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Abstract

Designing new chemical compounds with de-
sired pharmaceutical properties is a challenging
task and takes years of development and test-
ing. Still, a majority of new drugs fail to prove
efficient in vivo. Recent success of deep gen-
erative modeling holds promises of generation
and optimization of new molecules. In this re-
view paper, we provide an overview of the cur-
rent generative models, and describe necessary
biological and chemical terminology, including
molecular representations needed to understand
the field of drug design and drug response. We
present commonly used chemical and biological
databases, and tools for generative modeling.
Finally, we summarize the current state of gen-
erative modeling for drug design and drug re-
sponse prediction, highlighting the state-of-art
approaches and limitations the field is currently
facing.

1 Introduction

The path from initial screening to marketable
drugs takes around 20 years [1], with cost be-
ing anywhere from $0.5 to $2.6 billion dollars
[2]. Given the remarkable impediments associ-
ated with drug design, it is necessary to develop
more precise strategies to propose drug candi-
dates. Computational chemistry approaches to
drug design, often called computer-aided drug
design, received a lot of attention in the past
30 years. The growing availability of high-
throughput screening (HTS) data holds a great
potential to accelerate the development of effi-
cient new compounds.

Pharmacologically active drug compounds act
by binding to their target (which is most com-
monly a protein) and altering their function
by either stimulating or inhibiting it. Broadly
speaking, the current drug design approaches
can be divided into two categories. The first
one is ligand-based (or indirect) approaches that
rely on existing molecules known to be a binding

partner of some target and try to mimic their
properties. These approaches include molecu-
lar fingerprint similarity search, pharmacophore
modeling, or quantitative structure-activity re-
lationship (QSAR). The second approach is
structure-based (or direct) where a 3D structure
of a desired target (or a target that is highly sim-
ilar to the desired one) is known. New molecules
are then designed to bind to the target based
on its structural properties. The methods that
fall in this category include molecular docking
or molecular dynamic simulations.

Deep generative models (DGM) have at-
tracted a lot of attention in recent years. Given
their success in image and text generation [3, 4],
there is an ongoing effort to apply these ap-
proaches to the medical field as well. Current ap-
plications include medical image analysis, data
augmentation, generation of new DNA, RNA,
or protein sequences with specific properties and
missing regions in known protein structures [5].

Despite the optimism, designing novel drugs is
particularly difficult due to the graphical struc-
ture of molecules, chemical validity, and feasibil-
ity of synthesis of generated molecules. Several
major simplifications have been used so far to
reduce the complexity of the task. For exam-
ple, instead of working with and generating full
molecular structures, molecules can be described
by their properties in binary strings. However,
to fully automate the drug design process, it is
necessary to incorporate complex information,
such as chirality and structural conformations,
into the molecular representations.

Strikingly, 75-97% of novel drugs fail human
clinical trials. The primary reason for failing a
trial is a lack of demonstrated efficiency and the
second most common reason is safety concerns
[6]. Therefore, optimizing for efficient physiolog-
ical response and low toxicity in addition to fa-
vorable chemical properties is at the core of the
approaches that could lead to successful drug
design. This is encompassed in the field of drug
response prediction.

In this review article, we describe the current



DGM approaches for drug design with the aim
of bridging the fields of drug design and drug
response prediction to allow for designing more
efficient and more powerful pipelines. We first
briefly introduce the most common neural archi-
tectures that are used for drug design and drug
response prediction. We also list the most com-
mon databases and tools, and compare current
molecular data representations. We describe
state-of-the-art techniques for small molecule
design, gene therapy, and protein sequence gen-
eration. Finally, we conclude our review with
remarks on the most challenging aspects of drug
design and considerations about the direction of
future research.

2 Overview
models

of generative

Deep generative models have achieved great suc-
cess ranging from generation of high-quality im-
ages to large corpora of meaningful text. For-
mally, deep generative models are neural net-
works trained to model a distribution of training
samples and are able to sample from the learned
distribution to generate new samples. Explicit
generative models specify the full data distri-
bution and allow to express likelihoods that a
given sample comes from the distribution. On
the other hand, implicit generative models only
specify a procedure of drawing samples to gener-
ate new data but do not provide a way to express
a full distribution.

2.1 GANs

Generative Adversarial Networks (GANs) are
implicit density models introduced in 2014 [7].
The idea behind generating samples with GANs
is to have two networks - one is a generator
model that creates new samples from a random
vector and the other is the discriminator (or the
critic) that aims to distinguish newly generated
samples from the real ones. These two parts are
competing with each other. The generator gets
better at generating realistically looking samples
while the discriminator gets better at classifying
those that are real and those that are fake. Af-
ter both networks have been trained, only the
generator is used to create realistic inputs from
a random starter vector.

2.2 Autoencoders

A standard autoencoder (AE) has two parts - an
encoder and a decoder. The inputs are passed
through an encoder that outputs some represen-
tation of these inputs to the latent space. From

there, the decoder can reconstruct the represen-
tation back such that it is as close as possible to
the original input. Most commonly, the latent
space is chosen such that it has fewer dimen-
sions than the inputs. This leads to compres-
sion of the samples and extraction of the most
useful information. The encoded latent space,
which contains all the information that is nec-
essary to retrieve the original input, can then
be used for downstream tasks. For example, a
classifier can be fitted on top of a learned la-
tent space. Compared to Principal Component
Analysis (PCA), autoencoders can perform non-
linear dimensionality reduction. Autoencoders
can also be used for denoising where a noisy in-
put is reconstructed without the unwanted noise.

2.3 VAEs

Variational Autoencoders (VAEs) are regular-
ized probabilistic autoencoders [8]. Similar to a
standard autoencoder, they contain an encoder
and a decoder. However, instead of encoding
each sample to some point a latent space, the
encoder defines a whole distribution. From this
distribution, vectors are being sampled and fed
into a decoder that reconstructs them back to be
as close as possible to the original input. To give
the latent space distribution some specific prop-
erties, it is regularized during training. Most
commonly, we force the latent space to follow a
normal distribution since that provides a closed
form for many equations and is simple to work
with. The loss function for VAEs thus contains
two terms — a reconstruction error and a reg-
ularization term which is a Kullback-Leibler di-
vergence between the learned latent distribution
and a specified prior (normal distribution).

2.4 AAEs

Adversarial Autoencoders (AAEs) are regular-
ized autoencoders that adapt GANs training
technique [9]. Similar to VAEs, they impose
certain properties on the learned latent space
such as being normally distributed but they use
a different regularization technique. Apart from
an encoder and a decoder, there is an auxiliary
adversary network which is trained to distin-
guish samples from the latent space and samples
drawn from a chosen distribution. The encoder
tries to fool the adversary by producing samples
that are indistinguishable from the chosen dis-
tribution and this serves as regularization of the
latent space. One of the benefits of the AAEs
compared to VAEs is that the chosen prior dis-
tribution that the encoder tries to mimic can
be any distribution, even a non-parametric one.
Depending on the choice of the encoder, the
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AAE can be either a deterministic model that
maps all the inputs to the same space in the la-
tent space or have a probabilistic encoder that
outputs parameters for a full latent posterior dis-
tribution.

2.5 Transformers

Transformer is an attention-based architecture
that gained popularity in recent years due to
its successful use in language models [10, 11].
Transformer has two functional parts: a block of
stacked encoders and a block of decoders (Figure
2). Encoding part produces a representation of
the input that tells us how different parts of the
input sequence are related to each other. “Rel-
evancy”’ is determined by the attention formula.
This approach allows us to establish connections
between parts of the sequence that can be far
from each other. This makes it attractive for
use in protein structure prediction, where func-
tional groups at different sides of the sequence
can interact with each other, dictating the 3D
conformation of the sequence.

3 Databases and tools

In this section, we highlight some of the most
useful databases and tools for drug design and
drug response prediction.
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Figure 2: Transformer architecture.

3.1 Databases of Chemical Com-
pounds

Table 1 shows the most commonly used
databases of binding affinities, bioactivity, and
3D structures of chemical compounds.

3.2 Databases of Cell Line Screens

In Table 2, we present open source databases of
drug response (sensitivity) data on cancer cell
lines as well as gene expression data collected
using high-throughput screenings for cells and
tissues.

3.3 Tools

QSAR is a computational method for modeling
relationships between structural properties of
chemical compounds and their biological proper-
ties (such as enzyme activity, minimum effective
dose, toxicity). This can often be used to val-



Database Type Note Entries | Link
Database containing binding affinities
BindingDB | Binding affinity between proteins and ligands with 1.5 M BindingDB.org
drug-like properties.
ZINC Bioactivity, 3D structure | Commercially available molecules 21 M zinc.docking.org
Contains compounds,
PubChem Bioactivity, 3D structure | substances (mixtures, extracts), 40 M pubchem.ncbi.nlm.nih.gov
and high-throughput screenings (BioAssay)
Contains 3D structures of proteins
PDB 3D structure . . 170 000 | rcsb.org
and nucleic acids.
PDBeChem | 3D structure Ligands referenced in the PDB database. 14 500 ebi.ac.uk
ChemDB 3D structure Commercially available molecules. 5M chemdb.ics.uci.edu
ChemSpider | 3D structure Crowdsourced chemical database. 100 M chemspider.com
Table 1: Databases of chemical compounds.
Database Type Note Size Link
o . Cytotoxic and cytostatic effects of different 60 cell lines )
NCI-60 Drug response drugs on human tumor cell lines. with 100 000 drugs dtp.cancer.gov
Cytotoxic and cytostatic effects of different .
. 850 cell lines R
CTRPv2 Drug response drugs on human tumor cell lines. . broadinstitute.org
. . R with 481 drugs
Provides different concentrations of drugs.
aDSC Drue response Cytotoxic and cytostatic effects of different 700 cell lines CALCOITXEONe.Ore
& Tesp drugs on human tumor cell lines. with 138 drugs gene.org
CCLE Drug response Cytotoxic and cytostatic effe.cts of different 1(?00 cell lines cclenclaedu
drugs on human tumor cell lines. with 24 drugs
NCBI GEO Gene expression Ge'ne expression data from human and B nebi.nlm.nih.gov
profiles animal tissues.
Gene expression Expression changes (perturbations) 1000 genes
CMap-L1000v1 P of 1000 landmark genes for different e cmap.ihme.us
changes . . with 2700 drugs
concentrations and durations of drug treatments.

Table 2: Databases of cell line and tissue screenings.

idate the results achieved by deep nets and for
benchmarking. However, QSAR is sometimes at
risk of giving inaccurate predictions.

RDKit open-source chemoinformatics library
(available from http://www.rdkit.org) can be
used for a number of 2D and 3D molecular op-
erations, from stereochemistry identification to
detecting chemistry problems.

4 Data Representations

Given the diversity of problems and screenings
that drug discovery can cover, data representa-
tions also differ significantly. We present some
of the most common ones. For a detailed review
of the molecular representations, see David et al.
[12]. We stress that there exist molecules that
cannot be described using a standard notation.

4.1 SMILES and Its Variants

Simplified Molecular Input Line Entry System
(SMILES) represents molecules as strings and,
to date, is one of the most commonly used molec-
ular representations. The strings are created by
traversing a molecular graph in a specific order
(for example, RDKit uses a depth-first search
algorithm). SMILES strings are not unique and
one molecule can have several representations.
Therefore, a canonical string is often chosen for
a given molecule.

SMILES Arbitrary Target Specification
(SMARTS) is an extension of SMILES that
allows to encode more information about bond
types, connectivity, and atomic properties in a

string.
Another  string representation, called
SMIRKS allows for expressing reactants

and products of a generic chemical reaction.

4.2 Molecular Fingerprints

Molecular fingerprints are another popular way
of encoding molecular structures. In its sim-
plest form, binary encoding indicates presence
of absence of individual substructures within
a molecule. However, any information about
bonds and other properties is necessarily lost
with this representation and it is not a one-to-
one mapping.

Circular fingerprint considers connectivity of
atoms up to a certain distance to solve the prob-
lem of non-uniqueness of many representations.
Every atom receives a descriptor that indicates
its closest neighbors. Examples of circular fin-
gerprints include extended-connectivity finger-
prints (ECFPs) such as ECFP4 or ECFP6 where
the number indicates the radius around an atom
to be considered. Other examples are Multilevel
Neighborhoods of Atoms (MNA) or MolPrint2D
Format (MPD).

A fingerprint that describes molecules’ surface
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Figure 3: Example of molecular representations.
Amino acid glycine represented in different for-
mats.

properties are called spectophores. Molecules
that have similar shapes and 3D properties will
retains a similar representations.

4.3 Peptide and Protein Repre-
sentations

The simplest way of representing peptides or
proteins is using amino acid sequences. Each
individual amino acid, a building blocks of pep-
tides, is assigned a letter and the final peptide
is represented by a string of these letters.

There are other representations of proteins
such as distance and contact maps that pre-
serve information about protein structures. Pro-
tein contact maps represent distances between
all pairs of amino acids in a 3D protein struc-
ture in a matrix.

4.4 Graph Representations

Molecular graphs can be also described directly
using graphical representations.

Standard adjacency matrices can be used to
represent a presence or absence of bonds be-
tween atoms in a graph.

A node feature matrix is a larger matrix can
be used to indicate atom types, formal charges,
or other properties of each atom.

Similarly, in an edge feature matrix, each row
represents an edge in a graph and is a binary vec-
tor that indicates properties of that such (such
as the type of a bond).

5 Drug Design

5.1 Small Molecule Design

With many variations of generative architec-
tures published in recent years, there are a num-
ber of ways to enforce properties onto gener-
ated structures. Desired drug features, such as
growth inhibition of tumors (or GI50), can be
used as input to encoder in Conditional Autoen-
coders [13]. Some work was also done to frame
drug design as a ‘translation’ problem, applying

transformer architecture for converting amino-
acid sequence to SMILES representation of the
molecule that can bind it [14]. However, even
with faster screening methods, docking valida-
tion still remains a bottleneck in this type of
candidate generation. Moreover, when mapping
discrete representations into continuous space,
“srammar” of chemical syntax is hard to pre-
serve. This can lead to unrealistic aromatic sys-
tems and incorrect atomic valences. Because of
this, SMILES-generated molecules often require
additional “correcting” architectures.

One possible approach for correction is
sequence-to-sequence learning with attention,
where the input is a wrong sequence and the
target is the corrected one [15]. Grammar
VAE (GVAE) [16] was also used to generate
SMILES that follow syntactic constraints given
by a context-free grammar. Finally, syntax-
directed VAE (SDVAE) [17]) can make use of
attribute grammar to enforce syntactic and se-
mantic constraints on generated SMILES.

While focusing on SMILES strings or molec-
ular fingerprints simplifies generation of new
molecules, a lot of information is lost using
these approaches. For instance, chemically sim-
ilar molecules can have very different SMILES
strings (Figure 4. This representation prevents
learning meaningful smooth embedding.
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Figure 4: SMILES strings for these two very
similar molecules show only 50.5% similarity.
Adapted from [18] .

Graph neural networks that capture graph
structures by message passing between the nodes
are attractive methods for generation of full
molecular structures [19]. Given that graphs are
discrete structures with arbitrary connectivity,
graph generation is a difficult domain and rela-
tively young domain of generative modeling.

One approach is to generate graph nodes
and edges one by one. This was done using
an LSTM-based autoregressive model [20]. Si-
monovsky and Komodakis, [21] used GraphVAE
to directly generate nodes (atoms) and predict
an adjacency matrix indicating edges (bonds)
of a graph. Another approach, which enhances
chemical validity of generated molecular graphs,
is to use smaller subgraphs as building blocks
of a final molecular graph. Jin et al., [1§]
used a model called Junction Tree VAE (JT-



VAE), which first generated a junction tree that
serves as a scaffold for the molecule and then
specifies the subgraphs as nodes of the junction
tree. Their method of coarse-to-fine generation
of molecules significantly outperformed previ-
ous SMILES-based approaches such as Gram-
marVAE [16], Character VAE [22], or graph
generating GraphVAE in validity of generated
molecules. Another model , DeLinker, which is a
gated graph neural network (GGNN) that links
two molecular fragments together to form more
complex compounds [23] also incorporates 3D
structural information to constrain the linking
process. However, DeLinker’s performance was
not compared to previous methods.

5.2 Gene Therapy

Generative models have a particular promise for
the area of gene therapy, where adeno-associated
virus (AAV) capsids serve as vectors for gene de-
livery. However, due to wide-spread immunity
against common A AVs, capsids often need to be
diversified such that antigens on their surface
aren’t recognized by the human immune system.
Previous approaches, like directed evolution or
DNA shuffling between serotypes, often pro-
duced unstable results (Bryant et al., 2021; Og-
den et al., 2019). Earlier this year Dyno Thera-
peutics used variational autoencoders to create
novel and stable adeno-associated viral capsids
[24]. This case also emphasizes that, compared
to supervised methods, unsupervised generation
can potentially take advantage of evolutionary
information.

5.3 Proteins and Peptides

Peptides are short sequences of amino acids that
can be used as therapeutics. There are over
60 peptides approved for clinical use by the
FDA. While many naturally-occurring peptides
are approved for medical use, they often end up
having some weaknesses, such as low membrane
permeability, chemical instability and short half-
life. Synthetic peptides generated by computa-
tional methods can overcome these weaknesses
[25].

Das et al. [26], compared usage of Wasserstein
Autoencoder (use Mean Maximum Discrepancy
as a regularization in their loss) and Beta Vari-
ational Autoencoders (Kullback-Leibler diver-
gence as regularization) for the screening of pep-
tides with antimicrobial properties. WAE man-
aged to learn meaningful latent representation
that captured correlation between evolutionary
similarity and distance in the z-space (Beta Vari-
ational Autoencoders didn’t have the same cor-
relation in their latent space but showed com-

paratively good BLEU score, reconstruction er-
ror and perplexity). VAEs can also be used
for generation of functional variants of peptides:
Hawkins-Hooker et al., 2021, showed evidence
of conditional VAEs being able to increase sol-
ubility of luxA sequence from P. luminescens
without losing core properties of the wild-type.
Given the complexity of de novo design, diversi-
fication of already functional peptides can allow
for a more reliable design of therapeutics.

Most drugs target receptors and channels
(both are classes of proteins) on the surface
of the cell or soluble (not part of a mem-
brane) proteins. Given this, knowing the ex-
act conformation of the target can be of much
help when designing ligands. Moreover, pro-
teins can serve as a therapeutics themselves. A
huge milestone in deriving 3D structure from
an amino acid sequence was achieved by Deep-
Mind in protein structure annual competition,
Critical Assessment of Protein Structure Pre-
diction (CASP) [27]. While their earlier ar-
chitecture in CASP13, AlphaFold-1, relied on
ResNet-like architecture to predict amino acid
residue distances [28], a major breakthrough was
achieved with AlphaFold-2 in CASP14, when
the team transitioned to transformer-like archi-
tecture [27]. Previously, to predict the struc-
ture of a protein, one would have to undergo ex-
pensive and laborious X-ray crystallography or
cryo-electron microscopy. Combination of gen-
erative methods with the knowledge of precise
target shape can profoundly cut time for drug
screening (Callaway, Ewen, 2020).

6 Drug response

Apart from designing novel pharmaceutically ac-
tive compounds, another important task is to
be able to predict their efficiency. Ultimately,
incorporating drug response directly as one of
the optimization goals for generation of new
molecules can lead to a more powerful drug de-
sign pipeline.

Recent research efforts have produced large-
scale publicly available drug screening pro-
files (Table 2). Most of them contain high-
throughput screenings for anti-cancer drugs
against cancer cell lines. These cell lines are
most commonly immortalized human or animal
cells which are grown outside an organism, on
a Petri dish. Despite the tremendous value that
cell lines provide to our understanding of disease
progression and treatment [29] there are impor-
tant drug response differences compared to full
organisms. Therefore, there has been an ongoing
effort to transfer findings from cell lines to ac-
tual application in humans where the amount of



available data on drug responses is very limited.

The input features that are used for drug re-
sponse prediction on cell lines consist of one
or multiple of the following: expression levels
or different genes, gene methylation status, and
protein abundance. Less common are DNA mu-
tation profiles (single nucleotide variations) and
copy number variations. The nature of the prob-
lem — expression profiles of hundreds or thou-
sands of genes — creates a high feature to sam-
ple ratio that complicates the prediction task.
Initial approaches for drug response prediction
included linear regression and simple clustering
algorithms, SVM, and Random Forests. Tra-
ditional feature selection and dimensionality re-
duction approaches achieved some limited suc-
cess [30, 31]. While the task itself is not gen-
erative in nature, DGM models such as VAEs,
conditional VAEs, and AAEs, have been used to
perform dimensionality reduction, deconfound-
ing or domain adaptation for better response
prediction.

The first study to apply generative models to
drug response predictions was described by Din-
cer et al. [32]. In this work, a VAE model has
been used to learn relevant features from gene
expression data of cancer cells treated with a
drug. Compared to drug response data, there
is a vast amount of unlabeled gene expression
results which their model leveraged. First, the
VAE was trained on gene expression data of
AML patients and then, a much smaller sample
size for which responses to various drugs were
available were passed through the encoder. On
the compressed data, a linear classifier was fit to
predict a binary target if patients responded to
therapy or not. This method improved perfor-
mance over no feature reduction.

In another approach, a semi-supervised VAE
called Dr.VAE divided the task of predicting
drug response into two parts — first, it learns
how a drug perturb gene expression of cells,
and second, it relates gene expression changed
to drug sensitivity [33]. This means that in-
stead of using only post-treatment gene expres-
sion data (as done above), the data is consid-
ered in pairs of pre- and post-treatment and
there is a learnable function that describes this
change. Dr.VAE aims to learn a joint distribu-
tion of gene expression pairs, latent represen-
tations, and a categorical variable that corre-
sponds to the drug response. The marked im-
provement of this approach over baselines could
be potentially even greater if combined with
supplying the model with chemical properties
of tested drugs. Combining gene expression
data with embedded structure of chemical com-
pounds was done by Kuenzi et al. [34] which

used a simple feed-forward network.

Generative models have also been used for de-
confounding in drug response prediction. As
mentioned above, there is often a mismatch be-
tween drug efficiency tested in cell lines and in
humans. When using predictive models, they
can detect cell-line specific patterns. If an au-
toencoder is applied directly, it will mainly learn
to encode these non-relevant signals as they
are usually the main source of variation in the
dataset. Adversarial Deconfounding Autoen-
coder (AD-AE) was used to extract only the
relevant signal from this data (i.e., expression
patterns of cancerous cells independent of their
source) [35]. This model is most similar to AAE,
but the adversary network tries to predict a con-
founder, such as sex, biological age or origin
of cell, from embeddings. This forces the la-
tent space to contain only confounder-invariant
representations. AD-AE was also better at do-
main adaptation to different datasets which in-
dicates that it learned more meaningful cancer
responses to drugs. Given that there is much
more gene expression data on cancer cell lines
than on tumor cells, AD-AE has also been ap-
plied for domain adaptation from cancer cells to
tumors [36].

Finally, drug response can serve as a direct op-
timization target for generating new molecules.
While conditional VAE (CVAE) has been used
in the past for drug design with specific physic-
ochemical properties (see section Drug Design;
[37]), Joo et al., used a conditional VAE used
to generate new drug candidates with the de-
sired property of inhibiting cancer cell growth
[13]. The model takes in molecular fingerprints
and a one-hot vector which indicates the bina-
rized concentration of a drug needed to inhibit
50% of cells in a population (GI50). During in-
ference, a label with desired GI50 value is passed
to the decoder along with a random sample from
a latent space. Generated molecular fingerprints
did indeed resemble similarity to those of FDA-
approved drugs for breast cancer indicating that
the model learned the relationship between the
structural properties encoded in the fingerprints
and efficiency of drugs. However, generating a
molecular fingerprint is not the same as gener-
ating a full molecular structure. In the future,
more direct approaches that generate full molec-
ular graphs directly can be used with similar op-
timization targets.



7 Challenges and Future Di-
rections

With exceptionally high failure rates and a large
amount of unlabeled data, drug design and drug
response prediction represent attractive areas
for applying generative models. However, as em-
phasized by some authors in the field, reduction
in cost and time for drug screening using Al of-
ten does not lead to improved decisions [38].

Generation of new pharmaceutically active
compounds is challenging for several reasons. A
lot of information is lost by using molecular rep-
resentations. Many of the available data for-
mats (such as SMILES or amino acid strings),
when used alone, ignore the complexity of bio-
logical systems when trying to predict drug per-
formance. This complexity includes but is not
limited to secondary targets, drug metabolites
and concentration-dependent effects.

Generating a molecular fingerprint of a drug
or a SMILES string is far from generating a full
molecular structure. Moreover, chiral molecules
(molecules that are not identical to their mir-
ror images) often have very different properties.
Drug receptors can recognize only one enan-
tiomer (one mirror image) but not the other.
Sometimes, they can even have opposing prop-
erties with one being an inhibitor while the
other being an activator of the same receptor
[39]. This information is completely lost in
SMILES strings. Better molecular representa-
tions or modelling of full molecular graphs could
therefore substantially advance the field in the
upcoming years.

AlphaFold represents an excellent example
of how emphasizing relevance of data (protein
structure) can help solve the most complex bio-
logical problems [28]. In fact, Alphafold’s trans-
former achieved state-of-art results in protein
folding with just training 170,000 samples.

Another problem of some studies is a lack
of proper benchmarking and evaluation com-
pared to previously published work. Several pa-
pers provided only proof-of-the-concept exam-
ples of validity of their approaches. Having rig-
orous, standardized, and well-known compari-
son standards for drug design, similar to bench-
marks for image generation on CIFAR-10 or Im-
ageNet, would enable more transparent evalua-
tion of newly proposed methods. Examples of
proposed benchmarks include GuacaMol [40] or
MOSES [41].

Furthermore, the field of generation is par-
ticularly vulnerable to IP issues. For exam-
ple, DDRI1 kinase inhibitors recently produced
by the generative pipeline of Insilico [42] were
claimed to be “the AlphaGO moment of drug de-
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Figure 5: Compound 1 is DDR1 kinase inhibitor
produced by the model and Ponatinib is a com-
pound from dataset most similar to it. Adapted
from

sign”. However, later a few researchers pointed
out that the drug is almost identical to the one
that appeared in the dataset of patented ligands
they used, drug Iclusig (compound ponatinib)
marketable by ARIAD Pharmaceuticals (Figure
5) [43]. To prevent this from happening, the
future research in de novo candidate generation
should publish molecules from the training set
that are most similar to the generated candi-
dates. This heavy reliance on data and previ-
ous research, however, points to one other prob-
lem. In recent years, there has been growing ev-
idence on lack of reproducibility in biological re-
search. Recent investigation into oncology drug
design showed that two-thirds of published data
on drug targets is not reproducible [44]. Given
wrong data, even state-of-the-art models won’t
be able to generate meaningful candidates.

Conclusions

In this paper, we present the current advances
in the fields of drug design and drug response
prediction using deep generative models. While
there is a clear intuition for why these methods
can be applied to drug discovery, most of the
progress is yet to be made. Only a small frac-
tion of research discussed in this review went
beyond proof-of-concept and was used in indus-
try pipelines. Generative models face limita-
tions similar to previous approaches used in drug
discovery and drug response prediction, (like
QSAR), namely, little understanding of actual
mechanism of action and risk of inaccurate pre-
dictions. Even though large databases of unla-
beled molecules are attractive for unsupervised
generations, to really increase success rate of
drug discovery, future research should also make
an emphasis on relevancy and quality of data
used in the training.
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