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Abstract—As next-generation networks materialize, increasing
levels of intelligence are required. Federated Learning has been
identified as a key enabling technology of intelligent and dis-
tributed networks; however, it is prone to concept drift as with
any machine learning application. Concept drift directly affects
the model’s performance and can result in severe consequences
considering the critical and emergency services provided by
modern networks. To mitigate the adverse effects of drift, this
paper proposes a concept drift detection system leveraging the
federated learning updates provided at each iteration of the
federated training process. Using dimensionality reduction and
clustering techniques, a framework that isolates the system’s
drifted nodes is presented through experiments using an In-
telligent Transportation System as a use case. The presented
work demonstrates that the proposed framework is able to detect
drifted nodes in a variety of non-iid scenarios at different stages
of drift and different levels of system exposure.

Index Terms—Federated Learning, Concept Drift, Intelligent
Transportation Systems, Machine Learning, Networked Systems

I. INTRODUCTION

With the rapid development of next-generation networking
systems and technologies, the use of Machine Learning (ML)
and Artificial Intelligence (AI) has cemented itself in the future
of networking. As the 5th generation and beyond networks
(5G+) take shape, their reliance on intelligence is profound;
with requirements such as self-healing, self-configuration and
forecasting, ML and AI have revolutionized modern networks
and networking practices [1]. However, the application of such
technologies in the realm of networking is still in its infancy.
Despite its various benefits, several challenges are still yet to
be addressed. One of the most significant challenges faced by
ML models is the idea of model drift, where changes impacting
the domain of a model affect its performance. Some examples
of drift in networks include traffic changes caused by crowd
events and new movie releases in CDNs. When considering
the types of applications hosted by network systems and
preserving Quality of Service (QoS) guarantees, it is critical to
implement mechanisms to detect the deterioration of the ML
model and mitigate the situation before severe consequences
are faced. When considering use cases such as Intelligent
Transportation Systems (ITSs), consisting of vehicular clients
and pedestrians, the consequences can be deadly.

One type of model drift is concept drift, which describes
a situation where the underlying relationship between inputs
and outputs has changed. This type of drift is challenging
to diagnose, and it can manifest itself gradually over time

[2]. While many methods currently exist to detect concept
drift in ML-enabled systems, many of them require exces-
sive storage and processing capabilities. When considering
emerging technologies such as Multi-access Edge Computing
(MEC), which pushes computational power to the edge of the
network through the use of lightweight points of presence,
these methods are rendered infeasible. As such, it is critical
to develop lightweight, scalable, and efficient drift detection
techniques for highly distributed and networked systems [3].

One of the great advancements of ML techniques in recent
times has been the introduction of Federated Learning (FL).
FL is a decentralized and distributed ML technique that is
composed of several federated nodes. Each of these nodes
collects, stores, and processes its own information. Due to
its ability to preserve local node data privacy, FL has been
identified as an enabling technology for next-generation net-
working systems, and specifically, its use in ITSs has been
gaining significant traction [4]. Since FL relies on lightweight
distributed points of presence, it is a prime candidate for devel-
oping a concept drift detection system capable of addressing
the limitations of current methods.

The premise behind FL is that an entity known as the
aggregation agent initializes and distributes a global model
to each federated node. Using their locally collected data,
these nodes perform training iterations, thereby creating a local
model. After a predefined number of iterations, the local model
is compared to the initially distributed global model, and
the differences between the two are formatted as an update.
Each node forwards its update to the aggregation agent, which
collects and aggregates them to develop a new global model.
This new model is redistributed to the federated nodes, and the
process repeats. Fig. 1 outlines the federated learning process.

An ITS is the culmination of various interacting networking
technologies and architectures, including Network Function
Virtualization (NFV), MEC, 5G+ networks, the Internet of
Vehicles (IoV) as well as ML and AI. Through distributed
points of presence known as Roadside Units (RSUs), an ITS
is able to collect and process data at the edge of the network
and provide functionalities to vehicular clients [5]. The basic
setup of an ITS is presented in Fig. 2.

The ITS has been selected as a use case for the work
presented in this paper due to its use of various networking
technologies as well as its establishment as a critical future
networking architecture; however, the proposed framework is
applicable to any distributed networked system.
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Fig. 1. Federated Learning Overview

Fig. 2. Basic ITS Overview

In this work, the distributed and collaborative nature of FL
is leveraged to identify and isolate nodes that are experiencing
concept drift. By observing and modelling the behaviour of the
federated training process under normal (absence of drifted
concepts) conditions, any future training iteration can be
compared to the expected behaviour. If a significant statistical
difference between the most recent federated training iteration
updates and the normal modelled updates is observed, a
concept drift alarm is raised, and the nodes exhibiting the drift
are identified. By identifying drifted nodes, isolation measures
can be enacted to ensure that the remainder of the system, still
operating under normal circumstances, does not experience
performance degradation as a result of the drift.

While several proposed concept drift detection systems
exist, several limitations prevent their implementation in net-
worked systems. The work outlined in this paper proposes a
lightweight and distributed concept drift detection framework
through the use of FL. By leveraging various updates pro-
vided to the aggregation agent by each federated node, this
framework allows for a resource-efficient method of detecting
concept drift in a highly dynamic system environment. The
contributions of this paper are summarized as follows:

• The development of a federated framework leveraging
principal component analysis and K-means clustering to
isolate drifted nodes in a distributed networked system.

• The presentation of a use case highlighting the applica-
bility of a federated framework for concept drift detection

in an ITS.
• The analysis of the system through various drift scenarios.

The remainder of this paper is structured as follows. Section
II outlines the related work regarding concept drift detection
and FL in ITSs. Section III discusses the proposed method-
ology. Section IV outlines the implementation. Section V
presents the results and analysis. Finally, Section VI concludes
the paper and presents opportunities for future work.

II. RELATED WORK

The following is a list of concept drift detection and
mitigation techniques for traditional machine learning systems.
Gama et al. [6] monitor an online error rate and use a threshold
value to determine if a concept has drifted. Garcia et al. [7] use
the distribution of distances between errors to detect concept
drift; this method specifically targets gradual drifts over time
as opposed to sudden drifts. Sun et al. [8] propose combining
past and current models as a method of incremental learning to
combat drift. Widmer and Kubat [9] use a sliding window and
develop a history of previously encountered concepts that are
expected to reappear in a future period. Elwell and Polikar [10]
suggest a weighted ensemble learner which trains a new model
with each incoming batch of data. Forman [11] discusses the
implementation of an ensemble where a model is trained daily
on incoming data and the predictions of previous models.

While several methods addressing concept drift detection
and mitigation exist, they are inadequate for implementation in
FL systems due to their reliance on previous data and models.
One of the key advantages of federated systems is that they are
decentralized and distributed; therefore, the storage of data and
models at a central location is infeasible. Additionally, since
the federated networked systems deal with lightweight points
of presence at the network edge, the excessive use of storage
is an inefficient utilization of limited resources.

The application of FL to ITSs has gained significant traction
in recent years. Manias and Shami discuss the need for FL
as a method of advanced intelligence to be applied to the
management and orchestration of NFV-enabled networks [12],
and they specifically make a case for using FL in an ITS [4].
Elbir et al. [13] discuss the benefits and challenges of FL
applied to vehicular networks. Khan et al. [14] suggest FL
for resource optimization in edge networks and mention its
applicability for distributed 5G-enabled applications, including
ITSs. Finally, Du et al. [15] discuss how FL can address
challenges such as a large number of connected devices and
the preservation of privacy in the Vehicular IoT and ITSs.
As demonstrated by the work above, FL is actively being
discussed and implemented in next-generation networking
systems and use cases. To ensure its feasibility, an effort
to develop lightweight and effective concept drift detection
and mitigation schemes capable of addressing the limitations
of current methods applied to a resource-constrained MEC-
enabled environment is critical.



III. METHODOLOGY

The following section will discuss the methodology pre-
sented in this work.

A. Framework Architecture

The proposed federated concept drift detection framework
consists of two phases, the system training phase and the
active drift detection phase. During the system training phase,
it is assumed that no concept drift is present; as such, the
observations collected during this phase form the basis of
what is categorized as normal behaviour. In this stage, the FL
process proceeds as normal. The federated nodes collect local
data, perform local training iterations, and develop a model
update. At this point, the update is sent to the aggregation
agent as part of the FL process; however, it is also sent to the
drift detection module hosted on the node. This drift detection
module is composed of three stages, Principal Component
Analysis (PCA), K-Means clustering, and distance calculation.

The role of PCA in the drift detection module is to reduce
the dimensionality of the weight portion of the model update to
improve both the storage and communication efficiency of the
module as well as to eliminate the correlation between specific
weight updates. The optimal number of principal components
as part of PCA is determined by locating the point of inflection
in the plot of explained variance per component. The reduced
weight updates are sent to the normal weight update storage
until the system training process completes.

After a predefined number of training iterations across the
system are completed, the drift detection module applies K-
Means clustering on the reduced weight updates and creates
two clusters. K-Means was selected due to its speed and
efficiency as well as having a priori knowledge of the required
number of clusters; Additional clustering methods, including
hierarchical clustering, will be explored in future work. The
resulting cluster centers are then computed and passed to the
distance calculator, which computes the Euclidean distance
between the two cluster centers. Depending on the optimal
number of principal components selected, the Euclidean dis-
tance is calculated across multiple dimensions according to
Eq. 1 where dist(c1, c2) denotes the distance between cluster
centers c1 and c2, and n is the number of principal components
(dimensions).

dist(c1, c2) =

√√√√ n∑
i

(c2i − c1i)2 (1)

At this point, each node in the system, having completed its
system training and calculating the cluster distances for its nor-
mal operation, sends the resulting distance to the aggregation
agent to be stored in the normal model statistics. In this mod-
ule, the aggregation agent considers the cluster distance across
all nodes and calculates the mean and standard deviation of
the cluster distances, which will be used to determine if a
node has drifted or not during the drift detection stage through
thresholding. This concludes the system training phase, and the
framework is now ready for active drift detection.

During the active drift detection phase, a similar process
is followed. Firstly, the normal model statistics are retrieved
from the aggregation agent and passed to the drift detection
module. This happens once, at the beginning of the process, as
these statistics aren’t updated further. When a model update is
generated, it is passed to the drift detection module along with
the contents of the normal weight update storage, which, as
previously mentioned, contains the reduced weights obtained
during the system training phase. Once in the drift detection
module, its weights are reduced and added to the active drift
detection storage. At a specified detection interval (i.e. after n
active drift detection iterations), clustering is performed on the
combination of the active drift detection reduced weights along
with the normal reduced weights, and the cluster distance
is calculated. An interval is selected as not constantly to
burden the node with unnecessary computation. The newly
calculated distance is compared to the normal model statistics
and thresholding is applied to determine if a drift has occurred.
Under this thresholding, a node is considered to be drifted
if the distance between its cluster centers is more than 3
standard deviations away from the normal training mean. This
threshold was determined by examining the performance of
the system and will be explored further in future work. This
threshold is formalized in Eq. 2, where µnorm denotes the
mean cluster distance observed during the normal training
process, σnorm denotes the standard deviation observed during
the normal training process, and cdist denotes the observed
cluster distance during the drift detection phase.

cdist < µnorm − 3σnorm ∨ µnorm + 3σnorm < cdist (2)

If a drift is detected, the node sends a drift warning to
the aggregation agent; otherwise, it sends the model update.
An overview of the system training and active drift detection
phases is presented in Fig. 3, where the interactions between
the federated nodes and the aggregation agent are displayed.
Moreover, Fig. 4 delves deeper into the active drift detection
phase and presents a granular process map. Additionally, this
figure highlights how the drift detection process presented is
added to the local federated learning process. The interface
between a federated node and the aggregation agent is depicted
through a dashed line.

B. System Architecture

As previously mentioned, the proposed concept drift detec-
tion framework can be applied to any networked federated
system. Specifically, in this work, an ITS is considered. The
premise of this system is that a group of geo-distributed
RSUs are collecting image data of the vehicular clients they
encounter and are performing a vehicular traffic classification
task. Each of the RSUs uses a neural network model to
perform the classification and is part of a system leveraging
FL. At some point in time, an event causing a reclassification
of certain vehicular clients occurs (e.g. new legislations or the
repurposing of once public vehicles for private use) which
causes a fundamental drift in the system. While the effect
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of this drift is sudden, it propagates through the system by
affecting a subset of the federated nodes. The deployed drift
detection framework actively works to locate drifted nodes and
allow the aggregation agent to enact isolation measures.

C. System Communication Metrics

There are several metrics that have been developed to assess
the communication utilization of this drift detection method.
Consideration of these metrics is motivated by the highly
distributed and resource-constrained nature of this system. The
first metric considered is the system training phase communi-
cation ratio, α, which determines the impact of the results
of the normal cluster distances being communicated along
with the regular updates as part of the FL process. For this
calculation, the number of training iterations is denoted by
niter, the size of the model update is denoted by lupdate, and
the size of the distance information is denoted by ldist. The
formulation of the ratio is presented in Eq. 3.

α =
(niter × lupdate) + ldist

niter × lupdate
(3)

Considering that the size of the cluster distance is negligible
compared to the model update, the α ratio demonstrates that
the additional information being sent to the aggregation agent
at the end of the system training phase has little impact on the
communication resources being consumed.

The second metric considered is the communication ratio
during the active drift detection phase, β which determines the
quantity of resources being conserved by not sending drifted
node updates to the aggregation agent. In this ratio, n denotes
the number of system nodes, d denotes the number of drifted
nodes, and lalert denotes the size of the drift alert message.
This ratio is presented in Eq. 4.

β = 1− (n− d)× lupdate + d× lalert
n× lupdate

(4)

A limit analysis, limd→n β ≈ 1 highlights how the amount
of communication resources conserved increases as the num-
ber of drifted nodes increases. Considering that the size of
the update is orders of magnitude greater than the size of the
alert, the amount of communication resources saved by halting
drifted nodes from sending their updates is evident.

IV. IMPLEMENTATION

The implemented system consists of 10 RSUs, each acting
as a federated node capturing images of vehicular traffic. The
system training phase consists of 100 iterations. The federated
learning process uses the federated averaging aggregation
scheme as discussed by McMahan et al. [16]. The MNIST
digit dataset [17] is used to simulate types of vehicular
traffic; this dataset was selected for its widespread use for
benchmarking image classification tasks. This dataset contains
60000 samples of handwritten digits ranging from 0 to 9. For
simulation purposes, each digit represents a type of vehicular
traffic (i.e., sedan, SUV, semi, bus, etc.). Initially, digits 0
through 5 are assigned to class 1, and digits 6 through 9
are assigned to class 2. The two classes can represent a
myriad of possible labels in ITS vehicular traffic classification
tasks (e.g. industrial vs. residential, normal vs. abnormal,
private vs. public, etc.). During a concept drift scenario, the
fundamental relationship between the digits and their assigned
class is altered. To simulate this, a digit is randomly selected
from class 2 and is converted to class 1. This change in the
underlying relationship between the digits and their associated
classes illustrates a fundamental concept drift and therefore
forms the basis of our experiments.

The model used to perform the image classification task is
a shallow artificial neural network. As the images provided in
the dataset are 28 pixels x 28 pixels, they form an array of 784
input features once flattened. The output layer consists of two
neurons, one for each of the possible binary classes. A softmax
activation function is used to determine the classification
decision. The implementation of the model was done in Python
using the TensorFlow and TensorFlow Federated packages.
The application of the method proposed in this work on deeper
neural network architectures is out of the scope of this paper
and will be explored in future work.



A. Experiments

When FL was introduced in 2016 [18], one of the key
assumptions was that the data across all nodes was non-IID,
which was a paradigm shift from traditional ML techniques.
As such, all experiments presented operate on the assumption
that the data are non-IID. The first experiment conducted as
part of this work considers an extreme scenario where each of
the ten nodes has access to data of a single digit.

In this scenario, each of the federated nodes contains 1000
training examples. The system training phase proceeds for
100 iterations. In these experiments, the dimensionality of
the normal training weight updates is reduced by more than
99.7%, greatly reducing the amount of data stored as part of
the proposed drift detection process after using PCA.

The drift is then simulated by distributing 1000 new and
previously unseen examples to each node and changing the
class associated with one of the digits belonging to class 2 as
previously defined. This marks the start of the drift detection
phase, which proceeds with an interval of 10 updates. Finally,
a drift decision is made after clustering and thresholding.

The implementation for the remaining experiments is sim-
ilar to what has been described; however, the nodes do not
have access to only a single digit. This means that each node
has differing amounts of data and different distributions across
observations. To simulate the non-IID data distributions, the
number of samples for each digit is randomly selected from
the range [100,500]. This means that the minimum number
of observations a node can have is 1000, and the maximum
is 5000. This is consistent with the simulation of an ITS
environment as certain RSUs are located in low-traffic areas,
whereas others are located in high-traffic areas. Additionally,
in this scenario, single and multiple node drifts are evaluated.
In the second experiment, a single node experiences the drift;
in the third experiment, two nodes experience the drift, and
in the final experiment, four nodes experience the drift. These
experiments highlight the efficacy of the proposed solution
across various levels of system drift.

V. RESULTS AND ANALYSIS

The following section presents and analyzes the results
obtained from each of the experiments.

A. Experiment 1

The first part of analyzing the results from experiment 1 was
to determine the optimal number of principal components for
PCA. As previously mentioned, this was done by plotting the
explained variance across the first ten principal components
yielding an elbow plot indicating the optimal number of
principal components as two. After applying PCA on each
node’s respective updates, K-Means clustering was applied.
Since this experiment resulted in one drifted node, both the
effects of clustering of drifted and un-drifted nodes must be
examined. Figure 5 presents the clustering of the reduced
weight updates for both a drifted and un-drifted node.

As seen in the left graph of Fig. 5, there is a clear
distinction between the drifted updates and the normal updates.

Fig. 5. Drifted Node Update Clustering

Comparatively, in the right graph, the results of the clustering
for the normal node are not as decisive as those observed in
the drifted node due to the proximity of the two clusters. This
observation is what led to the next step of the methodology
to determine the distance between the two cluster centers as
a method of identifying the drifted nodes. Fig. 6 presents the
distance between the two center clusters of each node. In this
figure and all subsequent figures, the threshold boundaries
µnorm ± 3σnorm are depicted as the blue (mean) and cyan
(standard deviation) dashed lines, respectively.

Fig. 6. Experiment 1 Drift Detection

As seen through Fig. 6, node six, labelled in red, has been
correctly identified as the drifted node as its cluster center
distance is significantly different from what is observed across
the remaining nodes. It should be noted that since one node has
drifted, the β metric is approximately equal to 0.1, indicating
a 10% reduction in wasteful communication.

B. Experiment 2

In experiment 2, the point of inflection in the elbow
graph corresponds to four principal components. Regarding the
clustering and distance calculation, the proposed framework
correctly identified node seven as the drifted node. However,
it should be noted that in this scenario, the distance between
drifted and non-drifted nodes is less than what was observed
in Fig. 6 of experiment 1. This can be attributed to the fact that
this experiment (and all subsequent experiments) has a more
complex system setup as each node has access to data of all
digits rather than being exclusive to one. Results of this cluster
analysis and the identification of the drifted node, seven, are
presented in Fig. 7. Similarly to experiment 1, the β ratio for
this experiment was also 0.1.



Fig. 7. Experiment 2 Drift Detection

C. Experiment 3

The number of principal components used in this exper-
iment was also 4. The cluster analysis results successfully
yielded the two drifted nodes, six and nine, as seen in Fig.
8. Since there are two drifted nodes, the β ratio for this
experiment is approximately 0.2.

Fig. 8. Experiment 3 Drift Detection

D. Experiment 4

Similar to experiments 2 and 3, four principal components
were used in experiment 4. The cluster analysis results suc-
cessfully yielded the drifted nodes, which were 1, 3, 4, 5, as
seen in Fig. 9. Additionally, since there are four drifted nodes,
the β ratio for this experiment is approximately 0.4.

Fig. 9. Experiment 4 Drift Detection

VI. CONCLUSION

In conclusion, the work presented in this paper proposes a
framework for detecting concept drift in federated networked

systems by leveraging the updates sent by the federated nodes
during each iteration of the FL process. By using PCA to
reduce the dimensionality of the weight updates, applying K-
Means clustering, and calculating the distance between cluster
centers, drifted nodes are identified. The work presented in this
paper highlights ITSs as a use case; however, it is applicable
to any federated networked system.

Future work will explore concept drift detection frameworks
for different ML tasks such as multi-class classification as well
as regression tasks. Additionally, deeper network architectures
will be explored to evaluate the optimal level of dimensionality
reduction for more complicated models. Furthermore, different
thresholding schemes to isolate drifted nodes will be explored.
Finally, larger network sizes with an increasing number of
federated nodes will be assessed for scalability.
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