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Abstract

This research note provides a quick introduction to the knowledge distillation loss
function used in object classification. In particular, we discuss its connection to a
previously proposed logits matching loss function. We further treat knowledge dis-
tillation as a specific form of output regularization and demonstrate its connection
to label smoothing and entropy-based regularization.

1 Introduction

Knowledge distillation (KD) was proposed as a model compression technique to distill the knowl-
edge in a powerful yet cumbersome teacher model into a lightweight student model, hoping that
it will enhance the student generalization ability [HVD15]. Since the advent of knowledge distil-
lation, variant approaches have been developed to improve its effectiveness and widen its appli-
cations, including feature distillation [CMZ+21, CMZ+22], collaborative distillation [CMW+20],
and diffusion-based distillation [CZM+23, ZCWC24, CZW+24]. In the vanilla KD [HVD15],
class predictions between teacher and student models are aligned with a newly introduced hyper-
parameter—temperature in the softmax activation to control the softness of predicted distributions.
In this way, Hinton and his collaborators [HVD15] argued that the pioneering model compression
technique termed logits matching [BCNM06] is actually a special case of their proposed approach,
provided that the temperature is much higher than the logits in order of magnitude and the logits
are zero-mean normalized explicitly. In this note, we provide detailed derivations to review and
deepen our understanding of this connection. We first prove that with a single infinity temperature
condition, we could already build the connection between these two loss functions, although at-
tached with an extra regularization. We further point out that equal-mean normalization for logits
is enough to establish the exact equivalence. Finally, we discuss knowledge distillation from the
output regularization perspective.

2 Preliminary

We first briefly recap the basic concept of object classification using deep neural networks, especially
from the perspective of knowledge distillation. Then, a formal description of the standard knowledge
distillation and logits matching loss functions are introduced with necessary notations.

2.1 Distilling Knowledge from Human Labellings

Given a training dataset D = {(x,y)} consisting of n objects from k categories, we denote the
category label of the object x as y. Take one-class image classification problem as an example, we
have x ∈ R

c×h×w, where c denotes the channel dimension, h and w denote the spatial dimensions.
Besides, only one element in the vector y ∈ R

k equals one and the other elements all equal zero
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(e.g., yi = 1, and yj = 0, ∀j 6= i if this object belongs to the i-th category). We then train a deep
neural network with the parameter θ to learn a mapping from the object space to the category space.

Given the object x, we denote the unnormalized prediction of a deep neural network as z, which is
also known as logits, and denote its softmax-based normalized version as p, which is also known as

class predictions. Mathematically, we have pi = exp (zi) /
∑k

j=1
exp (zj), where zi and pi denote

the i-th element of z and p, respectively. The model parameter θ is randomly initialized and updated
using the following cross-entropy loss function:

LCE(y,p) = −
k∑

i=1

yi logpi, or equivalently, LKL(y,p) =
k∑

i=1

yi log
yi

pi

, (1)

with the gradient as follows

∂LCE

∂pj

= −
yj

pj

,
∂pj

∂zi
=

{
pj(1− pj) i = j

−pipj i 6= j.
(2)

Then, we take the partial derivative of LCE with respect to zi

∂LCE

∂zi
=
∑

j

∂LCE

∂pj

∂pj

∂zi
= −

∑

j

yj

pj

∂pj

∂zi
= −









yj

pj

pj (1− pj)

︸ ︷︷ ︸

j=i

+
∑

j

yj

pj

(−pipj)

︸ ︷︷ ︸

j 6=i









= −









yj (1− pj)
︸ ︷︷ ︸

j=i

+
∑

j

yj (−pi)

︸ ︷︷ ︸

j 6=i









= −



yi − pi

∑

j

yj



 = pi − yi.

(3)

Remark 1. The standard learning objective for object classification can be interpreted as distilling
knowledge from human labellings, where the regular model acts as a “student” model and the
ground-truth label for each object acts as the output of a(n) “teacher/oracle” model.

Label Smoothing: To alleviate the over-fitting issue in model training or the mis-labeling issue in
data collection, label smoothing [SVI+16] technique was proposed. It replaces the hard label y as
the smoothed label y′, with y

′ = (1 − α)y + αu and ui = 1/k, ∀i. In this case, the above loss
function becomes1

LLS(y
′,p) = (1− α)LCE(y,p) + αLKL(u,p). (4)

Confidence Penalty: Another similar output-based regularization reverses the KL term in the above
equation, aiming to penalize a low-entropy model prediction [PTC+17]

LCP(y
′,p) = (1− α)LCE(y,p) + αLKL(p,u). (5)

The above two loss functions can be unified using skew-Jensen divergence [NB11, MSC20].

2.2 Distilling Knowledge from Neural Networks

We next denote class predictions of the teacher model with the parameter θt and the student model
with the parameter θs as pt and p

s, which are produced by normalized logits zt and z
s, respectively.

A straightforward approach to distill knowledge from a pre-trained powerful teacher model to a
simple student model is adopting the following logits matching loss function [BCNM06, BC14] to
update the student model’s parameter θs:

LLM(zt, zs) =
1

2k
‖zt − z

s‖22 =
1

2k

k∑

i=1

(
z
t
i − z

s
i

)2
, (6)

with the gradient ∂LLM/∂zsi = (zsi − z
t
i) /k, and the gradient ∂LLM/∂θs = ∂LLM/∂zs ·∂zs/∂θs.

1We omit the constant term irrelevant to the parameter optimization.
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Similarly, we can also adopt the vanilla knowledge distillation loss function [HVD15] for knowledge
transfer. This approach introduces temperature τ as a hyper-parameter to soften the model-predicted
probability distributions, and modifies the relationship between logits z and predictions p as follows

p
t
i =

exp (zti/τ)
∑k

j=1
exp

(
z
t
j/τ
) , p

s
i =

exp (zsi /τ)
∑k

j=1
exp

(
z
s
j/τ
) . (7)

The vanilla knowledge distillation loss function is

LKD(p
t,ps) =

k∑

i=1

p
t
i log

p
t
i

p
s
i

= −
k∑

i=1

p
t
i logp

s
i +

k∑

i=1

p
t
i logp

t
i. (8)

The second term in Equation (8) is a negative entropy of pt, which is irrelevant to the update of
student’s parameters. Similarly, we take the partial derivative of LKD w.r.t. zsi :

∂LKD

∂ps
j

= −
p
t
j

p
s
j

,
∂ps

j

∂zsi
=

{
1

τ
p
s
j

(
1− p

s
j

)
i = j

− 1

τ
p
s
ip

s
j i 6= j.

(9)

∂LKD

∂zsi
=
∑

j

∂LKD

∂ps
j

∂ps
j

∂zsi
= −

∑

j

p
t
j

p
s
j

∂ps
j

∂zsi
=

1

τ

(
p
s
i − p

t
i

)
. (10)

Remark 2. The standard knowledge distillation loss function (Equation (8)) multiplying τ2 acts as
a regularized logits matching loss function (Equation (6)) under the infinity temperature.

Proof. We then prove the equivalence between τ2LKD and LLM [HVD15, KOK+21] below.

lim
τ→∞

τ2
∂LKD

∂zsi

1©
= lim

τ→∞
τ
(
p
s
i − p

t
i

)
= lim

τ→∞
τ

(

exp (zsi /τ)
∑k

j=1
exp

(
z
s
j/τ
) −

exp (zti/τ)
∑k

j=1
exp

(
z
t
j/τ
)

)

2©
= lim

τ→∞





∑k

j=1
τ
(
exp

((
z
t
j − z

t
k

)
/τ
)
− 1
)
−
∑k

j=1
τ
(
exp

((
z
s
j − z

s
k

)
/τ
)
− 1
)

(
∑k

j=1
exp

((
z
t
j − z

t
k

)
/τ
))(∑k

j=1
exp

((
z
s
j − z

s
k

)
/τ
))





=
1

k

(
z
s
i − z

t
i

)
−

1

k2

K∑

j=1

(
z
s
j − z

t
j

)

(11)
For 1©, the detailed derivation is provided in Equation (10), and we substitute the Equation (7) into
p
s
i and p

t
i; for 2©, the detailed derivation is provided in Section A.2 of [KOK+21], and we require

τ goes to positive infinity to leverage the Taylor approximation of exponential function. Therefore,
the standard knowledge distillation loss function acts as a regularized logits matching loss function:

LLMr
=

1

2k
‖zt − z

s‖22 −
1

2k2





k∑

j=1

z
s
j −

k∑

j=1

z
t
j





2

+Constant. (12)

The above loss function also implies that when the summation of logits predicted by teacher and

student models are equal, i.e,
∑k

j z
s
j =

∑k

j z
t
j , the extra regularization term will just disappear.

Remark 3. Based on the infinity large temperature and equal-mean normalization for logits (i.e.,
∑k

j z
s
j =

∑k

j z
t
j), the gradient of τ2LKD equals to that of LLM and thus we can conclude that the

effects of these two losses are exactly the same.

2.3 Knowledge Distillation as Output Regularization

In practice, the knowledge distillation loss function is generally used together with the original cross-
entropy loss function. That is to say, we adopt the following loss function to optimize parameters of
a student model:

LKD′ = (1 − α)LCE(y,p
s) + αLKD(p

t,ps). (13)

Comparing the loss function in Equation (4), we conclude that class predictions of the teacher model
act as adaptive label smoothing to prevent the student output being over-confident [YTL+20].

Remark 4. The knowledge distillation loss function in Equation (13) acts as an adaptive label
smoothing loss function in Equation (4).
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