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Abstract
Course selection is challenging for students in higher educational insti-
tutions. Existing course recommendation systems make relevant sugges-
tions to the students and help them in exploring the available courses.
The recommended courses can influence students’ choice of degree pro-
gram, future employment, and even their socioeconomic status. This
paper focuses on identifying and alleviating biases that might be present
in a course recommender system. We strive to promote balanced op-
portunities with our suggestions to all groups of students. At the
same time, we need to make recommendations of good quality to all
protected groups. We formulate our approach as a multi-objective op-
timization problem and study the trade-offs between equal opportunity
and quality. We evaluate our methods using both real-world and syn-
thetic datasets. The results indicate that we can considerably improve
fairness regarding equality of opportunity, but we will introduce some
quality loss. Out of the four methods we tested, GHC-Inc and GHC-Tabu
are the best performing ones with different advantageous characteristics.

Keywords: User group fairness, Course recommendation, Equal opportunity,
Fairness in recommendation
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1 Introduction
Higher education is valuable but it involves a significant financial cost that
increases every year [1]. It is important for institutions to provide value to
their students, so they often employ machine learning supporting tools. Many
schools provide course recommendation systems (CRS) to facilitate course
selection [2–8]. Existing CRSs empower learners to explore the curriculum,
make informed decisions and plans while scaling advice to large cohorts [9–
11]. They help students to choose relevant elective courses in their curriculum
according to different criteria, e.g., their individual performance, preferences,
interests, and needs. Such systems influence students’ choices, degree plan, and
ultimately, their career paths.

Machine learning models are built based on data, but often, this data is
highly biased, resulting in outcomes that replicate existing biases [12]. Such
biases can be harmful to a model, leading to discrimination against certain
groups of users [13]. Users form different protected groups based on their
protected attributes, which include gender, age, race, color, or disability. Ed-
ucational data is not an exception; the simplest example is the gender bias
present in historical data related to student enrollment and performance.
Women have been historically underrepresented in science, technology, engi-
neering, and mathematics, while education, health, and welfare are their most
common fields of study [14]. Higher education could play a key role in improv-
ing gender equality. As course recommendation approaches get embedded in
operational systems that drive decision-making, it is important to ensure that
they do not discriminate against any group of users. CRSs need to be useful
and beneficial to all students regardless of their protected attributes.

A body of work in recommender systems considers the case of fairness
under the spectrum of multiple stakeholders [15–17]. They study the benefit
trade-off among the system, the vendors (i.e., the items), and the users. Other
researchers consider fairness on the item side. They are interested in the diver-
sity of items in the recommendation list of each user and attempt to impose
equal exposure of different groups of items [18–22]. Such interpretations of fair-
ness are not sufficient to ensure the equal treatment of the students in a CRS
as they do not consider the existence of different groups of users.

Our motivation is driven by the equality of educational opportunity [23]. Ac-
cording to this ideal, every student should have equal educational opportunities
irrespective of race, gender, socioeconomic class, sexuality, or religion. To this
end, we propose FaiREO, a new type of fairness for course recommendation
systems. We assume that course recommendation involves a notion of oppor-
tunity. That is, by recommending a course, a recommender system provides
to a student the opportunity to review the course’s contents and consider tak-
ing it, something that they might not have done otherwise. This course could
open a new path for them to explore and lead them to a job with better ben-
efits. FaiREO promotes that each student group receives equally high-quality
recommendations and equal opportunities to consider a particular course. It
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also alleviates the feedback loop bias occurring when users consume biased rec-
ommendations and generate biased data that are later used to generate new
(biased) recommendations.

FaiREO operationalizes this by recommending each course at fair rates
across the different student groups. We introduce four greedy hill-climbing al-
gorithms, GHC(Gc), GHC(NoNe), GHC-Inc, and GHC-Tabu, that work in
two phases. First, they make an initial assignment of recommended courses to
users, and then, they refine this initial solution in order to improve the over-
all fairness, according to a multi-objective function. This function captures
and balances two fairness-related, but often conflicting goals: equality in rec-
ommendation quality and equality of opportunity offered to students across
different protected groups.

This paper’s contributions include:
(1) a new definition of fairness in recommender systems, FaiREO, that

captures the equality of opportunity,
(2) a multi-objective optimization problem formulation to consider FaiREO

in course recommendation (CR),
(3) a set of steepest-ascent hill climbing algorithms to solve this problem,
(4) a methodology for generating synthetic datasets suitable for this prob-

lem.
The experimental evaluation with synthetic and real data from the University
of Minnesota shows the behavior and effectiveness of the proposed algorithms.
We can mitigate or even eliminate unfair recommendations w.r.t. opportu-
nity. In the process, we may introduce unfairness in terms of unbalance in the
quality of recommendations across the student groups.

The rest of the paper is organized as follows: Sect. 2 presents our defini-
tion of fairness and our problem statement. Sect. 3 reviews the existing work
in fairness on recommender systems, as well as other problems that could be
related to our problem. In Sect. 4, we formulate our objective functions and
present our developed algorithms. Sect. 5 details all the information regard-
ing our experimental setup, and Sect. 6 presents and analyzes our evaluation
results. Finally, Sect. 7 summarizes our findings and concludes our paper.

2 Problem Formulation

2.1 Assumptions and Notation
In this work, we make the following assumptions:

(Assumption 1) The student body has at least one protected at-
tribute based on which we can form protected groups of students (student
groups). When there are more than two protected attributes that we need
to consider, we create a protected group for each combination of values
that they take.
(Assumption 2) We have access to a method that computes the rec-
ommendation scores for the available courses a student might take next
semester. The scores accurately capture how well a course matches the
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Table 1: Notation.

i, j Index for students, courses.
p, q Index for student groups, course buckets.
S, C Set of all students, courses.
n,m Number of all students, courses.
gs, gc Number of student, course subsets formed.
C1,...,gc Subset of courses.
S1,...,gs Protected groups of students.
Y The (n×m) recommendation score matrix of the optimal fairness-unaware

model.
yi,j Score of course j and student i.
Ri Set of recommended courses for student i.
k Number of courses we recommend, i.e., |Ri|.
R Recommendation solution R = [R1, . . . ,Rn].
n(j) Number of students to whom we recommend course j, i.e., |{i s.t. j ∈

Ri}|.
np Number of students in the Sp group.
n
(j)
p Number of students in Sp to whom we recommend course j, i.e., |{i ∈

Sp s.t. j ∈ Ri}|.
X The (m × gs) matrix with the fair distribution of the course recommen-

dations.
xj,p Fair ratio of the recommendations of course j to the student group Sp.

student’s academic level, background, and knowledge. Courses that the
student has already taken receive zero recommendation scores. We will
refer to the recommendation solution that suggests the k highest scored
courses for each student as the HSC solution.
(Assumption 3) Course recommendations are fair when they are
distributed proportionally to the protected groups according to their pop-
ulation. Alternatively, the system administrators may have insight into
the desired distribution of recommendations that we consider to be fair.
In any case, the fair recommendation distribution we need to achieve for
each course is described by the fair distribution matrix, X.

Notation. For the rest of the paper, we will adopt the following nota-
tion. Capital calligraphic letters will be used for sets. Lower bold case letters
will indicate vectors, e.g., o, and their elements will be denoted by regular
lower case letters, e.g., op. Capital bold letters correspond to matrices, e.g., Y,
and their indexed elements will be denoted by regular lower case letters, e.g.,
yi,j . We use a superscript in parenthesis to refer to the students to whom we
recommended the course with the corresponding index. For example, n(j) is
the number of students that were recommended course j. Table 1 defines and
presents the symbols we use.

2.2 Fairness in Recommendation with Equality of
Opportunity

Course selection is often affected by existing biases and stereotypes, as well as
other people’s actions and opinions. As a result, course enrollment data, which
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is the input data of a CRS, exhibits historical, stereotype, and social biases [13].
A CRS may propagate these biases to the recommendation output. For exam-
ple, such a system would rarely recommend coding classes to female students
in a computer science department as computer programming is stereotypically
considered a male-dominated area. Such a programming class could have pro-
vided Anna with the experience needed for a software engineering job. A fair
CRS would ensure that students in all protected groups are offered the same
opportunities; a course’s recommendations are distributed proportionally to
the protected groups.

Our interest is on equal opportunity, but we still need to consider our
initial goal in a CRS: support students by offering them recommendations of
high quality. While these two aspects add to the value of a recommendation
system, they can be in conflict. We assume that the HSC solution offers the
highest quality output, but there are no guarantees for the equality of the
opportunities it offers. On the other hand, if we modify the recommendation
lists to satisfy equality of opportunity, some recommendations will be of lower
quality. As a result, there is a need to balance these two goals. We need to
ensure that the equality of opportunity does not come at the expense of the
equality in offering good recommendations to the protected groups.

Motivated by the above discussion, we introduce a new type of group fair-
ness, referred to as fairness of equality of opportunity (FaiREO), which is
defined as follows.

Definition Let S be a population of students, that can be divided based on the
value of one or more protected features into gs groups, S1, . . . ,Sgs , with cardinalities
n1, . . . , ngs , respectively. A course recommendation system satisfies fairness for
equality of opportunity, FaiREO, when:

1. Each student group p gets a share of each course’s recommendations relative to
its corresponding fair ratio, xj,p. Let n

(j)
p be the number of students in group

Sp to whom we recommend course j. Recommendations w.r.t. course j offer
equal opportunities when:

n
(j)
p

n(j)
≈ xj,p, ∀p ∈ {1, . . . , gs}. (1)

2. All student groups equally receive high quality recommendations with respect
to the courses’ recommendation scores, i.e.,∑

i∈Sp

∑
j∈R′

i

yi,j ≈
∑
i∈Sp

∑
j∈Ri

yi,j , ∀p ∈ {1, . . . , gs}, (2)

where R′i is a set of recommended courses for student i, Ri the set of courses
recommended based on the HSC solution, yi,j denotes the score of student i in
course j, and Sp denotes the students in the protected group p.

Eq. 1 ensures that the distribution of a course’s recommendations to the
student groups matches the determined fair distribution of the recommenda-
tions to the student groups. In Eq. 2, we ask that the quality of a solution
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R′ (measured by the sum of the recommendation scores of the courses recom-
mended) is similar to the quality of the HSC solution for each student group
Sp. We assume that there is no underlying reason why no courses would be a
good match for students in a specific student group. As a result, the quality
of HSC solution will be similar for all the student groups. If the Eq. 2 is true,
the solution R′ will be of similar quality for all student groups.

2.3 Flexibility of the formulation
The FaiREO definition in Sect. 2.2 can accommodate many different scenarios
depending on what we consider the fair distribution of the courses, X, to be.
In every case, each row of X will sum up to one, i.e.,

∑gs
p=1 xj,p = 1, ∀j ∈ C.

• Population-driven distribution. As an initial starting point or in
absence of insights about the desirable distribution of the course recom-
mendations to student groups, we could set

xj,p =
np
n
, ∀j ∈ C, ∀p ∈ {1, . . . , gs}. (3)

That would set the fair distribution to match the underlying distribu-
tion of the population to the student groups. In this case, all the rows of
the X matrix will be the same.

• Coarse-grained distribution. Instead of using the population distri-
bution to define xj,p, the department can decide what is the desirable
distribution for all the courses. For example, if equally recommending a
course to the student groups is not realistic, the department can assign
an arbitrary fair recommendation ratio for all the courses in a depart-
ment. This approach can potentially be less strict but more likely to be
achieved in reality. It could assist the achievement of the department’s
(i.e., system’s) goals regarding the diversity in course registration.

• Fine-grained distribution. In its most general form, we have the ability
to assign different fair distributions for each course. While this formulation
allow us to define different fair distributions for the courses, it would re-
quire detailed insights and considerable fine-tuning on the administrator’s
side.

3 Related Work
In this section we explain how our problem relates to similar problems with
respect to fairness. We have identified three main classes of problems closely
related to our problem and fairness issues, and we present briefly representative
work in the following subsections. As a side note, this paper refers to user
group fairness for course recommendation, which is a different problem from
group recommendation, where you aim to recommend the same set of items
to every user in a group. In the problem we examine, we offer individual and
personalized course recommendations to the users (in our case, the students)
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which need to be of as high quality as possible, while they are fairly distributed
across the different student protected groups.

3.1 Fair Recommender Systems
Fairness in recommender systems is relatively new and each work presents its
own point of view on the subject. A body of work studies fairness in ranking
lists [18–22, 24, 25], where the goal is to provide diverse representation of the
items, i.e., equal exposure of different groups of items. A ranking is considered
to be unfair when specific protected groups of items are under-ranked and as a
result they receive lower visibility in the system. This corresponds to fairness
with respect to items. Beutel et al., [19] also account for user engagement. They
measure the differences in accuracy across the groups of items based on pair-
wise comparisons. According to their definition of pairwise fairness, assuming
that two items have received the same user engagement, then both protected
groups should have the same likelihood of a clicked item being ranked above
another relevant unclicked item. Deldjoo et al. [26] proposed a generalized
cross entropy measure of fairness that was based on a fair distribution of a
model’s performance over items or users. Yao et al. [27] propose fairness met-
rics so that the error is fairly distributed across users. The work in [18] studies
fairness in search engines of people, such as job recruiting, companionship, or
friendship search. In such cases, an outcome is unfair if members of one pro-
tected group are systematically under-ranked than those of another protected
group. The recommended candidates are determined by a ranking algorithm.
The proposed method to remove the bias is a post-processing process. All the
above works are different from ours as we do not account for diversity in the
recommendation lists. In the course recommendation domain, we recommend
a limited number of courses. Item diversity does not guarantee group fairness
with respect to equality of opportunity for the student groups.

The most relevant work is that of Marras et al. [28], which is also based on
equality of learning opportunities in content recommendation. Different desir-
able properties of the recommended items and their measures are proposed,
and the goal is for every list of recommendations to satisfy them above some
threshold. While this approach is based on the same principle, their final out-
come is different, as they focus on individual fairness. Our goal in this paper
is to recommend each course fairly across the user protected groups. We aim
at ensuring user-side fairness in a CRS and we consider protected groups of
users/students, and not items.

Another body of work studies fairness across multiple stakeholders in
recommendations: the system, the suppliers/vendors/providers and the user-
s/consumers [15–17, 29]. While these works study the trade-off between the
different stakeholders’ benefits, we are interested in user-side fairness only. We
consider ways to improve fairness while harming as little as possible the rele-
vance of recommended items, both of which are benefits for a single stakeholder
that compete with each other. From these approaches, the most relevant notion
is C-fairness [29]. It considers the disparate impact of the recommendation on
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protected groups of consumers. The proposed method, a modification of the
Sparse Linear Method (SLIM), does not directly balance the recommendation
lists. Rather, it balances the neighborhoods based on which the suggestions
are generated for all the users. While their evaluation metric, equity score,
captures a similar notion as the first part of our FaiREO definition, it can
be computed only per item group (or item/course in our case) and only for
two protected groups. As a result, it cannot evaluate the overall fairness of a
recommendation solution.

Apart from the algorithmic fairness, issues may also arise from biases in
the input data which the recommender system amplifies [22, 30]. Tsintzou et
al., [31] proposed a metric called bias disparity to measure the difference be-
tween the bias towards different movie genres in user profiles (input) and in
resulted recommendations (output). A similar work proposed a group-based
metric to compare the preference ratio in the input and output data (recom-
mendation lists) and quantify the degree to which recommendation algorithms
may propagate any biases [32]. More recently, researchers have also studied
representations that do not expose sensitive feature information in the user
modeling process [33].

3.2 Fair Resource Allocation
In the Fair Resource Allocation or Fair Division problem, we want to fairly
divide a resource or goods to agents with different preferences over the re-
source [34]. In the course recommendation context, we could consider the
courses as the resources, the students as the agents and the recommendation
scores as the expressed preferences of the agents towards the goods. Under this
setting, group fairness has been studied in the form of envy-freeness [34–36].
In an assignment, a group is treated fairly when each agent has no envy for
the goods assigned to other agents; everyone gets what they value the most. In
our case, this is already achieved by the HSC solution which is an envy-free so-
lution. In order to ensure group fairness, we want to refine this initial solution
and allocate/recommend different courses equally across the protected groups.

In certain works [37, 38], the notion of group fairness deals with settings in
which the members of each group are allocated the same set of resources, which
does not apply in our case of protected groups, as each student of one group
can receive different recommendations from the others in the same group.
Aleksandrov et al., [39] assume that each group has an aggregate preference for
a specific bundle of goods of another group and they consider arithmetic-mean
group preferences; a feature that does not apply in the present work.

3.3 Fair Course Allocation
According to the Course Allocation problem [40], we have a set of students with
preferences to courses, a set of courses with preferences to students (priority or-
derings over the students from the course administrator), and each course has a
specific predefined capacity; the goal is to allocate students to seats of courses.
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Course Allocation is an instance of the combinatorial assignment problem if we
consider no preferences on the courses side (one-sided preferences) [41]. In this
domain, a highly unfair outcome could lead to some students assigned to their
most preferable courses and some other students assigned to their least ones
or even to zero courses [41]. Diebold et al., [40] compared two stable match-
ing algorithms to a first-come-first-serve approach, a mechanism used in many
institutions. A matching is considered stable when there is no student-course
pair, such that both prefer one another to their current assignment [42]. In
a more recent work, Diebold et al., [42] evaluated multiple matching mecha-
nisms with real data in the context of course allocation with indifferences-ties
in school preferences. This notion of fairness corresponds to individual and
not group fairness. Additionally, in the Fair Course Recommendation problem,
there are no restrictions (such as the capacity of a course) other than trying
to maintain the highest possible quality of the recommendation.

4 Proposed Methods
Fair course recommendation according to FaiREO is a multi-objective opti-
mization problem, that simultaneously tries to satisfy both conditions of equal
opportunity and quality, as described in Section 2.2. We define two different
objective functions (O and Q) to capture each condition, and then we linearly
combine them into our overall objective function.

4.1 Opportunity Objective
We quantify the first condition of fairness by using the mismatch between
the quantities of Eq. 1, i.e., the distance of course j from the fair ratio
that corresponds to protected group p, xj,p. We compute the fraction of the
recommendations that introduce unfairness in protected group p as:

op =
1

npk

m∑
j=1

(
n(j)

∣∣∣∣n(j)p

n(j)
− xj,p

∣∣∣∣
)
, (4)

where n is the number of students,m is the number of courses, np is the number
of students belonging in group p, k is the number of courses we recommend
to the student, n(j) is the number of students to whom we recommend course
j, and n(j)p is the number of students from group p to whom we recommend
course j. The term of the absolute difference captures how far away we are
from balancing the opportunities offered in group p regarding course j. The
term in the parenthesis corresponds to the number of students that introduce
this unbalance in the recommendations of j to group p. Note that the overall
sum is normalized with the number of recommendations generated for group
p (k courses for every one of the np students), in order for op to be invariant
of the group size. The opportunity objective function targets to minimize the
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unfairness existing in the recommended lists of courses:

O = min ‖o‖l , where o = [o1, . . . , ogs ]. (5)

The overall opportunity objective is measured by the l-norm of the vector o.

4.2 Quality Objective
To quantify the quality objective, we use the recommendation scores of the
courses. We measure the quality of any assignment of courses to students by
the summation of the recommendation scores of the suggested courses. We
will capture how different is the quality of a solution compared to the solution
that recommends the highest scored courses to the students (HSC solution).
We formulate the fraction of quality loss for each group p as:

qp =

∑
i∈Sp

(∑
j∈Ri

yi,j −
∑

j∈R′
i
yi,j
)∑

i∈Sp
∑

j∈Ri
yi,j

, (6)

where R′i is a set of recommended courses for student i, and Ri the set of
courses recommended based on the HSC solution. yi,j is the recommendation
score of student i in course j, and Sp is the subset of students in group p.
The summation in the numerator is the difference in quality between the two
solutions. We normalize it to make it invariant of the size of the protected
groups and their quality. The quality objective function that minimizes the
quality loss is:

Q = min ‖q‖l , where q = [q1, . . . , qgs ]. (7)
The overall quality objective is measured by the l-norm of the vector q.

4.3 Combined Objective Function
There is a trade-off between the two objectives, as optimizing for the opportu-
nity objective will replace the highest-scored courses with others that have the
same or lower scores. This may result in recommendations with lower-scored
courses than the HSC solution, which will incur quality loss. The combined
objective function is:

V = aO + (1− a)Q. (8)
The parameter α ∈ [0, 1] weighs the importance of each objective. Note that
when α takes a marginal value (0 or 1), all the weight is placed in one objective
(Q orO). Thus, in these cases, it is very likely that unfairness will be introduced
from the other unpenalized objective (O or Q, respectively). We can use any
l-norm greater than 1, which penalize high values, to aggregate the vectors o
and q for all student groups.

4.4 Greedy Hill Climbing (GHC) Algorithms
The fair course recommendation is a multi-objective, combinatorial opti-
mization problem described by Eq. 8, and it involves a discrete but large
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configuration space. That space cannot be exhaustively searched, as there are(
m
k

)n possible combinations to examine, where n,m, and k are the number of
students, courses, and recommended courses per student, respectively.

Our approach described in Alg. 1 uses the steepest ascent hill climbing
technique, with a greedy strategy for performing local search. It includes two
phases: 1) the assignment of an initial solution, and 2) the refinement of this
solution in order to reach a solution that better minimizes the objective func-
tion, V . The refinement consists of a series of moves that the algorithm makes
towards a fairer solution. At every step, it performs a single change in one
student’s recommendation list by replacing a single course. Iteratively, it con-
siders a neighborhood of solutions that it can reach by making a single move
from the current solution, and greedily selects the move that minimizes V . The
algorithm terminates when it cannot find a single move that improves V . It
will reach one local minimum out of many that might exist in such a combina-
torial optimization problem. Additional details about these steps are provided
in the subsequent sections.

4.4.1 Initial solution

We first need to decide which will be the initial solution for our refinement
algorithm. A common practice is to start from a good solution and try to
improve it. There is one solution that minimizes the quality objective; that is
the HSC solution. On the other hand, there are many solutions that minimize
the opportunity objective without considering the value of recommending a
particular course to a student. Since we have access to the recommendation
scores of a CRS model (assumption 2, Sect. 2.1), we can use HSC solution as
the initial assignment. By design, HSC achieves Q = 0, which is the global
minimum w.r.t. the Q objective. We start from the HSC assignment and refine
it to support the notion of FaiREO fairness.

4.4.2 Moves

A fundamental element of search methods is the type of moves allowed to
transition from a feasible solution to another one. Given a solution, we re-
move a course from the recommendation list of a single student, and replace it
with another course. This move can be fully described by a triplet (i, jout, jin),
where jout and jin are the courses we remove from, and introduce to the rec-
ommendation list of student i, respectively. A move is positive when it results
in a solution with lower objective function V , and negative, otherwise.

4.4.3 Neighborhood of solutions

Assuming that we recommend courses to students based on the solution R′, we
need to specify the neighborhood of solutions that the algorithm will evaluate
in order to make a move that improves the combined objective function, V ,
the most. The corresponding set of candidate moves is denoted by MR′ . We
study two different ways to define them by specifying the allowed values for
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Algorithm 1 Greedy Hill Climbing (GHC)

Require: R (Recommended courses for every student.)
Require: α (Weight of the opportunity objective, needed to compute the V

objective.)
Require: MR (Allowed moves we can make from solution R according to

GHC(None) or GHC(GC).)
1: V ← Objective value of solution R.
2: R′ ← R . Current solution.
3: MR′ ← {(i, jout, jin)} . Set of possible moves to reach neighboring

solutions.
4: Vt ← ∅,VT ← ∅ . Visited course and student groups while not finding an

improved solution.
5: while |Vt| < m do
6: V ′ ← Objective value of solution R′.
7: for (i, jout, jin) ∈MR′ do . Possible moves.
8: R′′ ← R′

9: R′′i ← R′′i − {jout}+ {jin}
10: V ′′ ← Objective value of solution R′′.
11: if V ′′ ≤ V ′ then . Store the best move.
12: V ′ ← V ′′

13: (i′, j′out, j
′
in)← (i, jout, jin)

14: end if
15: end for
16: if V ′ ≤ V then . Make a move.
17: R′i′ ← R′i′ − {j′out}+ {j′in}
18: UpdateMR′ .
19: V ← V ′

20: Vt ← ∅,VT ← ∅
21: else
22: Update Vt,VT . . Add the examined target course/student group

in the visited list.
23: end if
24: end while
25: return R′

(i, jout), which result in two algorithms. Both of them follow the steps of the
Alg. 1, but examine different set of moves (i, jout, jin), MR′ . Given a pair of
student and recommended course inR′i, (i, jout), we examine all the courses not
currently recommended to the student i as candidate courses, i.e., jin ∈ C−R′i,
to complete the set of moves inMR′ .

The simplest solution is to examine all possible one-step-away solutions
from the existing solution. This is a full-blown search that will consider chang-
ing all student-course pairs (i, jout), where i ∈ S, and jout ∈ R′i. In this
method, GHC(NoNe), there is essentially no neighborhood specified. If the
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algorithm examines all moves inMR′ and cannot find a positive one that im-
proves the V objective, it terminates. In this case, the Algorithm 1 will reach
lines 19–20, and Vt,VT will include all the courses and student groups, respec-
tively. As a result, in the next iteration, the while loop in line 5 will be false
and the algorithm will terminate.

We also use some heuristics for defining a neighborhood in order to avoid
searching all the space every time. Rather, we examine a smaller set of moves,
hoping that the next best move will belong there. In the GHC(Gc) method,
we consider moves altering only the recommendations of students in a specific
(target) protected group T , i ∈ ST , for a specific (target) course t, jout = t.
We choose the target protected group T to be the one that exhibits the highest
opportunity unfairness, i.e., the most severe unbalance in recommendations:

T = argmax
p∈{1,...,gs}−VT

op,

where VT is the set of student groups we have already visited and considered
that do not result in positive move. The target course t is the one that is
over-recommended the most among the students of group T , i.e.,

t = argmax
j∈C−Vt

op,j , where op,j = n(j)

(
n
(j)
p

n(j)
− xj,p

)
,

where Vt is the set of courses we have already visited that do not result in
positive move. op,j is the term in the parenthesis in Eq. 4 without the absolute
value. We select (i, jout) in such a way assuming that the student group T and
the course t have the most room for improvement during refinement. If the
algorithm cannot find a better solution, it adds t to the set of visited courses
Vt (Alg. 1, line 20) and finds the next target course to search. Once there are
no courses left to consider as target courses for T , we empty Vt, add T to VT
(Alg. 1, line 20), and explore the next target student group. The algorithm
terminates when we have visited all the student groups and courses but cannot
find a positive move.

4.4.4 Computational complexity of a move

In terms of computational complexity, with GHC(NoNe), we need to examine
the whole search space every time we make a move, which includes nk(m −
k) solutions. This reflects the fact that we need to consider changing each
recommendation (nk) with every course not currently recommended to the
student (m − k). To perform one move with GHC(Gc), we need to find the
target course t and protected group T , which entails examining ng+m elements
in the worst case. Then, we need to evaluate the moves within the specified
neighborhood which involves changing each recommendation of course t in
students of the group T if t ∈ R′i for i ∈ T , which includes n(t)T instances. In
total, the complexity of the GHC(Gc) algorithm is ng +m+ n

(t)
T (m− k).
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Figure 1: A diagram of the GHC-Inc method, which uses the GHC(Gc) al-
gorithm as its components. Both GHC-Inc and GHC(Gc) receive as input a
value of α, which weighs the importance between the opportunity and qual-
ity objectives, and a recommendation solution from a fairness-unaware model,
R. Their output is an updated recommendation solution, R′. GHC-Inc iter-
atively uses GHC(Gc), where it starts from an initial value α0 and gradually
increases its value by αstep. The output of GHC(Gc) at each step is fed to the
next model of GHC(Gc) as its initial recommendation solution.

4.5 Incremental GHC Algorithm (GHC-Inc)
We also propose another algorithm to optimize the overall objective function,
based on GHC(Gc). In the GHC-Inc algorithm, instead of optimizing for the
given parameter α, we start optimizing the objective function with a small
value of α′ ← α0. Once we reach a local minimum, we increment alpha by a
parameter αstep, and we further improve the current solution for the updated
value of α′ ← α′ + αstep. We repeat this until we reach the value of given
parameter α′ = α, as show in Figure 1. We gradually increase the importance
of the opportunity objective, in order to take careful steps in the beginning
that do not introduce a high quality loss. Our goal is to reach a more balanced
assignment with a lower Q objective.

4.6 Tabu-based GHC Algorithm (GHC-Tabu)
So far, the discussed algorithms stop exploring the solution space when they
have reached a local minimum, i.e., there is no single move that would improve
the current solution. However, in such a huge solution space, this might not
be the global minimum. To further explore the search space after this point,
we incorporate the idea of Tabu search in the GHC(Gc) algorithm. Whenever
there are no improving moves and GHC(Gc) would stop, the GHC-Tabu
algorithm performs the move that degrades the objective function the least. We
hope that by taking a negative move, we will get into a different neighborhood
of solutions that will drive us to a better local minimum. In order for the
algorithm to terminate, we control the number of negative moves that we allow
it to make.

We also need to ensure that the algorithm will not make the reverse move
on the next step, and return to the local minimum already visited. We use
the tabu list, a short-term memory list structure with the first-in-first-out
property, to store every move we made in order not to reverse it. A parameter
controls the tabu list size. We store the pair of student-course (i, jin) that we
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just updated and that we do not allow to take back. However, reversing a move
can sometimes lead to a better solution. We introduce an aspiration criterion
which allows us to make moves forbidden by the tabu list if they lead us to
a solution with lower objective function than the lowest objective achieved so
far.

5 Experimental Setup
In Sect.6, we will present the experimental results when we use as fair distri-
bution the population-based distribution. In this case, the fair ratio xj,p for
each course j is expressed by the Eq. 3.

5.1 Synthetic Datasets
We generated synthetic datasets to evaluate our approaches since we do not
have data regarding the students’ protected attributes. The kind of data that
that we need to generate are: 1. the student-course recommendation score
matrix Y ∈ Rn×m, where yi,j represents the recommendation score of course
j for student i estimated by any CRS, and 2. the partitioning of students into
protected groups, S1, . . . ,Sgs .

We want to create synthetic datasets whose characteristics align with these
of real-world datasets. Let us assume a matrix Y obtained from a CRS and
the corresponding solution when we recommend the highest scored courses
for each student. The fairness of this solution depends on the existence of
courses whose recommendation scores tend to be higher for a specific group of
students. In that case, these courses will be good candidates and systematically
suggested more times to one particular group than the rest. We model these
factors into our dataset generator, by introducing the notion of course buckets,
which correspond to a partition of the set of courses C. The number of course
buckets is controlled by the parameter gc. Each bucket of courses will have
different average recommendation score across the protected groups.

We model the relation between student groups and course buckets via a
matrixM ∈ Rgs×gc , such thatmp,q is the average value of the recommendation
scores of students in group p for courses in bucket q. We fill the first row of M,
M0, by sampling a normal distribution N(µM, dM) with mean value µM, and
standard deviation dM. We fill the remaining rows of M with a permutation
of the initial vector M0. This ensures that all students will have some high-
scored courses, and the recommendation quality across student groups will be
similar. Once we have generated matrix M, we can finally fill the matrix Y
by sampling the recommendation scores for students in group p and courses
in bucket q from a normal distribution N(µY = mp,q, dY). All in all, in order
to generate a dataset based on this process, we need to specify the following
parameters: number of course buckets gc, µM, dM for the initial vector of means
M0, and the standard deviation dY for the generation of Y.

This dataset generator is parameterized in order to create datasets of differ-
ent difficulty levels. This allows us to evaluate how our algorithm will operate
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under different settings. The difficulty of a dataset is controlled by how close
to each other are the mean values in M0, i.e., the standard deviation dM. The
further away the means are, the further away the scores of different protected
groups for a course bucket will be (and the less likely it will be to recom-
mend courses from this bucket to all student groups). It affects how many high
scores exist for every student in the resulting dataset. If there are many courses
with high scores for a student, then it will be more likely to find a move that
improves the opportunity objective without introducing a high quality loss.

We set the parameters as follows: n = 600,m = 60, gs = {2, 4}, gc = 4, dY =
0.3. We generated datasets of three difficulty levels: easy (Uni), medium
(Gauss(1, 0.1)), and hard (Gauss(1, 0.3)). For the datasets Gauss(1,
0.1) and Gauss(1, 0.3), we set µM = 1.0 and dM = {0.1, 0.3}, respectively.
In Gauss(1.0, 0.1), the means generated in M will be closer to each other
compared to Gauss(1.0, 0.3) datasets. When the means are spread out in
a wider range in the matrix M, the recommendation scores generated based
on that matrix will have different statistical characteristics. The Gauss(1.0,
0.3) datasets will be harder datasets to handle, and we expect to incur a
higher quality objective value. The easiest datasets are Uni, where all recom-
mendation scores yi,j are sampled from a uniform distribution in [0, 1], and
there are not courses with high scores by design. In total, we create six fam-
ilies of datasets; for three difficulty levels, and for two or four protected
groups. For every family of datasets, we create five versions of them, by using
different seeds to generate the matrices M and Y. In this way, we get to ex-
amine how sensitive are our models to input data with similar characteristics.
Figure 2 shows the heatmap of the recommendation scores for each student
(y-axis) and course (x-axis) in example datasets of each family.
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Figure 2: Heat maps of all the students’ recommendation scores for all courses
in each synthetic dataset.
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Table 2: Statistics of the ComptSci datasets regarding the total number of
students and their distribution over the three student groups we considered.

Fall 2014 Spring 2015 Fall 2015 Common Student Characteristics

n 188 170 112
HS 0.19 0.18 0.21 Minorities, low-income
HSAP 0.76 0.76 0.73 High-income
NAS 0.06 0.05 0.06 Low-income

5.2 Real Datasets
We collected data from the Computer Science and Engineering department in
the University of Minnesota. The data include the grades of undergraduate
students and span a period of 10 years, until the fall semester of 2015. We
only considered full-time students that actually graduated with a bachelor’s
degree. We used the last three semesters to test a recommendation system [4]
which was built using the rest of the data. We keep the recommendation scores
of the students in the test set, and use them as the matrix Y. We treat ev-
ery semester as a different dataset: fall 2014, spring 2015 and fall 2015, with
188, 170, 112 students and 59, 54, 55 courses, respectively. We will be referring
to these datasets as the ComptSci datasets.

The available data did not include any protected attributes that we could
consider for our experimental evaluation, so we used other student-related in-
formation (entry registration status and the number of credits transferred)
to simulate the socioeconomic status of the students. This led to three pro-
tected groups: high school students with less than 15 credits transferred (HS),
high school students with more than 15 credits transferred (HSAP), and those
coming from other institutions/colleges (NAS). High school students can take
Advanced Placement (AP) courses and transfer the credits earned to their
undergraduate program. Minorities and low-income students are underrepre-
sented in AP classes, and a low percentage of them actually take and pass
the AP exams [43, 44]. Regarding NAS students, we do not have information
about the institution where they transferred from. However, reports statisti-
cally show that almost half of NAS students come from 2-year colleges [45]
which are considered a major access point to 4-year institutions for minor-
ity and low-income students [46]. The fraction of students in our datasets
belonging in the HS, HSAP, and NAS protected groups is shown in Table 2.

5.3 Model Parameters
Regarding the norm base, l, we use the L∞ norm. This norm considers only
the highest elements of the vectors o and q. L∞ is a strict norm, that forces
the student group with the highest objective values to get as low as possible.
This will limit the worst case scenario for the protected groups.

We need to specify the number of courses to recommend k, and the value of
α that controls the trade off between opportunity and quality loss objectives.
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We set k = 5, and α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. If α = 0, we
get the initial, fairness-unaware recommendation, HSC solution. If α = 1, we
would get a recommendation solution that does not consider at all the recom-
mendation scores, and it could end up being worse than random assignment
in terms of quality.

For the algorithm GHC-Inc, we set α0 = 0.1, αstep = 0.1. For the GHC-
Tabu, we set the number of negative moves to 150 and the tabu list size to
50.

6 Experimental Results
The main experimental results are presented in Figures 3 – 6. In this section,
any numbers related to the opportunity, quality, or overall objective values
have been multiplied by 100 so that the quantities correspond to percentages.

Figure 3 shows the scatter plots between the opportunity and quality ob-
jectives for the synthetic and ComptSci datasets. The x axis corresponds to
the highest percentage of quality loss that a student group may have. The
y axis corresponds to the highest percentage of unfair recommendations
w.r.t. opportunity for a student group.

Figures 4, 5, and 6 show how the opportunity and quality objectives are
distributed across the student groups for different values of α. Each subfigure
corresponds to one of the discussed methods, GHC(NoNe), GHC(Gc), GHC-
Inc, or GHC-Tabu. The positive side of the y-axis is the percentage of unfair
recommendations w.r.t. opportunity of a student group, while the neg-
ative side shows the percentage of quality loss that a student group has.
Figures 4 and 5 correspond to the synthetic datasets Gauss(1,0.3) with two
and four protected groups, respectively. Figure 6 refers to the ComptSci dataset
for the Fall ’14 semester.

6.1 Model performance
In the following paragraphs, we present the key findings regarding the perfor-
mance of the different methods we evaluate w.r.t. the opportunity, quality, or
overall objective values.

6.1.1 GHC-Tabu provides minor improvements over
GHC(Gc).

GHC-Tabu is an extension of GHC(Gc) which additionally performs negative
moves when it reaches a local minimum, to reach a better possible solution.
Based on our experimental results, GHC-Tabu performs the same or slightly
better than GHC(Gc). That is the reason why we do not include the results of
the GHC(Gc) algorithm in Figure 3. We are able to see how and when GHC-
Tabu improves the solution of GHC(Gc) in Figures 4, 5, 6, as they provide a
more detailed view of the results. Comparing the (b) and (d) subfigures, we
cannot notice any particular differences in the opportunity objective achieved
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(a) Synthetic datasets. Datasets in a row have increasing
difficulty.

(b) ComptSci datasets.

Figure 3: Scatter plots of the opportunity and quality objectives for the syn-
thetic and ComptSci datasets with α = {0.1, 0.3, 0.5, 0.7, 0.9}. For each dataset,
the scatter plot shows the objective values Q and O achieved for different val-
ues of α. A line connects points that correspond to consequent values of α.
The x axis is the quality degradation percentage (%) of the most degraded
group and the y axis is the percentage (%) of unfair recommendations of the
most impacted group w.r.t. opportunity. These two quantities are computed as
100×Q and 100×O, respectively. The (0, 0) point represents the ideal model
that is fair for all student groups in terms of both quality and opportunity.

by the two models. However, when α gets higher values, placing more weight
on the opportunity objective, we see that the quality objective of the different
student groups is uneven. Here is where GHC-Tabu helps. It manages to lower
the quality objective by improving the objective value of the worst-performing
student group. In the case of real datasets, that is harder to accomplish as
we see smaller improvements of the GHC-Tabu over the GHC(NoNe). The
reason for that is most likely the distribution of the recommendation scores
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(a) GHC(NoNe)
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(c) GHC-Inc
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(d) GHC-Tabu

Figure 4: Distribution of the opportunity and quality objective values for dif-
ferent values of α in the difficult synthetic dataset Gauss(1,0.3) with two
student groups for the four different methods. The values on the y-axis are
multiplied by 100 to correspond to percentages. The x-axis represents different
values of α. The positive side of the y-axis is the percentage of unfair rec-
ommendations w.r.t. opportunity of a student group, while the negative side
shows the percentage of quality loss incurred for a student group (multiplied
by -1). We also include the values for α = 0, which correspond to the initial
values of the objectives achieved by the HSC solution, with high opportunity
objective but zero quality objective.

of a student in the real datasets. In the real data, few courses will have high
scores, so it is not as easy to replace them with courses that will balance the
opportunity objective, if needed.

6.1.2 The proposed methods successfully improve the fairness
w.r.t. the opportunity.

For the synthetic datasets with two protected groups, the initial per-
centage of unfair recommendations w.r.t. the opportunity is on average
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(a) GHC(NoNe)
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(b) GHC(Gc)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

25
20
15
10

5
0
5

10
15
20
25
30
35
40
45
50

  
q p

   
 o

p  

o1
o2
o3
o4

q1
q2
q3
q4

(c) GHC-Inc
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(d) GHC-Tabu

Figure 5: Distribution of the opportunity and quality objective values for
different values of α in the difficult synthetic dataset Gauss(1,0.3) with four
student groups. The values on the y-axis are multiplied by 100 to correspond
to percentages. The x-axis represents different values of α. The positive side of
the y-axis is the percentage of unfair recommendations w.r.t. opportunity of
a student group, while the negative side shows the percentage of quality loss
incurred for a student group (multiplied by -1). We also include the values for
α = 0, which correspond to the initial values of the objectives achieved by the
HSC solution, with high opportunity objective but zero quality objective.

5.2%, 22.0%, 44.1% for the Uni, Gauss(1,0.1) and Gauss(1,0.3), respec-
tively. We manage to eliminate them with 0.1%, 2%, 10% of quality loss,
respectively. For four protected groups, we start from 10.0%, 25.1%, 45.0% of
unfair recommendations and we manage to eliminate them, while incurring
only 0.5%, 2.5%, 10.0% of quality loss, respectively. For the ComptSci datasets,
the initial percentage of unfair recommendations w.r.t. the opportunity is
16.5%, 14.9%, 22.1% for the Fall’14, Spring’15, and Fall’15, respectively. We
manage to decrease the opportunity objective to 2% or lower, with less than
10% of quality degradation.
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(b) GHC(Gc)
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(c) GHC-Inc
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(d) GHC-Tabu

Figure 6: Distribution of the opportunity and quality objective values for
different values of α for the ComptSci dataset of Fall ’14. The values on the
y-axis are multiplied by 100 to correspond to percentages. The student groups
HS, HSAP, and NAS are numbered as 1, 2, and 3 respectively. The x-axis
represents different values of α. The positive side of the y-axis is the percentage
of unfair recommendations w.r.t. opportunity of a student group, while the
negative side shows the percentage of quality loss incurred for a student group
(multiplied by -1). We also include the values for α = 0, which correspond to
the initial values of the objectives achieved by the HSC solution, with high
opportunity objective but zero quality objective.

6.1.3 The difficulty of the problem increases with the number
of protected groups.

When there are two protected groups, for small values of α, all methods manage
to achieve O = 0 (first row in Figure 3a). However, when the number of
protected groups increases (second row of Figure 3a and Figure 3b), this is not
always the case. In order to achieve low values of the opportunity objective,
we often need to use larger values of α.
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Figure 7: Percentage of recommendations affected by the algorithms in the
case of four protected groups. The green horizontal line represents the % of
unfair recommendations of the most impacted group w.r.t. opportunity in the
initial HSC solution.

6.1.4 Limiting the neighborhood of local search is beneficial.

We compare GHC(NoNe) with GHC(Gc)/GHC-Tabu to evaluate the neigh-
borhood selection presented in Sect. 4.4.3. GHC(NoNe) searches all possible
moves to select the best one, while GHC-Tabu’s local search is limited by the
target student group and target course. Their significant difference appears
in the case of four protected groups (second row in Figure 3a). For exam-
ple, in the Uni dataset, GHC(NoNe) cannot reach values lower than 2% for
the opportunity objective, even for the highest value of α, while GHC-Tabu
achieves O = 0. GHC-Tabu manages to better improve the solution w.r.t. the
opportunity objective compared to GHC(NoNe). In particular, the easier the
dataset, the worse the performance achieved by GHC(NoNe). By starting the
local search based on the student group and the course with the highest un-
fairness w.r.t. opportunity, GHC-Tabu can better identify the changes that
needed. On the other hand, GHC(NoNe) gets stuck easier, and reaches a lo-
cal minimum without correcting enough recommendations. In order to better
understand this, we computed the percentage of recommendations changed by
the proposed algorithms, as shown in Figure 7. The easier the dataset, the
less corrections GHC(NoNe) does. When the dataset is harder, there are more
recommendations that need to change, and GHC(NoNe) performs relatively
better. In any case, GHC-Tabu manages to correct more recommendations
towards a more balanced outcome.

Additionally, GHC-Tabu (because of GHC(Gc)) is prune on getting
trapped at local minima in the case of easy datasets with unnecessary high
values for α (last two figures in the first row of Figure 3a). Initially, it freely
and carelessly makes moves that introduce a lot of quality loss to improve the
opportunity objective which is the most important term because of the high
value of α. It reaches a point where the opportunity objective is minimized, but
the recommended courses have lower recommendation scores. In contrast to
GHC(NoNe), GHC(Gc) searches a smaller space driven by the student groups
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and courses with the highest opportunity objective. As a result, it might not
be able to replace the recommendations that introduce high quality loss.

For the remaining datasets with gs 6= 4 in Figure 3, the proposed methods
have similar performance, i.e., they manage to achieve the same values for
the Q and O objectives. For example, in the Gauss(1,0.1) dataset for two
protected groups, we see that both models achieve O = 0, while introducing
similar percentage of quality loss (2%). For smaller values of α though, when
we have higher values of the opportunity objective, we see that there is a gap
between the O objective achieved by GHC(NoNe) and that by GHC-Tabu
(13% vs 7%, respectively).

If we examine the results on the specific datasets presented in Figures 4,
5, 6, we see that GHC(NoNe) is the worst of the four models across all cases
w.r.t. the opportunity objective. Sometimes, it achieves lower percentage of
quality loss, however, it has higher unbalance in course recommendations. For
example, in Figure 5 with the synthetic data and four protected groups, it
achieves lower values for the qp compared with the rest methods, but it has
higher values of op, while the other methods have op = 0 for α ≥ 0.5.

6.1.5 GHC(Inc) lowers the opportunity objective but ends up
with worse quality objective for high values of alpha.

In Figure 3, GHC-Inc manages to reach the opportunity objective as low (or
lower) as the rest of the methods. We can also see in Figures 4, 5, 6 that
GHC-Inc performs better than GHC(NoNe), and similarly or better than the
GHC-Tabu (and GHC(Gc)) in terms of the opportunity objective. Addition-
ally, another advantage of GHC-Inc is that when it reaches O = 0 for some
value of α, it makes no additional moves after that point and it does not de-
grade the quality objective any further (e.g., Figure 3a, two protected groups,
Gauss(1,0.1) and Gauss(1,0.3), and Figures 4c, 5c with the ComptSci
dataset).

However, if GHC-Inc achieves an opportunity objective that is close to zero,
but not equal to zero, it continues to make more moves than needed, while try-
ing to get to a slightly better local minimum. That results in an increased value
of the quality objective for minor improvements in the opportunity objective.
Especially in Figure 6c, the values of the qp are surprisingly high. Moreover,
for the datasets that GHC-Inc reaches op = 0,∀p ∈ [1, · · · , gs], GHC-Tabu also
does the same, for the same value of α, but with lower values of qp.

This indicates that when we are interested in just reducing the opportu-
nity objective without having a substantial quality loss, GHC-Inc is the best
method to use. If we are interested in improving fairness w.r.t. opportunity as
much as possible, while still maintain fairness w.r.t. recommendation quality,
the best performing method is GHC-Tabu.
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Figure 8: Average standard error of the different objective values achieved
across the different families of datasets.

6.1.6 GHC-Tabu is the most robust model w.r.t. the input
data.

In Figures 3 and 7 for the synthetic datasets, the results are averaged over
the five datasets generated with different seeds. We compute the standard er-
ror (SE) of the objectives for each of those five and each value of α. Figure 8
shows the averages of these SE over all the six synthetic dataset families
(three difficulty levels, two and four protected student groups). These give us
an indication about the robustness of the methods for datasets with similar
characteristics. GHC(NoNe) is very consistent w.r.t. the O objective, where it
achieves 0.2 average standard error for most of the values of α, but less con-
sistent regarding the quality objective. GHC-Inc has the opposite behavior,
i.e., the lowest SE of the Q and the highest for O. Overall, GHC-Tabu is more
consistent as it has similar SE in the two objectives, and the lowest in the
combined objective V .

6.2 The effect of parameter alpha
Figures 4, 5, and 6 provide us with insights about how the value of α affects
the distribution of the objective values across the student protected groups.
In particular, the opportunity objective becomes more balanced across the
student groups for higher values of α for all methods, as expected. Even for
the real dataset in Figure 6, GHC-Tabu achieves op ≤ 1.3% for different values
of p (and standard deviation of 0.43%) for α = 0.9, compared to op ≤ 16.5%
(and standard deviation of 5.87%) for α = 0, which corresponds to the HSC
solution. Even with α = 0.1, GHC-Tabu manages to drop the opportunity
objective values per group to op ≤ 9.2% (and standard deviation of 3.4%).
The higher values of α (together with the L∞ norm) manage to both lower the
performance of the opportunity objective and balance any remaining unfair
recommendations to the student groups.

For the specific dataset shown in Figure 4, because there are two protected
groups of the same size, the opportunity objectives are balanced as they are
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complimentary, i.e., the courses that are over recommended in the one group
are under recommended in the other one, and vice versa. With respect to the
opportunity objective, we see some apparent difference in Figures 4b and 4d.
While GHC(NoNe) and GHC-Inc are able to maintain the same qp values
for higher values of α than needed to achieve op = 0, that is not the case
for GHC(Gc) and GHC-Tabu. While GHC-Tabu has the lower qp values for
α = 0.4 with op = 0, once we set α > 0.5, we notice a different behavior. In
this case, we put more weight on the opportunity objective, so the algorithm
makes some less careful moves early on that introduce high quality loss which
it cannot undo afterwards. As a result, it is trapped in a local minimum, where
the quality loss is not fairly distributed in the two groups. This shows that
such unnecessary high values of α introduce unfairness with respect to the
unbalanced quality objectives. That is the case in other datasets as well, but
less noticeable.

7 Conclusion
Course selection plays an important role in students’ progress towards gradu-
ation, but also in the career path they will follow afterwards. In this paper, we
examined group fairness in the context of course recommendation to ensure
that all students are given the same opportunities when using a recommender
system. We formulated a multi-objective problem that balances the fairness in
opportunity and quality. We developed greedy algorithms that iteratively im-
prove the combined objective function. The results indicate that GHC-Tabu
can consistently improve fairness w.r.t. the opportunity with limited quality
loss. GHC-Inc is the best method when we only assign a small weight on the
opportunity objective as it gradually increases this weight in order to take
more careful steps towards a fairer set of recommendations.
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