
An Adaptive Boosting Technique to Mitigate Popularity Bias in
Recommender System

Ajay Gangwar
Indian Institute of Technology, Ropar

India
2019aim1002@iitrpr.ac.in

Shweta Jain
Indian Institute of Technology, Ropar

India
shwetajain@iitrpr.ac.in

ABSTRACT
The observed ratings in most recommender systems are subjected
to popularity bias and are thus not randomly missing. Due to this,
only a few popular items are recommended, and a vast number of
non-popular items are hardly recommended. Not suggesting the
non-popular items lead to fewer products dominating the market
and thus offering fewer opportunities for creativity and innovation.
In the literature, several fair algorithms have been proposed which
mainly focused on improving the accuracy of the recommendation
system. However, a typical accuracy measure is biased towards
popular items, i.e., it promotes better accuracy for popular items
compared to non-popular items. This paper considers a metric that
measures the popularity bias as the difference in error on popu-
lar items and non-popular items. Motivated by the fair boosting
algorithm on classification, we propose an algorithm that reduces
the popularity bias present in the data while maintaining accu-
racy within acceptable limits. The main idea of our algorithm is
that it lifts the weights of the non-popular items, which are gener-
ally underrepresented in the data. With the help of comprehensive
experiments on real-world datasets, we show that our proposed
algorithm outperforms the existing algorithms on the proposed
popularity bias metric.

CCS CONCEPTS
• Information Filtering Systems→ Recommender systems.

KEYWORDS
Recommender systems, Popularity Bias, Fairness
ACM Reference Format:
Ajay Gangwar and Shweta Jain. 2021. An Adaptive Boosting Technique to
Mitigate Popularity Bias in Recommender System. In ,. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Recommendation systems have become an essential part of our
lives, from movies we watch on OTT platforms to shopping on
e-commerce websites to the news we read on the internet. In this
information age, where the information is available in abundance
or huge volumes, recommendation systems make our lives simpler
by filtering information for us according to our taste.

Recommender systems recommend relevant items to the users
based on the user’s previous data. The primary goal of recommen-
dation engines is to identify the items that a particular customer
might buy or be interested in based on the previous ratings. They

FAccTRec2021, 4th FAccTRec Workshop: Responsible Recommendation
2021. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

do so by anticipating the ratings that users would give to the items,
and the more data we have for a user, the more precisely we can pre-
dict their ratings. Netflix (movie recommendation system), Spotify
(music recommender system), and Amazon (product recommenda-
tion system) are some examples of recommendation systems that
we see in our daily lives.

Although recommender systems are quite popular, there are con-
cerns regarding the fairness of these systems amongst the research
community. Recommender systems primarily face fairness issues
at two levels, user-level [9, 18] and item level [20, 24]. This paper
considers the most important fairness issue, namely the popularity
bias at the item level. The items rated by most of the users or have
received high ratings are known as popular items, and the items
rated by very few users or not rated at all are known as non-popular
items. The underlying notion behind popularity bias is that people
are more inclined to offer comments on mainstream or popular
products than on non-popular items. As a result, reported user
response is skewed towards popular products rather than genuine
user interest. Thus, frequently rated items or popular items receive
a lot of exposure, but less popular or niche items are underrepre-
sented in a recommendation. Recommending only popular items
is problematic for two reasons: first, not everyone wants to follow
the taste of the mainstream crowd, and second, it makes it harder
for new goods to gain user attention.

One example of how just suggesting popular things affects com-
panies is that a lawsuit was recently filed in the United States
against Google for only showing advertising for popular items and
not giving opportunities to less popular and newer items on the
market [25]. Because just a few items are displayed most of the time,
this sort of activity generates a monopoly in the market, which is
unsuitable for any firm. It will hamper the possibilities of creativity
and innovation in the products or items.

Exploring and mitigating popularity bias in recommender sys-
tems is not a new problem and have been previously explored in
many works [4, 5, 12, 27, 30] . However, the existing works focus
either on improving the accuracy of the overall recommendation
system or exploring the non-popular items through diversification.
Since more ratings are available for the popular items, the accuracy
is inherently biased towards the popular items. A highly accurate
recommender system may have very high accuracy on popular
items but a very low accuracy on non-popular items. On the other
hand, naive diversification may lead to poor accuracy of the overall
recommender system. In this work, we define popularity bias as the
difference between errors on non-popular items and popular items.
A fair recommender system should perform equally well on both
popular and non-popular items thus ensuring a balanced accuracy
of the recommender system. The main aim is to reduce popularity

ar
X

iv
:2

10
9.

05
67

7v
1

 [
cs

.I
R

]
 1

3
Se

p
20

21

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

FAccTRec2021, 4th FAccTRec Workshop: Responsible Recommendation Ajay Gangwar and Shweta Jain

bias from the data and recommend relevant items to the user based
on prior data while keeping the error as low as possible.

1.1 Contributions
The main contributions of this paper are as follows:
• We provide a metric that quantitatively measures the popu-
larity bias present in the data. The previous papers have used
error as a metric that is inherently biased towards the popu-
lar items and thus may lead to poor accuracy on non-popular
items.
• To reduce the popularity bias, we propose a novel algorithm,
namely FairBoost, that significantly reduces the popularity
bias present in the data without deteriorating on the error.
• We compare our proposed algorithm with the existing algo-
rithms that claim to remove popularity bias and show that
our algorithm outperforms the existing algorithms on the
proposed popularity bias metric.

2 RELATEDWORKS
Fairness in recommender systems has been the center of discussion
for a long time since these systems suffer from different types of
biases present in the data. Due to these biases, it can not represent
the entire population, and due to this, the results produced by
recommender systems are biased, so there is an utmost need to
solve this problem. The most common types of biases are gender
bias [9, 18], racial bias[19], selection bias [20, 24], exposure bias
[28, 31], position bias [8, 11], and popularity bias [4, 5, 12, 27, 30].
The focus of this paper is on popularity bias.

It is crucial to recommend non-popular items as they are the
ones that are less likely to be discovered. Abdollahpouri et al. [5]
have proposed a customized re-ranking diversification strategy that
aims to boost non-popular items representation while retaining ac-
ceptable recommendation accuracy. The focus in [5] was to achieve
a trade-off between coverage of popular and non-popular items. To
achieve this coverage, non-popular items that consumers could ap-
preciate were randomly selected and presented to the user without
being displayed in some order of preference. Thus the proposed
method could result in poor accuracy for non-popular items.

To address the popularity bias, Huang et al. [12] and Schnabel
et al. [27] employed the Inverse Propensity Score (IPS) method.
Propensity-based techniques have previously been used in causal
inference and observational studies but are used for the first time
in the recommender system by Schnabel et al. [27]. To apply the
IPS approach, we need propensities, and the authors in [27] have
discussed primarily two propensity estimation models, via Naive
Bayes, and the other is via logistic regression. Saito [24] has also
discussed a straightforward approach to measure the propensities.
However, the performance of these propensity-based methods is
heavily influenced by the model used to estimate propensity. The
algorithms require actual probabilities to function correctly which
are difficult to estimate [24]. As a result, a more effective strategy
is required.

Furthermore, all of the above works focus on reducing recom-
mender system errors without explicitly being fair to non-popular
items.Two exceptions to this are [6, 32]. [6] mitigate the issue of pop-
ularity bias by providing a metric similar to the individual fairness

metric used in machine learning. The idea is to equalise the out-
comes across all individual items. On the other hand, [32] focuses
on group fairness by grouping the items together and equalizing
the true positives across all groups. Our work focuses on group
fairness, and instead of just equalizing true positives, we sought to
equalize the total error across the groups.

Machine learning algorithms typically discriminate based on
biased historical data. Data manipulation is used in certain prepro-
cessing techniques to address this discrimination problem. Massag-
ing [15] , re-weighting [7] , uniform or preferential sampling [16] ,
and data augmentation [13] are examples of preprocessing methods
that might have an impact on data distribution. By altering instance
labels, giving different weights, under or oversampling instances,
and producing pseudo instances, they attempt to correct imbal-
ances between protected and non-protected groups within the data.
Iosifidis and Ntoutsi [14] demonstrated Adafair, an Adaboost-based
fairness-aware classifier that adjusts the weights of the instances in
each subsequent round while explicitly addressing class imbalance
by optimizing the number of ensemble models for balanced classi-
fication error. Adapting this idea, we examine the use of boosting
algorithm in the recommender system. The idea is to increase the
weights of non-popular items to maintain the balance between
popular and non-popular items. We show that this technique can
significantly reduce the popularity bias present in the system.

3 THE MODEL
Let us consider the set of users 𝑈 and the set of items 𝑀 , with
the number of users |𝑈 | = 𝑘 and the number of items |𝑀 | = 𝑙 .
𝐴 = 𝑈 ×𝑀 represents the collection of (user, item) pairs with each
entry 𝐴𝑢,𝑚 denoting the true rating provided by user 𝑢 to item𝑚.
Integer values ranging from 1 to 5 can be used for representing
each entry, with 1 representing low interest and 5 indicating strong
interest. Because consumers only rate a small portion of the items,
many ratings are typically unknown. The main aim is to develop an
algorithm that generates the best possible predicted rating matrix
𝐴. In the predicted rating matrix 𝐴, each entry 𝐴𝑢𝑚 denotes the
probable rating given by user 𝑢 to item𝑚. To achieve the goal, ideal
loss function to find predicted rating matrix is defined as:

𝐿𝑖𝑑𝑒𝑎𝑙 (𝐴) =
1
|𝐴|

𝑘∑︁
𝑢=1

𝑙∑︁
𝑚=1

𝛿𝑢𝑚 (𝐴𝑢𝑚, 𝐴𝑢𝑚) (1)

where 𝛿𝑢𝑚 can be taken as mean squared error (MSE) i.e.

𝛿𝑀𝑆𝐸
𝑢𝑚 (𝐴,𝐴) = (𝐴𝑢𝑚 −𝐴𝑢𝑚)2

or minimum absolute error (MAE) or i.e.

𝛿𝑀𝐴𝐸
𝑢𝑚 (𝐴,𝐴) = |𝐴𝑢𝑚 −𝐴𝑢𝑚 |

.
The ideal loss function cannot be calculated since the majority

of the elements in the actual rating matrix are missing. Therefore,
to build an effective recommender system, we need to estimate the
ideal loss as accurately as possible using only the ratings present
in the true rating matrix. The simplest straightforward estimator
for estimating ideal loss, also known as a naïve estimator is used

An Adaptive Boosting Technique to Mitigate Popularity Bias in Recommender System FAccTRec2021, 4th FAccTRec Workshop: Responsible Recommendation

which is defined as follows:

𝐿𝑛𝑎𝑖𝑣𝑒 (𝐴) =
∑
(𝑢,𝑚) :𝐵𝑢𝑚=1 𝛿𝑢𝑚 (𝐴𝑢𝑚, 𝐴𝑢𝑚)
|{(𝑢,𝑚) : 𝐵𝑢𝑚 = 1}| (2)

where 𝐵 is an observed rating matrix and each entry 𝐵𝑢𝑚 = 1 if
user 𝑢 has given rating to item𝑚 otherwise 𝐵𝑢𝑚 = 0.

The loss over observed ratings is calculated using naive loss,
which is defined as the sum of loss overall user-item pairs in the
data divided by the total number of user-item pairs in the true
rating matrix. It is easy to see that when the data are missing fully
at random, this naïve estimator is unbiased i.e.

𝐸 [𝐿𝑛𝑎𝑖𝑣𝑒 (𝐴)] = 𝐿𝑖𝑑𝑒𝑎𝑙 (𝐴)

However, when the data are not missing completely at random
which happens in the presence of popularity bias where there is
more rating available for popular items as opposed to that of non
popular items, it is shown that the naive loss may not exactly
correspond to the ideal loss function [27, 29] i.e.

𝐸 [𝐿𝑛𝑎𝑖𝑣𝑒 (𝐴)] ≠ 𝐿𝑖𝑑𝑒𝑎𝑙 (𝐴) (3)

One popular approach to mitigate the popularity bias is by using
Inverse Propensity Score (IPS) approach [12, 27]. The main idea
behind this approach is to build a pseudo missing completely at
random dataset by weighting all the observed ratings by the inverse
of their propensity score. It is easy to theoretically show that IPS
loss is an unbiased estimator and hence can be used to remove
popularity bias [24].

The IPS estimator’s unbiasedness is desired; nevertheless, this
feature is dependent on the true propensity scores which need to
be approximated using various approaches. These methods majorly
suffers from two problems [23]. One, the IPS estimator is no longer
an unbiased estimator if a propensity estimation model is not stated
appropriately. Another, the inverse of the propensities may be sub-
stantial, so the IPS estimator has a high variance problem. As a
result, building learning methods that are resilient to misspecifica-
tion of propensity and estimator variation is crucial for applying
the approaches to real-world MNAR situations.

Saito [24] devised an asymmetric tri-training technique based on
the asymmetric tri-training approach used in unsupervised domain
adaptation to tackle the challenges that an IPS approach faced. It
employs three rating predictors, two of which were used to create
a pseudo rating dataset and the third of which was used to train
the model on these pseudo ratings. The problem with this method
is that the size of the dataset reduces after the algorithm is applied,
making it impossible to accurately estimate the ratings of all the
items. Because data in MNAR datasets are typically sparse, we must
make appropriate use of it in order to predict ratings. Boosting
technique on the other hand would be ideal because they utilise the
majority of their data in different iteration stages, and one can also
use upweighting to boost non-popular items in the same way that
incorrectly categorised points are boosted in subsequent iterations.

3.1 Quantifying popularity bias
So far, the research community has been focusing on mitigating the
popularity bias so as to improve the overall accuracy of the system.
As mentioned in the Introduction section, resolving popularity bias
as a standalone problem is highly required in order to prevent

monopoly in the system. A typical accuracy measure is not a good
metric for popularity bias because it is biased towards popular
items, i.e., it promotes better accuracy for popular items compared
to non-popular items. This is because more number of ratings are
given to popular items.

One naive way to resolve popularity bias is to recommend non-
popular items randomly thereby exploring these items. Another
possibility to avoid the monopoly is through diversification [17, 21]
which ensures that all group of items must be recommended some
number of times. However, both naive or diversification methods
could potentially lead to dissatisfaction amongst the users of the
recommendation system. Thus, we need a metric that not only
ensures the accuracy of the overall system, but also prevent the
issue of popularity bias.

We define the popularity biasedness of any algorithm by the
difference in the error it achieves between the non-popular items
and popular items. Let PS be the set of popular items and let
NPS be the set of non-popular items. We employ the threshold
𝜏 to identify which of the items are popular and which are not.
The set of all those items that obtained more than the threshold
number of ratings will be regarded popular, whereas the set of
items that received less than the threshold number of ratings will be
considered non-popular.𝜏 is a dataset-specific parameter which can
be taken as input. Then the popularity biasedness of the algorithm
with predicted rating matrix 𝐴 is defined as:

𝑃𝐵(𝐴, 𝜏) =
∑
(𝑢,𝑚) : 𝑚∈NPS 𝛿𝑢,𝑚 (𝐴𝑢𝑚, 𝐴𝑢𝑚)𝐵𝑢𝑚∑

(𝑢,𝑚) : 𝑚∈NPS 𝐵𝑢𝑚
−∑

(𝑢,𝑚) : 𝑚∈PS 𝛿𝑢,𝑚 (𝐴𝑢,𝑚, 𝐴𝑢,𝑚)𝐵𝑢𝑚∑
(𝑢,𝑚) : 𝑚∈PS 𝐵𝑢𝑚

(4)

where𝛿𝑢,𝑚 can be taken asMSE(mean squared error) orMAE(minimum
absolute error). This popularity bias metric separates the items into
two groups: popular and non-popular. After that, the mean error is
computed separately for non-popular and popular sets. Finally, the
difference between them is used to determine the popularity bias
𝑃𝐵(𝐴, 𝜏). The goal is to minimize the 𝑃𝐵(𝐴, 𝜏) to reduce the effect
of popularity bias.

3.2 Proposed Algorithm : FairBoost
Boosting is a method of creating a powerful learner by combining
several weak base learners. Adaboost[26] is one such approach,
which iteratively calls weak base learners after modifying the
weights based onmisclassified data points in each iteration. Because
it separates the learning problem into numerous sub-problems and
then combines their answers into an overall model, we believe
boosting is a good fit for our problem. In sub-models, the popular-
ity bias problem is easier to address than in the entire complicated
model. As popular items frequently appear in the recommender
system’s results, the weights of the non-popular items must be in-
creased in a way such that it shows up in the recommender system’s
results. In the classification setting, the AdaBoost algorithm inter-
nally boosts the weights of erroneously categorised data points. The
way we increase the weights of incorrectly classified data points
in Adaboost, we increase the weights of non-popular items while
keeping the accuracy on these items in mind. Finally, we adjust
the reweighting procedure of the AdaBoost algorithm to make it

FAccTRec2021, 4th FAccTRec Workshop: Responsible Recommendation Ajay Gangwar and Shweta Jain

more fair and obtain the FairBoost Algorithm. Adaboost is not a
novel technique for recommender systems; it was previously used
to improve accuracy when using a decision tree as the base learner
[10]. However, we are the first to use and modify this notion to
reduce popularity bias in recommender systems.

Algorithm 1 depicts the training phase of FairBoost. To estab-
lish its significance in the training dataset, FairBoost also provides
weight to each training example. When the given weights are high,
that set of training user-item pairs is more likely to influence the
training set. Similarly, user-item pairs with low weights will have
a little impact on the training dataset. At first, all of the user-item
pairs will be given same weight of 1/𝑛, where 𝑛 is the number of
user item pairs. Fairboost additionally employs a popularity bias-
related cost denoted by 𝑐𝑜𝑠𝑡𝑢𝑚 for each user-item pair (𝑢,𝑚), which
try to maintain similarity and reduce the popularity bias that exists
between popular and non-popular sets for current learners. We
initialize 𝑐𝑜𝑠𝑡𝑢𝑚 to zero for all (𝑢,𝑚). Then the user item pairs
are sampled using sample weights 𝑤𝑢𝑚 , and a weak learner 𝐴 𝑗

is trained on these sampled points. Let 𝑆 𝑗 is the set of sampled
user-item pairs at 𝑗𝑡ℎ iteration. The error rate 𝑒𝑟𝑟 𝑗 is computed
using:

𝑒𝑟𝑟 𝑗 =
∑︁

(𝑢,𝑚) ∈𝑆 𝑗

𝑤𝑢𝑚
©­«1 − 𝑒

−(𝐴𝑢𝑚−𝐴̂𝑗
𝑢𝑚)

max(𝐴𝑢𝑚−𝐴̂𝑗
𝑢𝑚)

ª®¬ (5)

where 𝑤𝑢𝑚 is the weight of (𝑢,𝑚) user-item pair in the sampled
user-item pairs set 𝑆 𝑗 , 𝐴𝑢𝑚 is the actual rating of user-item pair
and 𝐴

𝑗
𝑢𝑚 is the rating predicted by the current base learner for

user-item pair (𝑢,𝑚). Following that, we use the following formula
to calculate the the weight 𝛼 𝑗 depicting the influence of the base
learner 𝑗 in predicting ratings.

𝛼 𝑗 =
1
2
log

(1 − 𝑒𝑟𝑟 𝑗
𝑒𝑟𝑟 𝑗

)
(6)

After that popularity bias 𝑃𝐵(𝐴 𝑗 , 𝜏) is computed for the current
base learner using Equation (4).

Next popularity bias related cost, 𝑐𝑜𝑠𝑡𝑢𝑚 is computed for all the
user-item pairs (𝑢,𝑚) in the sampled user-item pairs. Since we
conduct random sampling every time, popular items become non-
popular in some iterations and non-popular items become popular
in other iterations. We seek to achieve similarity between popular
and non-popular sets or eliminate popularity bias. As a result, in
the current iteration, a popularity bias-related cost is employed to
preserve this similarity or reduce popularity bias. 𝑐𝑜𝑠𝑡𝑢𝑚 is given
by :

𝑐𝑜𝑠𝑡𝑢𝑚 =



|𝑃𝐵(𝐴 𝑗 , 𝜏) |, 𝑖 𝑓
[
(𝐴𝑢𝑚 −𝐴 𝑗

𝑢𝑚) > 𝜖1𝐴𝑁𝐷

|𝑃𝐵(𝐴 𝑗 , 𝜏) | > 𝜖2,𝑚 ∈ PS, 𝑃𝐵(𝐴 𝑗 , 𝜏) > 0
]

|𝑃𝐵(𝐴 𝑗 , 𝜏) |, 𝑖 𝑓
[
(𝐴𝑢𝑚 −𝐴 𝑗

𝑢𝑚) > 𝜖1𝐴𝑁𝐷

|𝑃𝐵(𝐴 𝑗 , 𝜏) | > 𝜖2,𝑚 ∈ NPS, 𝑃𝐵(𝐴 𝑗 , 𝜏) < 0
]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

It should be noted that 𝜖1 is a hyperparameter used to set a bound
on the difference between true and predicted ratings, and 𝜖2 is a
hyperparameter used to set a bound on popularity bias. Both of
these parameters must be tuned for the algorithm to work properly.
For all user-item pairs, if item belongs to popular set, popularity

bias 𝑃𝐵(𝐴 𝑗 , 𝜏) is greater than zero and if difference between true
and predicted rating is greater than 𝜖1 and absolute value of popu-
larity bias for current base learner is greater than 𝜖2, then 𝑐𝑜𝑠𝑡𝑢𝑚

assigned to the pair is |𝑃𝐵(𝐴 𝑗 , 𝜏) |. Here, a popular item has become
unpopular, therefore we are weighing it more. For all user-item
pairs, if item belongs to non-popular set, popularity bias 𝑃𝐵(𝐴 𝑗 , 𝜏)
is less than zero and if difference between true and predicted rating
is greater than 𝜖1 and absolute value of popularity bias for current
base learner is greater than 𝜖2, then 𝑐𝑜𝑠𝑡𝑢𝑚 assigned to the pair is
|𝑃𝐵(𝐴 𝑗 , 𝜏) |. We are upweighting this item because it is already un-
popular. And for all other user-item pairs 𝑐𝑜𝑠𝑡𝑢𝑚 of zero is assigned.
Then the weights are updated for the next round after computing
costs using :

𝑤𝑢𝑚 ←
1
𝑍 𝑗

𝑤𝑢𝑚 .𝑒𝛼 𝑗 .(𝐴𝑢𝑚−𝐴̂ 𝑗
𝑢𝑚) .(1 + 𝑐𝑜𝑠𝑡𝑢𝑚) (8)

where 𝑍 𝑗 is a factor used for normalizing weights. The user-item
pairs having the larger error are given greater weight, so they
can be predicted accurately in the following iteration. Weights are
updated for all sampled user-item pairs by multiplying𝑤𝑢𝑚 with
exponential of product of current base learner weight and difference
between true and predicted rating so that the examples that are
having more error gets more weight in next round and the examples
having less errors gets less weight in next round. Weights are also
multiplied by (1+𝑐𝑜𝑠𝑡𝑢𝑚). It is done for all those examples that were
treated unfairly during current round.

And once the number of rounds is reached, the algorithm con-
verges. The algorithm will generate a number of base learners
equal to the number of rounds, which will then be merged using
the weights 𝛼 𝑗 or the amount of influence they have to produce
the estimator 𝐴 𝑗 as an output. Now, in order to forecast the rating
of a new user-item pair, it will go through all of the base learners.
The predicted ratings from all these learners are weighted with the
corresponding weights of the base learners and then combined to
provide the expected rating for the new user-item pair.

Algorithm 1: FairBoost Algorithm to mitigate popularity
bias
Input: A=(𝑋𝑢𝑚, 𝑌𝑢𝑚)𝑁 , 𝑀, 𝜖1, 𝜖2
Output: Estimator 𝐵

1 Initialize𝑤𝑢𝑚 = 1
𝑁

and 𝑐𝑜𝑠𝑡𝑢𝑚 = 0,for all user-item pair
(𝑢,𝑚) ∈ 𝐴

2 for 𝑗 ← 1 to𝑀 do
3 a) Weak learner 𝐴 𝑗 is trained using weights𝑤𝑢𝑚 on

training data
4 b) Error rate 𝑒𝑟𝑟 𝑗 is computed
5 c) Weight is computed for the weak learner,

𝛼 𝑗 =
1
2 log

(1−𝑒𝑟𝑟 𝑗
𝑒𝑟𝑟 𝑗

)
6 d) Popularity Bias 𝑃𝐵(𝐴 𝑗 , 𝜏) is computed
7 e) 𝑐𝑜𝑠𝑡𝑢𝑚 related to popularity bias is computed.
8 f) Distribution is updated as

𝑤𝑢𝑚 ← 1
𝑍 𝑗
𝑤𝑢𝑚 .𝑒𝛼 𝑗 .(𝐴𝑢𝑚−𝐴̂ 𝑗

𝑢𝑚) .(1 + 𝑐𝑜𝑠𝑡𝑢𝑚), where
𝑍 𝑗 is a factor used for normalizing weights.

9 𝐵(𝑥) = ∑𝑀
𝑗=1 𝛼 𝑗𝐴

𝑗 (𝑥)

An Adaptive Boosting Technique to Mitigate Popularity Bias in Recommender System FAccTRec2021, 4th FAccTRec Workshop: Responsible Recommendation

4 EXPERIMENTAL ANALYSIS
4.1 Experimental setup
4.1.1 Datasets. To show the effectiveness of our proposed algo-
rithm, we have used the following realworld datasets. In all the
datasets, training set and testing set have been created by consider-
ing 80% and 20% ratings respectively.

• Netflix dataset[2] The Netflix dataset consists of about 100
million MNAR five-star movie ratings (missing not at ran-
dom). There are 480189 users and 17770 movies involved.
Due to computational restrictions, we took 10 million of the
most recent ratings by sorting them according to time. There
are 370811 users and 1962 movies in the training set, whereas
there are 258603 users and 1962 movies in the test set.
• Yahoo dataset[3]
This dataset captures the preferences of the Yahoo! Music
community and comprises almost 717 million ratings on 136
thousand songs provided by 1.8 million users. The data was
gathered between 2002 and 2006. The ratings are on a scale
of 1 to 5, with 1 being the lowest and 5 being the highest.
We have sampled around 10 Million ratings from this set.
Training set consists of 23179 users and 136737 songs while
test set consists of 23179 users and 63261 movies.
• Amazon dataset[22]
This is an Amazon Movies and TV dataset which consists of
around 4.6 million ratings. The ratings are on a scale of 1 to
5, with 1 being the lowest and 5 being the highest. There are
2088620 users and 200941 items involved. There are 1666901
users and 188083 items in the training set, whereas there are
562187 users and 80112 items in the test set.
• Movielens dataset[1]
This dataset ismade up of 100K five-starmovie ratings(missing
not at random) gathered from a movie recommendation ser-
vice . There are 1682 movies and 943 people involved. The
data has been sorted by date. The dataset is divided into a
training set and a test set, with the training set consisting of
the previous 80% of user-item pairs and the test set consist-
ing of the rest or most recent 20% of user-item pairs. There
are 751 users and 1616 movies in the training set, whereas
there are 301 users and 1448 movies in the test set.

4.1.2 Compared methods. We conducted comprehensive testing
on the above mentioned datasets to demonstrate that our proposed
algorithm lowers the system’s popularity bias. Three algorithms
were tested and their results were compared. We compared the
Fairboost algorithm to that of Matrix Factorization with Inverse
Propensity scoring [27] and Asymmetric tri-training [24]. The pre-
vious papers used error as a measure and focused on lowering the
error rather than explicitly addressing the system’s popularity bias.
We compared several methods using the proposed popularity bias
metric in Equation (4). We keep the value of 𝜏 to be 100 which
means if an item received rating from more than 100 users, then
we call that item as popular item.

4.1.3 Hyperparameter Tuning. To adjust the parameters 𝜖1 and
𝜖2, we used a random search cv hyperparameter tuning procedure.
Both parameters were tuned in the range [10−5, 1].

4.2 Results and Discussion
The results from all the datasets are summarised in Table 1 which
displays the results of 10 iterations of all the algorithms. Table 1
can be used to make the following observations. The popularity
bias was reduced when IPS was used in conjunction with matrix
factorization. However, the error on both popular and non-popular
items had increased when compared to the baseline matrix factor-
ization algorithm on all the datasets. Another finding was that the
propensity estimation model chosen had a significant impact on the
performance of propensity-based unbiased estimation approaches.
We have used naive Bayes propensity estimation method for the
comparison as it gave us the least value of popularity bias. The other
methods such as user-item propensity gave us a good accuracy, how-
ever, the popularity bias was quite high. Another observation is that
the popularity bias was also reduced when asymmetric tri-training
was used when compared to matrix factorization based methods,
as shown in table 1.

As popular items appear frequently in the recommender sys-
tem’s results. So, in order for non-popular items to show up in the
recommender system’s results, their weightage must be increased
in some way. In the classification setting, the AdaBoost algorithm
internally boosts the weightage of wrongly categorised data points,
so we thought we’d give that a try in ours because we also want to
give non-popular items more weightage. Table 1 shows that after
applying Adaboost, the popularity bias has decreased on almost all
of the datasets as compared to previously implemented methods.
Inspired by how well Adaboost performed, we modified it to create
the FairBoost algorithm (Algorithm 1). When running the FairBoost
algorithm, we employed matrix factorization as our underlying base
learner. On all the datasets, Table 1 shows that our proposed al-
gorithm Fairboost significantly reduced the popularity bias when
compared to other algorithms. In the following steps, the FairBoost
algorithm tries to make non-popular items popular. We increase
the weights of non-popular items in our algorithm in the following
steps to make them popular, similar to how Adaboost increases the
weights of inaccurately classified data points. Figures 1a, 1b and 1c
show that the popularity bias decreases as the number of estimators
increases. This is because the FairBoost algorithm inherently gives
more weight to non-popular items, causing the graph to decrease.
In the case of the movielens dataset, we got a zig-zag graph, as
shown in Fig 1d. This is because the data is nearly fair; as the ta-
ble 1 shows, the error difference is extremely small, and ratings are
also uniformly distributed. Figures 2a, 2b, 2c and 2d show that the
overall inaccuracy increases slightly. This is due to the fact that in
succeeding steps, popular items weights are given less weight. As
a result, FairBoost Algorithm minimises the popularity bias in each
subsequent step while keeping the error increase within acceptable
bounds.

5 CONCLUSION AND FUTUREWORK
Adequate coverage of non-popular or long-tail items is critical
to any business’s success. Because almost all users are familiar
with popular items, a recommender system’s ability to recommend
non-popular items will determine how well it introduces users
to new experiences and products; however, it is well known that
recommender systems are biased towards popular items.

FAccTRec2021, 4th FAccTRec Workshop: Responsible Recommendation Ajay Gangwar and Shweta Jain

Datasets Algorithm Error Error on popular items Error on non-popular items Popularity Bias

Netflix Matrix factorization 1.0896 1.0675 1.1315 0.0639

Matrix factorization with IPS [27] 1.0798 1.236 1.297 0.0610

Asymmetric tri-training [24] 1.2165 1.1076 1.1585 0.0508

Adaboost [10] 1.1221 1.1087 1.1480 0.0393

FairBoost 1.1481 1.1373 1.168 0.0315

Movielens Matrix factorization 1.0268 1.0154 1.0272 0.0117

Matrix factorization with IPS [27] 1.0199 1.1630 1.1728 0.0098

Asymmetric tr-training [24] 1.1452 1.1519 1.1450 0.0069

Adaboost [10] 1.10544 1.1011 1.1055 0.0080

FairBoost 1.0577 1.0478 1.0511 0.0025

Amazon Matrix factorization 1.1468 1.2201 1.1223 0.0977

Matrix factorization with IPS [27] 1.1432 1.2264 1.3140 0.0876

Asymmetric tr-training [24] 1.1509 1.2126 1.1304 0.0822

Adaboost [10] 1.1581 1.1821 1.1502 0.0319

FairBoost 1.2984 1.3286 1.3225 0.0119

Yahoo Matrix factorization 1.4729 1.5436 1.4700 0.0736

Matrix factorization with IPS [27] 1.3969 1.5876 1.5203 0.0673

Asymmetric tr-training [24] 1.5693 1.6111 1.5676 0.0434

Adaboost [10] 1.5712 1.6107 1.5696 0.0411

FairBoost 1.5021 1.5749 1.4991 0.0327

Table 1: Results

(a) Netflix dataset (b) Yahoo dataset (c) Amazon dataset (d) Movielens dataset

Figure 1: Number of estimators vs Popularity Bias

(a) Netflix dataset (b) Yahoo dataset (c) Amazon dataset (d) Movielens dataset

Figure 2: Number of estimators vs Error Plot

This paper proposed and compared FairBoost, an adaptive boosting
algorithm, to previously implemented approaches for mitigating
popularity bias in recommender systems. We also proposed a new
metric to quantify popularity bias, because the error metric was
insufficient for this purpose. On the four datasets, we were able to
demonstrate that the FairBoost algorithm significantly reduces the
popularity bias compared to other algorithms while keeping the

error as low as possible. One exciting area for future study would be
to test this algorithm on other sorts of biases that might exist in the
system such as selection bias, gender bias, and so on. Another thing
we can try is to test the algorithm with different base learners.

An Adaptive Boosting Technique to Mitigate Popularity Bias in Recommender System FAccTRec2021, 4th FAccTRec Workshop: Responsible Recommendation

REFERENCES
[1] 1998. MovieLens 100K Dataset. https://grouplens.org/datasets/movielens/.
[2] 2006. Netflix Prize data. https://www.kaggle.com/netflix-inc/netflix-prize-data.
[3] 2008. R2 - Yahoo! Music User Ratings of Songs with Artist, Album, and Genre

Meta Information. https://webscope.sandbox.yahoo.com/.
[4] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling

Popularity Bias in Learning-to-Rank Recommendation. In Proceedings of the
Eleventh ACM Conference on Recommender Systems (Como, Italy) (RecSys ’17).
Association for Computing Machinery, New York, NY, USA, 42–46. https://doi.
org/10.1145/3109859.3109912

[5] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2019. Managing
popularity bias in recommender systems with personalized re-ranking. arXiv
preprint arXiv:1901.07555 (2019).

[6] Ludovico Boratto, Gianni Fenu, and Mirko Marras. 2021. Connecting user and
item perspectives in popularity debiasing for collaborative recommendation.
Information Processing & Management 58, 1 (2021), 102387.

[7] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. 2009. Building classifiers
with independency constraints. In 2009 IEEE International Conference on Data
Mining Workshops. IEEE, 13–18.

[8] Andrew Collins, Dominika Tkaczyk, Akiko Aizawa, and Joeran Beel. 2018. Posi-
tion bias in recommender systems for digital libraries. In International Conference
on Information. Springer, 335–344.

[9] Michael D Ekstrand and Daniel Kluver. 2021. Exploring author gender in book
rating and recommendation. User Modeling and User-Adapted Interaction (2021),
1–44.

[10] Nadav Golbandi, Yehuda Koren, and Ronny Lempel. 2011. Adaptive Bootstrapping
of Recommender Systems Using Decision Trees. In Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining (Hong Kong, China)
(WSDM ’11). Association for Computing Machinery, New York, NY, USA, 595–604.
https://doi.org/10.1145/1935826.1935910

[11] Huifeng Guo, Jinkai Yu, Qing Liu, Ruiming Tang, and Yuzhou Zhang. 2019. PAL: a
position-bias aware learning framework for CTR prediction in live recommender
systems. In Proceedings of the 13th ACM Conference on Recommender Systems.
452–456.

[12] Jin Huang, Harrie Oosterhuis, Maarten de Rijke, and Herke van Hoof. 2020.
Keeping Dataset Biases out of the Simulation: A Debiased Simulator for Rein-
forcement Learning based Recommender Systems. In Fourteenth ACM Conference
on Recommender Systems. 190–199.

[13] Vasileios Iosifidis and Eirini Ntoutsi. 2018. Dealing with bias via data augmenta-
tion in supervised learning scenarios. Jo Bates Paul D. Clough Robert Jäschke 24
(2018).

[14] Vasileios Iosifidis and Eirini Ntoutsi. 2019. Adafair: Cumulative fairness adaptive
boosting. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management. 781–790.

[15] Faisal Kamiran and Toon Calders. 2009. Classifying without discriminating. In
2009 2nd International Conference on Computer, Control and Communication. IEEE,
1–6.

[16] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classification without discrimination. Knowledge and Information Systems 33, 1
(2012), 1–33.

[17] Iordanis Koutsopoulos and Maria Halkidi. 2018. Efficient and Fair Item Coverage
in Recommender Systems. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic
and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 912–918.

[18] Masoud Mansoury, Himan Abdollahpouri, Jessie Smith, Arman Dehpanah,
Mykola Pechenizkiy, and Bamshad Mobasher. 2020. Investigating potential
factors associated with gender discrimination in collaborative recommender
systems. arXiv preprint arXiv:2002.07786 (2020).

[19] Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. 2019.
Dissecting racial bias in an algorithm used to manage the health of populations.
Science 366, 6464 (2019), 447–453.

[20] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva.
2020. Correcting for selection bias in learning-to-rank systems. In Proceedings of
The Web Conference 2020. 1863–1873.

[21] Javier Parapar and Filip Radlinski. 2021. Diverse User Preference Elicitation with
Multi-Armed Bandits. In Proceedings of the 14th ACM International Conference on
Web Search and Data Mining. 130–138.

[22] J. McAuley R. He. 2016. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering.

[23] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. 2017. Asymmetric tri-
training for unsupervised domain adaptation. In International Conference on
Machine Learning. PMLR, 2988–2997.

[24] Yuta Saito. 2020. Asymmetric Tri-training for Debiasing Missing-Not-At-Random
Explicit Feedback. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 309–318.

[25] Marcy Gordon San Ramon. 2020. Ten states sue Google for ’anti-competitive’
online ad sales. https://brandequity.economictimes.indiatimes.com/news/digital/
ten-states-sue-google-for-anti-competitive-online-ad-sales/79771479.

[26] Robert E Schapire. 1999. A brief introduction to boosting. In Ijcai, Vol. 99. Citeseer,
1401–1406.

[27] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning
and evaluation. In international conference on machine learning. PMLR, 1670–
1679.

[28] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2219–2228.

[29] Harald Steck. 2010. Training and testing of recommender systems on data missing
not at random. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining. 713–722.

[30] Harald Steck. 2011. Item popularity and recommendation accuracy. In Proceedings
of the fifth ACM conference on Recommender systems. 125–132.

[31] Himank Yadav, Zhengxiao Du, and Thorsten Joachims. 2019. Fair learning-to-rank
from implicit feedback. arXiv preprint arXiv:1911.08054 (2019).

[32] Ziwei Zhu, Jianling Wang, and James Caverlee. 2020. Measuring and mitigating
item under-recommendation bias in personalized ranking systems. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 449–458.

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://webscope.sandbox.yahoo.com/
https://doi.org/10.1145/3109859.3109912
https://doi.org/10.1145/3109859.3109912
https://doi.org/10.1145/1935826.1935910
https://brandequity.economictimes.indiatimes.com/news/digital/ten-states-sue-google-for-anti-competitive-online-ad-sales/79771479
https://brandequity.economictimes.indiatimes.com/news/digital/ten-states-sue-google-for-anti-competitive-online-ad-sales/79771479

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Works
	3 The Model
	3.1 Quantifying popularity bias
	3.2 Proposed Algorithm : FairBoost

	4 Experimental Analysis
	4.1 Experimental setup
	4.2 Results and Discussion

	5 Conclusion and Future Work
	References

