide variety of contin-
uous control problems. Examples include problems from the
computer graphics community, in which DRL has been used
for physics-based character animation [1], and a wide variety
of complex robotic tasks. This paper focuses primarily on
applications in robotics, which has seen an explosion of work
in recent years [2] [3] [4] [5]. Continuous control problems
in the context of robotics include controlling a 47 degree-of-
freedom (DOF) humanoid to navigate various obstacles [6],
dexterously manipulating objects with a 24 DOF robotic
hand [7], training the quadrupedal ANYmal robot to recover
from falls [8], and teaching the bipedal Cassie robot to
navigate stairs blindly [9]. These problems are all high di-
mensional, nonlinear, and underactuated, and they all involve
complex contact sequences with the environments, which
makes them very challenging for more traditional control
design. Traditional model-based control techniques are still
very effective—arguably, Boston Dynamics still represents
the state-of-the-art for legged locomotion in robotics, for
example. However, these approaches require hundreds of
expert person hours to develop each new controller. DRL
attempts to automate at least some aspects of this challenging
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controller development process. There are already exam-
ples of learned policies outperforming ones hand-designed
by experts [10], and with the ever-continued growth and
availability of computational power, there is good reason
to believe these learning methods will continue performing
better and becoming easier to use.

But, of course, there are significant drawbacks to
these model-free approaches. While Deep Neural Networks
(DNNs) are very powerful, they also need to acquire a lot
of data during training. This contributes to DRL being very
sample inefficient, meaning that many interactions with the
environment are required in order to find a good policy. As
a result, most training for robotic systems must be done in
simulation, where the environment can be parallelized and
run thousands of times faster than real time. Transfer learning
is often required to adapt such policies so that they work for
real-world hardware. Doing so effectively remains an impor-
tant, open problem. Furthermore, modern DRL algorithms
can be difficult to implement, as small implementation details
can change performance dramatically [11], which motivates
our additional focus in reducing the observed variability in
performance of closed-loop policies from DRL.

DRL policies are almost always stochastic in nature.
During training almost all the common DRL algorithms
either add exploration noise to the actions, or learn a prob-
ability distribution from which to sample at training time.
This might be, for example, a simple Gaussian distribution,
the more sophisticated Ornstein-Uhlenbeck correlated noise
process in the case of Deep Deterministic Policy Gradient
DDPG [2]), or, in the case of DQN, a random selection
of sub-optimal actions [12]. However, when policies are
deployed or evaluated, one typically uses a deterministic
policy by taking what we will call the Maximum Likelihood
Action (MLA).

In [13], the authors show that a simple Augmented Ran-
dom Search (ARS) over linear functions was competitive
with deep reinforcement learning across a standard suite of
benchmark tasks. Furthermore, this algorithm is simple and,
in the cases the authors tested, around fifteen times more
sample efficient than the best-performing DRL baseline.
Despite these advantages, the simplicity of the policy class
limits the environments to which it can currently be applied.

In this work, we show that a slightly modified version
of this random search can be applied directly to DNNs for
fine tuning, without any apparent loss in sample efficiency.
The simplicity of this approach has several advantages.
The first is that it does not appear to be very sensitive to
hyper-parameter settings. We are able to use a single set of
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parameters for all the results obtained in this paper, across a
dozen environments, and with most systems being tested for
six different initial policies each obtained from a different
DRL algorithm. Second, we avoid some of the previously
mentioned problems stemming from the complexity and
fragility of modern DRL algorithms. Finally, our data thus
far indicate that we seem to achieve essentially the same
sample efficiency seen in ARS, despite operating over much
larger parameterizations.

We show that our proposed method of fine tuning leads to
modest increases in reward and substantial improvements to
consistency in performance for DRL agents across a large
set of RL environments. In addition, we also show that
we can also use this fine-tuning method to extend previous
work of ours involving an extra dimensionality term in the
reward [14].

The rest of this paper is laid out as follows. First, we
introduce the problem statement, the algorithms and envi-
ronments used, and implementation details for the training.
We then present results obtained from using this policy re-
finement approach across a collection of continuous-control
RL environments. We also perform some analysis on how
often fall events occur for a benchmark bipedal walker where
the existing DRL baselines are particularly prone to failure.
After this, we present results of using this method to train
with additional, dimensionality based reward terms in order
to show that we are able to extend our previous work to
DNN policy classes. Finally, we demonstrate the approach
on a Panda arm simulation environment, where our approach
leads to considerably smoother policies that avoid unwanted
jitter, without any environment specific or algorithm specific
tuning or reward shaping.

II. METHODS

A. Reinforcement Learning

The goal of reinforcement learning is to train an agent
acting in an environment to maximize some reward function.
At every timestep t ∈ Z, the agent receives the current state
st ∈ Rn, uses that to compute an action at ∈ Rb, and then
receives the next state st+1, which is used to calculate a
reward r : Rn × Rm × Rn → R. The objective is to find a
policy πθ : Rn → Rm

argmax
θ

E
η

 T∑
t=0

r(st, at, st+1)

 (1)

where θ ∈ Rd is a set that parameterizes the policy, and η is
a parameter representing the randomness in the environment.
We will call the sum of rewards obtained during an episode
a return.

B. Direct Policy Search

We start by noting that there are many names for what we
are calling direct policy search, as it is at least 50 years old
and has been rediscovered by a variety of different optimiza-
tion communities. Algorithm 1 outlines our particular version
of it. In essence the random search chooses 2n candidate

policies at each step by adding zero-mean Gaussian noise to
the current policy parameters. These candidate policies are
used to perform rollouts, and the reward for each rollout is
recorded. These rewards are then used in the update step for
the policy.

In [13], the authors show that this direct policy search
is competitive with DRL. Specifically, they add a number
of ”tricks” to the basic algorithm and call their resulting
approach the Augmented Random Search (ARS). We add our
own set of tricks in this work. First, we keep ARS’s update
step, where the step size is divided by the standard deviation
of returns obtained. Second, we maintain the normalization
functions learned by the DRL algorithms we are tuning. This
differs from algorithm to algorithm, but usually it involves
normalization of the data using statistics of the observation
that is seen during training, followed by a clipping operation.
We also found that it is important to be careful with the
random seeds used for rollouts, and so for each policy pair
θ± δi we ensured that the environment used the same seed.
This was particularly important for environments with a wide
distribution of initial conditions. Finally, we found perfor-
mance was slightly improved by using a linear schedule for
step size and exploration noise.

One advantage of this method that we have found is
that it is not very sensitive to hyper-parameters. For every
result presented in this paper, we deliberately used the same
parameters: 200 update steps, n = 64, α = [0.02, .002],
and σ = [0.025, 0.0025], which were chosen using the
parameters used in [13] as a starting point. Ignoring for a
second that 200 update steps is in fact more than is necessary
for most environments, this implies that our method takes
25600 rollouts to train. In simulation with parallel rollouts,
this is completed in a matter of minutes using a Ryzen 3900x.
For the Panda arm environments that we will discuss in more
detail later, this would correspond to about 14 hours of real
robot time, and we suspect this time could be brought down
considerably by tuning the hyper-parameters specifically for
sample efficiency.

We also note that we ran experiments where we train only
a subset of the neural network parameters, which would make
the number of trainable parameters comparable to the linear
policies used in [13]. During these experiments we found
the results were slightly inferior to training on the entire
network, and that the sample efficiency, measured by number
of updates required to reach a given reward threshold, was
almost exactly the same.

C. Environments

We examine a number of popular benchmarking envi-
ronments from the RL community. The environments all
conform to the OpenAI Gym API introduced in [15]. For
ease of reference, we will refer to each environment by
the ID it has in the Gym registry. MountainCarContinuous-
v0, LunarLandarContinuous-v2, BipedalWalker-v3, and
BipedalWalkerHardCore-v3 are all standard continuous con-
trol environments included with the base Gym environments.
To the best of our knowledge these environments are not



Environment A2C PPO DDPG TD3 SAC TQC

MountainCar Baseline Return 91 ± 0.2 88 ± 2.3 93 ± 0.0 93 ± 0.1 94 ± 1.3 67 ± 43.8
Tuned Return 92 ± 0.1 96 ± 17.0 94 ± 0.4 94 ± 0.2 95 ± 1.1 96 ± 0.9

LunarLander Baseline Return 61 ± 137.3 273 ± 30.5 216 ± 100.0 205 ± 86.7 259 ± 67.8 279 ± 28.6
Tuned Return 160 ± 126.1 275 ± 32.4 249 ± 68.5 257 ± 20.1 283 ± 18.1 286 ± 17.7

BoxWalker Baseline Return 296 ± 27.0 220 ± 122.4 217 ± 127.4 302 ± 65.1 289 ± 66.0 326 ± 58.2
TunedReturn 313 ± 0.7 325 ± 0.7 281 ± 54.1 334 ± 0.6 321 ± 1.0 344 ± 0.3

BoxWalkerHard Baseline Return 99 ± 129.3 137 ± 119.4 N/A -92 ± 16.3 16 ± 104.2 238 ± 102.0
Tuned Return 109 ± 121.0 137 ± 119.7 N/A -23 ± 5.2 44 ± 86.4 242 ± 107.6

Walker2D Baseline Return 785 ± 389.2 2108 ± 16.0 1432 ± 720.1 2218 ± 194.6 2290 ± 34.8 2540 ± 557.6
Tuned Return 913 ± 269.3 2250 ± 194.1 1896 ± 375.7 2411 ± 7.5 2413 ± 13.6 2812 ± 8.8

HalfCheetah Baseline Return 2109 ± 36.3 2938 ± 53.7 2064 ± 198.7 2820 ± 21.0 2792 ± 10.9 3676 ± 16.7
Tuned Return 2211 ± 35.9 3000 ± 42.3 2264 ± 133.1 2928 ± 15.4 2883 ± 6.9 3802 ± 11.9

Hopper Baseline Return 834 ± 343.3 2523 ± 383.5 1179 ± 453.1 2681 ± 27.2 2602 ± 205.2 2631 ± 329.7
Tuned Return 1643 ± 204.1 2633 ± 91.0 2379 ± 341.6 2749 ± 337.1 2706 ± 96.7 2782 ± 20.7

Ant Baseline Return 2502 ± 25.4 2869 ± 72.7 2365 ± 212.5 3268 ± 288.8 3096 ± 31.3 3478 ± 24.0
Tuned Return 2679 ± 28.4 2897 ± 157.0 2424 ± 86.7 3391 ± 24.8 3206 ± 18.0 3654 ± 21.7

TABLE I
AVERAGE RETURN ± STANDARD DEVIATION BEFORE AND AFTER FINE TUNING

Algorithm 1 Direct Policy Search
Require: Policy π with trainable parameters θ
Require: Hyper-parameters - α σ n

Sample δ = [δ1, ..., δn] from N (0, σ)n x |θ|

θ∗ = [θ − δ1, ..., θ − δn, θ + δ1, ..., θ + δn]
for θi in θ∗ do

Do rollout with policy πθi , using the MLA
Collect sum of rewards Ri.

end for
θ+ = θ + α

nσR

∑n
i=0(Ri −Ri+n)δi

meant to be physically realistic. We also study a collec-
tion of locomotion environments implemented in PyBullet.
The locomotion environments were created by [16] and
are maintained by the Bullet Physics team [17]. In this
work we study HalfCheetahBulletEnv-v0, HopperBulletEnv-
v0, Walker2DBulletEnv-v0, and AntBulletEnv-v0. All of
these environments are simulated legged robots. Agents take
joint angles and velocities as input states, and compute joint
torques as actions. The reward functions are designed to
encourage agents to walk forward as fast as possible. It
may be worth noting that these are inspired by OpenAI’s
popular Mujoco environments, though the Bullet versions

Env. Algo. Fail % Before Fail % After

Walker

A2C 19.33 12.00
PPO 0.00 0.33
DDPG 42.67 4.00
TD3 12.33 1.67
SAC 2.33 0.67
TQC 5.67 0.00

TABLE II
MEASURED EARLY TERMINATION EVENTS BEFORE AND AFTER THE

FINE TUNING PROCESS

are considerably heavier and impose more realistic torque
limits, which makes them a bit more challenging for RL
algorithms. In the second half of this paper, we study a
set of environments based on a 7DOF Franka Emika Panda
arm [16]. These environments are made difficult both by
their complexity and the fact that they use a sparse reward
structure. As an example of these aspects, consider the
PandaPickAndPlace-v1 environment, in which the arm must
pick up a block somewhere in its workplace and bring it
to a randomized goal state. The agent recieves a reward of
-1 everywhere except when the block has reached the goal
state.

D. Pre Trained Agents

We use the Stable Baselines 3 Zoo [18] [19] for a
collection of pretrained agents with tuned hyper parameters.
The Zoo provides agents for Truncated Quantile Critics
(TQC), Soft Actor Critic (SAC), Proximal Policy Optimiza-
tion (PPO), Asynchronous Actor Critic (A2C), Deep Deter-
ministic Policy Gradients (DDPG), and Twin Delayed Deep
Deterministic policy gradient (TD3) [20] [4] [3] [21] [2] [22].
In all examples, the policies are deep neural networks and the
exact architecture has been tuned by the Zoo maintainers to
have reasonable performance for each environment algorithm
pair. We use these policies to initialize the values of θ in
Algorithm 1.

III. RESULTS

First we examine the results of using our direct policy
search for policy fine-tuning of a large set of environments
and initial policies, using the parameters from Section II-
B. We compare the mean and standard deviation of returns
before and after our fine-tuning process. In both cases, the
policies are evaluated deterministically by using the MLA
at each step, the only randomness in the system is from the
initial condition at the start of each episode, which is drawn



Environment A2C PPO DDPG TD3 SAC TQC

Walker2D Baseline Dim. 2.55 ± 0.6 3.45 ± 0.4 5.54 ± 0.5 6.09 ± 1.6 5.96 ± 1.6 5.36 ± 0.5
Tuned Dim. 1.21 ± 0.3 2.35 ± 0.2 3.82 ± 0.3 3.72 ± 0.3 3.85 ± 0.5 3.71 ± 0.2
Baseline Return 785 ± 389.2 2108 ± 16.0 1432 ± 720.1 2218 ± 194.6 2290 ± 34.8 2540 ± 557.6
Tuned Return 997 ± 2.2 2024 ± 10.1 1961 ± 12.5 2152 ± 27.6 2269 ± 13.3 2562 ± 12.6

HalfCheetah Baseline Dim. 3.19 ± 0.3 3.35 ± 0.2 4.31 ± 0.4 5.17 ± 0.3 4.83 ± 0.3 3.65 ± 0.2
Tuned Dim. 2.4 ± 0.2 2.54 ± 0.2 3.01 ± 0.3 2.76 ± 0.3 3.46 ± 0.3 2.56 ± 0.2
Baseline Return 2109 ± 36.3 2938 ± 53.7 2064 ± 198.7 2820 ± 21.0 2792 ± 10.9 3676 ± 16.7
Tuned Return 2137 ± 22.3 2778 ± 27.5 2594 ± 41.9 2697 ± 13.1 2658 ± 12.1 3606 ± 7.2

Hopper Baseline Dim. 2.85 ± 0.5 3.16 ± 0.5 3.67 ± 0.5 3.76 ± 0.4 5.12 ± 0.3 5.12 ± 0.3
Tuned Dim. 2.24 ± 0.1 2.31 ± 0.2 3.12 ± 0.1 2.74 ± 0.1 2.7 ± 0.2 2.3 ± 0.1
Baseline Return 834 ± 343.3 2523 ± 383.5 1179 ± 453.1 2681 ± 27.2 2602 ± 205.2 2631 ± 329.7
Tuned Return 2072 ± 12.4 2559 ± 26.0 2641 ± 39.2 2763 ± 7.4 2687 ± 8.1 2547 ± 10.4

Ant Baseline Dim. 2.65 ± 0.2 3.91 ± 0.6 7.14 ± 0.4 5.76 ± 0.2 7.17 ± 0.3 5.25 ± 0.3
Tuned Dim. 2.15 ± 0.2 3.11 ± 0.1 6.87 ± 0.3 4.29 ± 0.4 3.35 ± 0.2 3.39 ± 0.2
Baseline Return 2502 ± 25.4 2869 ± 72.7 2365 ± 212.5 3268 ± 288.8 3096 ± 31.3 3478 ± 24.0
Tuned Return 2527 ± 13.5 2817 ± 26.8 2498 ± 42.9 3330 ± 100.1 2854 ± 8.0 3488 ± 3.4

TABLE III
RETURNS AND DIMENSIONALITY AFTER FINE TUNING WITH AN EXTRA DIMENSIONALITY REWARD TERM

from the same distribution seen during training. Each agent
is evaluated with 100 Monte Carlo trials.

The results are presented in Table I. In almost all cases,
we see at least a modest improvement to average return.
Recalling that an even more fundamental goal in this work
is to reduce variability, also note that many cases resulted in a
substantial decrease in the variance of the return, as desired.
This suggests that our fine-tuning process is effective both
for squeezing extra performance out of a trained DRL agent
and also for reducing the variability of those agents.

We also examine the robustness of these policies. We
note that the baseline agents, even with no noise added
and using the deterministic policy evaluation, will experience
failure events from some particular initial conditions. Here
we define failure as any ”early termination” event from
the environment. In the case of Walker2DBulletEnv-v0, the
environment automatically terminates early if a non-foot link
contacts the ground or if the simulation determines that
a fall is imminent due to its center of mass location or
body orientation. To test robustness, we sample 300 initial
conditions and evaluate the policies both before and after our
refinement step. We present the results from the Walker2D
system because it had the highest failure rate across all
baselines algorithms. We can see in Table II that DDPG, for
example, failed in about 42% of cases before the refinement
process and in around 4% afterwards. The other algorithms
show improvement as well. In the case of TQC, we went
from failing about 5% of the time to not detecting any failure
events during the 300 trials.

IV. MESH DIMENSIONS

In previous work [23], we introduced what we call a
“mesh dimension” as an component to reward functions for
reinforcement learning agents. Informally, agents typically
operate in relatively high dimensional state spaces. However
in practice they will often only move along a comparatively
lower-dimensional manifold within that full space. That is,

although motions are not completely synchronized over time,
they demonstrate quite a bit of coordination among joints.
By eye, such a gait-like coordination is often quite apparent.
The mesh dimension attempts to identify this dimensionality
reduction quantifiably. It estimates the dimensionality of the
reachable state space of the closed-loop system, and, for
those familiar with the term, it is very closely related to
a “fractal dimension”.

In another line of prior work [14] [24], we showed
that ARS was able to train linear policies on environments
which were modified to include this mesh dimension reward.
This had a number of desirable qualities including finding
very precise periodic gaits in some cases, and it improved
robustness to push disturbances and sensor noise. In that
work training used a lower and upper bound of the estimated
dimensionality; in this work we train on the average of those
two bounds.

We experimented with several ways to incorporate this
measure of dimensionality into the reward function, in-
cluding both a linear and quadratic combination with the
original reward. While these methods worked to some extent,
they required fairly precise manual tuning of coefficients.
Somewhat surprisingly, we found that simply taking the
product of the original reward multiplied by the reciprocal
of the dimension estimate D was an effective reward that
required no manual tuning:

Rr =

∑T
t=0 r(st, at, st+1)

D
. (2)

One caveat is that this only works for environments with
positive rewards. For negative returns, however, as in the case
of the Panda environments, we can simply take the product
instead:

Rp = D

T∑
t=0

r(st, at, st+1). (3)

We found that these rewards successfully gave the agents a



signal to optimize, leading to significant reductions in dimen-
sionality without any significant degradation in performance
over the original reward.

V. MESH DIMENSION RESULTS

A. Locomotion Environments

First, we present results for fine-tuning with the post-
processed reward from Equation 3. In this work we train
DNNs on the more difficult Bullet environments. Results are
shown in Table III. All agents are evaluated deterministically
here, using the MLA. Each entry in the Table for mean and
standard deviation for the return and for the estimated dimen-
sionality is calculated based on 100 Monte Carlo Trials. We
see that the dimensionality (“Dim.”) in most environments
is decreased quite drastically, particularly for the off-policy
algorithms (DDPG, TD3). As before, this process also seems
to decrease the variability of the return, perhaps even more
reliably than without the dimension reward. We believe this
shows that our previous results can be extended to DNNs,
which greatly expands the scope of problems they can be
applied to.

B. Panda Arm Environments

We present data here for a set of environments utilizing
a Panda arm, introduced earlier in Section II-C. These
environments present several challenging problems for an
Emika Franka Panda arm. The PandaReach task is the most
straightforward. Here, the goal is for the arm to reach a given
point in task space. For PandaPush, the arm mush push a
block along the floor to a desired location. In PandaSlide, the
robot must grab a block and and bring it to a desired point
on the ground. Finally, PandaPickAndPlace requires the arm
to pick up a block and keep its grip on it while attempting
to reach a point in space. We found that merely fine-tuning
the action network with our random search did not improve
performance significantly, though to be fair, none of the
algorithms in the Zoo are able to solve this environment
without Hindsight Experience Replay (HER) [25].

Environment Base Dim. Our Dim. Base. Return Our Return

PandaReach 2.73 ± 0.7 2.28 ± 0.5 -2 ± 0.6 -1 ± 0.7
Pick&Place 1.63 ± 0.3 1.61 ± 0.5 -6 ± 2.6 -11 ± 13.3
PandaPush 1.91 ± 0.5 1.68 ± 0.3 -6 ± 2.7 -7 ± 3.0
PandaSlide 1.89 ± 0.4 1.53 ± 0.3 -22 ± 7.1 -41 ± 12.4

TABLE IV
DIMENSIONALITY AND RETURNS BEFORE AND AFTER FINE TUNING FOR

THE PANDA ENVIRONMENTS

We did however also apply our dimensionality reward
signal to this environment using our fine tuning process.
We show the resulting dimensionality, and the returns in
terms of the original reward function are shown in Table IV.
We observed a modest decrease in the dimensionality, ac-
companied by some decrease in the original return. Again,
this decrease in reward is not unexpected, as we are after
all trained on modified reward function. In addition to this,

despite the Table data that suggests perhaps only a small
change in behavior was observed, we noticed a significant
beneficial change in the qualitative behavior of the robot.
Figure 1 shows a stark example of this. In the PandaReach
environment, the baseline agent is able to get its end effector
into the target region, however it exhibits undesirable shaking
behavior which the reward function does not punish. Our
agent is able to achieve the same effect with a smooth
motion. Note that both agents received exactly the same
reward for the episodes we show,i.e. that despite the jittering
deviations in the end effector, it remain in the goal region.

Fig. 1. End effector positions and velocities for a policy roll out on
PandaReach before and after fine tuning with the mesh dimension reward

VI. DISCUSSION AND RELATED WORK

It’s worth discussing alternatives to our method for fine-
tuning. The most similar work to ours that we have found
is [26]. There, the authors take a similar approach in that they
decouple the algorithms used for exploration versus exploita-
tion. We agree with their conclusion that this decoupling
brings advantages on its own, regardless of the methods used
for the fine-tuning exploitation. In some sense their work is
doing the opposite of our approach, however, in that after
using a gradient-free evolutionary strategy for exploration, it
then uses DRL for exploitation (rather than for exploration).
While the approaches are quite distinct, they are also in fact
likely compatible, in that they could actually be combined.
It is easy to imagine a pipeline using their gradient-free
method for broad exploration, followed by DRL for initial
exploitation, with our random search added for the final fine-
tuning stage of an algorithm.

There are also many small tricks and improvements found
in DRL algorithms that aim to achieve similar results
to what we’ve shown. One example is to decrease the
SGD/Adam/RMSProp step size as training goes on. This
is an effective method, and indeed our own method uses
a linear schedule for the step size. However, the algorithms
we are using as a baseline were already using this approach



as well, and we still saw improvements in performance with
the additional of our fine tuning process.

Entropy regularization / penalties are another toolset avail-
able, which can also be put on a schedule. These can
encourage an agent to use a wide distribution of actions
initially and then gradually narrow this down as training
continues. Again though, most of the algorithms used as a
baseline (PPO, SAC, TQC) have some form of this already,
and our method is still able to improve on them.

We could try curriculum learning, meaning that the reward
function could change by design as training goes on. We
believe this is likely most effective when one has a lot
of domain knowledge of the task, and when being applied
to tasks that are too difficult for the algorithm to learn
initially. For example, the authors of [27] use this approach
when controlling Cassie. This approach works well for them
because they are able to engineer a reward that led to the
desired behavior.

VII. CONCLUSION

We have presented a method that can fine tune policies
obtained from DRL algorithms by optimizing directly using
the MLA. We showed that performance compared to a
baseline was improved considerably on a large set of standard
benchmarking tasks. Of more particular note, the variability
of episode returns was decreased significantly on many of
the environments we tested as well. For the system on which
we also quantified failure rates (i.e., for the biped Walker),
this lower variability was also accompanied by significantly
fewer early termination events compared to the baseline. We
hypothesize that this increased robustness is, quite plausibly,
due to the dimensionality reduction. (That hypothesis is
in fact why we performed these experiments, of course.)
However, any conclusions on correspondence remain a topic
for further investigation.

We also showed that this method allows us to expand
our previous work on adding dimensionality metrics to the
reward function of RL agents to DNNs as well, which greatly
expands the scope of problems it can be applied to. We
demonstrated this on a set of locomotion environments and
also on a challenging set of Panda arm environments with
sparse reward structures. We showed that for the case of
the Panda our approach achieved significantly less jitter, and
arguably more visually pleasing (and mechanically desirable)
motion than the baseline, without any environment specific
reward shaping, or manual adjustment of any parameters.

We believe versatility and simplicity are major strengths
of this approach. Policies obtained from any kind of DRL
algorithm can be tuned in this way, and the method seems
to require very little manual tweaking. The potential applica-
tions for this method are broad. Engineers designing robots
which are public facing or that interact with humans may find
it useful to employ policies that make their robots motions
smoothing and thereby easier for humans to predict. There
are applications outside of robotics as well. Physics-based
character animation may also benefit from more consistently
behaving policies, and DRL is also popular for video game

AI, which is another area where the improved consistency
of this method may prove desirable.

Finally, we will end with a discussion on the broader
impacts and future directions of this work. DRL has been an
exciting and promising paradigm for robotic control for some
time now, but it has yet to be widely adopted by industry.
This is largely because it is difficult to trust a DNN con-
troller, and deploying a poorly understood controller can be
expensive and dangerous. By itself, we think the fine tuning
method we’ve introduced can help make DRL policies more
effective and reliable, however we also think that the lower
dimensional policies can unlock even more tools to aid with
this. With lower dimensional polices, we open the possibility
to develop methods to perform numerical estimates of a
variety of controls-based metrics, such as rates of contraction
(Lyapunov exponents), identification of dangerous regions
in state space (outside a stochastic separatrix for a basin
of attraction), and/or expected (conservative) distributions of
failure rate. All of these are promising directions towards
safer and more reliable DRL based control, and we anticipate
that our method brings us closer to realizing them for useful,
real world, robotic systems.
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