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Abstract. We consider increasingly complex models of matrix denoising and dictionary learning
in the Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank
growing linearly with the system size. This is in contrast with most existing literature concerned with
the low-rank (i.e., constant-rank) regime. We first consider a class of rotationally invariant matrix
denoising problems whose mutual information and minimum mean-square error are computable
using standard techniques from random matrix theory. Next, we analyze the more challenging
models of dictionary learning. To do so we introduce a novel combination of the replica method from
statistical mechanics together with random matrix theory, coined spectral replica method. It allows
us to conjecture variational formulas for the mutual information between hidden representations and
the noisy data as well as for the overlaps quantifying the optimal reconstruction error. The proposed
methods reduce the number of degrees of freedom from Θ(N2

) (matrix entries) to Θ(N) (eigenvalues
or singular values), and yield Coulomb gas representations of the mutual information which are
reminiscent of matrix models in physics. The main ingredients are the use of HarishChandra-
Itzykson-Zuber spherical integrals combined with a new replica symmetric decoupling ansatz at the
level of the probability distributions of eigenvalues (or singular values) of certain overlap matrices.

1. Introduction

The simplest linear-rank matrix inference task, that we refer to as matrix denoising, is the
problem of recovering the rotationally invariant full-rank matrix S from noisy observations Y
generated as

Y =
√
λS + ξ,

where ξ is some Wigner gaussian noise matrix. In the random matrix theory (RMT) literature,
typical problems are concerned with deriving spectral properties: spectral density and correlation
functions of the eigenvalues or singular values of Y , its bulk statistics, the fluctuations of its
largest and smallest eigenvalues, potential universality properties, etc. The literature is too large
to be exhaustive here and relevant references will be cited along the paper. We refer to [1,2] for
generic good mathematic books, or [3–5] for a more physics-oriented presentation. In this paper we
instead consider information-theoretic questions such as: “given a certain signal-to-noise λ, what
is the mutual-information between the hidden matrix signal S and the observed noisy data Y ?”,
or “what is the statistically optimal reconstruction error on S ?” We are interested in answering
these questions in certain asymptotic large size limits. Despite the apparent simplicity of the model,
these questions turn out to be highly non-trivial.

In matrix denoising we are “only” interested in the reconstruction of the matrix S. This allows
to analyze the model using solely RMT. But there exist models where S possesses some additional
internal structure other than the (possibly non-trivial) statistics of its spectrum and/or S may not
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2 J. BARBIER AND N. MACRIS

be rotationally invariant. This is the case in the model we study next: dictionary learning, where a
product structure arises.

Let M noisy N -dimensional data points (Yj)j≤M be stacked as the columns of Y ∈ RN×M . The
unsupervised dictionary learning task is to find a representation of this data Y in the form

Y ∝ ST † +Z.

The unknowns are both the “dictionary” S ∈ RN×K made of K features and the coefficients
T ∈ RM×K in the decomposition of the clean data ST † in feature basis. Here Z represents undesired
noise. We also analyze a symmetric/Hermitian version of the problem where one aims to find a
positive-definite decomposition of Y in the form

Y ∝XX† +Z,

where X ∈ RN×M . The rich internal structure coming from the product between matrices requires
new ideas for analysis: RMT alone does not seem sufficient for analyzing the optimal reconstruction
performance on X,S,T themselves (instead of the products ST †, XX† seen a individual matrices).
This is where the statistical mechanics of spin glasses and the novel spectral replica method enter.

We will consider all models in the Bayes-optimal “matched setting” where Y is truly generated
according to the model under study, and the statistician has perfect knowledge of this data-
generating model (i.e., knows the additive nature and statistics of the noise and therefore the
likelihood) as well as the prior distributions underlying the hidden random matrix signals. The
statistician can thus exploit this knowledge to write down the correct posterior distribution in order
to perform inference. Each model will be analyzed both in the cases of real and complex matrices.

Given its fundamental nature and central role in signal processing and machine learning [6,7],
dictionary learning has generated a large body of work with applications in representation learning [8],
sparse coding [9–11], robust principal components analysis [12, 13], sub-matrix localization [14],
blind source separation [15], matrix completion [16,17] and community detection [18–20]. Low-rank
versions of dictionary learning have been introduced in statistics under the name of “spike models”
as statistical models for sparse principal components analysis (PCA) [21–24]. These models in
the low-rank (i.e., finite-rank) regime M,N → +∞ proportionally and K = Θ(1) (or N → +∞
while M = Θ(1) in the symmetric case) have become paradigms for the study of phase transition
phenomena in the recovery of low-rank information hidden in noise. In PCA the classical rigorous
results are due to Baik, Ben-Arous and Péché [25,26] who analyzed the performance of spectral
algorithms. More recently, low-dimensional variational formulas for the mutual information and
corresponding phase transitions at the level of the Bayes-optimal minimum mean-square error
estimator, as well as the algorithmic transitions of message passing and gradient descent-based
algorithms and their associated computational-to-statistical gaps, have been derived thanks to the
global effort of an highly inter-disciplinary community [19,27–51].

In contrast, much less is known in the challenging linear-rank regime studied here where
N,M,K → +∞ at similar rates, so that rank(ST †) or rank(XX†) diverge linearly with N .
References closely related to our work are [52, 53] which consider the very same setting. But
we believe that the results found in these papers are only approximations, i.e., are “not correct”
mean-field calculations and therefore do not yield asymptotically exact formulas. We will discuss
the reasons why we think so and the differences with our approach in a dedicated section. Another
important work is [54] which considers the same models as ours but focus on certain class of
rotational invariant estimators instead of the information-theoretic performance.
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Another very relevant literature concerns multi-matrix models from high-energy physics with
applications in string theory, quantum gravity, quantum chromodynamics, fluctuating surfaces
and map enumeration [55–66]. In certain aspects they are similar to matrix inference models like
dictionary learning. E.g., in contrast to the low-dimensional order parameters of standard low-
rank inference problems [67], in linear-rank regimes the order parameters are eigenvalues/singular
values densities, as in multi-matrix models. Also, at first sight, the formulas found in the present
contribution look very much like those appearing in these models, see [68]. It may thus be tempting
to think that matrix inference models are special cases of known matrix models. This is not
the case however. The presence of frozen, correlated randomness in inference, namely the data,
radically changes the nature of the problem: new tools are needed. This essential difference prevents
borrowing various important techniques from this field, but certain methods used in the analysis of
matrix models will be crucial, in particular the use of spherical integrals [69,70].

Concretely, having frozen data Y translates, as in spin glasses [71, 72], into the need to evaluate
the expectation of the logarithm of the partition function with respect to it. This yields the behavior
of the model for typical realizations of the signals and data. The difference is clear: the canonical
two-matrix model from physics reads [57,59,68]

lnZ2MM = ln∫ dAdB exp Tr[f(A) + g(B) + h(AB)] with A =A†, B =B†,

and with f, g, h just depending on the spectra. Instead the free energy of matrix inference models
(which is essentially the Shannon entropy of the data) will look like

EY lnZINFER(Y ) = ∫ dY exp Trf(Y ) ln∫ dU exp Tr[g(U) + h(UY )].(1)

This form will get even more complicated in non-symmetric multipartite systems such as the
ST †-dictionary learning problem, with an integration over more matrices which are not necessarily
symmetric/Hermitian. In addition, the presence of a quenched average in (1) is far from innocent. It
generates a whole new level of difficulty, since the methods in the previous references, all relying on
a direct saddle-point evaluation, do not apply [68]. This quenched average is the reason behind the
fact that, even if only Hermitian matrices are present in the original inference model, non-Hermitian
matrices will appear along the analysis. The role of the replica method combined with RMT is
precisely to deal with these new difficulties, at a non-rigorous level.

Many derivations presented in this paper are based on heuristics, yet they are conjectured exact
in proper asymptotic limits. We believe that some of our new methodology, in particular the
spectral replica method, will pave the way to the analysis of a whole new class of inference and
learning problems involving large linear-rank matrices and that remained inaccessible until now.
Moreover, given the breadth of applications of such disordered matrix models in information pro-
cessing systems but also physics, we believe that our results may have an impact in a broader context.

Organization: In Section 2 we start by analyzing the simplest linear-rank matrix inference model
using RMT techniques, namely, denoising of an Hermitian rotationally invariant matrix. Two special
cases (one only being non-trivial) can be completely treated, in the sense of deriving explicit enough
formulas to draw a phase diagram. In Section 3 we provide generic systematic expansions of the
previously derived formulas in the low (and to some extent high) signal-to-noise regimes. Section 4
generalizes the analysis to the case of non-Hermitian matrix denoising. Section 5 is devoted to
the analysis of Hermitian (i.e., positive-definite) dictionary learning. Starting from this section,
RMT tools do not suffice anymore, and we introduce the spectral replica method to go beyond.
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The first part of this section reduces the model to effective Coulomb gases of singular values, while
the second one expresses it in terms of eigenvalues. We also discuss the main differences with
previous attempts to analyse this model. Finally in Section 6, we consider the non-symmetric
case of dictionary learning. Appendix A recalls known facts about full-rank spherical integrals
which are of crucial importance in our analyses. Appendix B derives a generic formula for the
minimum mean-square error in matrix denoising. In Appendix C we discuss how our formulas can
be re-expressed in terms of densities order parameters. The last Appendix D provides the necessary
Mathematica codes to reproduce our numerical results.

Notations : Let the field K = R if β = 1 or K = C if β = 2, where β refers to the Dyson index. The
symbol † corresponds to the transpose ⊺ in the real case β = 1 or to the transpose conjugate when
β = 2, the conjugate being z̄ ∶= Rz − iIz with Rz and Iz the real and imaginary parts of z ∈ C
and i =

√
−1. Vectors and matrices are in bold. Vectors are columns by default and their transpose

(conjugate) x† are row vectors. When no confusion can arise we denote the trace Trf(A) = Tr[f(A)]
so, e.g., TrA2 = Tr[A2] or TrAB = Tr[AB]. Similarly EX2 = E(X)2 = E[X2] ≥ (EX)2 = E[X]2.
The usual inner product between (possibly complex) vectors ∑i x̄iyi is denoted x†y or ⟨x̄,y⟩ (with
x̄ = x if x is real); the matrix inner product is TrX†Y . The usual L2 vector (squared) norm
is ∑i ∣xi∣2 = ∥x∥2. Every sum or product over j ≤ t means over j = 1, . . . , t. We will often drop
parentheses, e.g., exp⋯ = exp(⋯). Depending on the context, the symbol ∝ means “equality up
to a normalization”, “equality up to an irrelevant additive constant” or “proportional to”. We
denote [N] ∶= {1, . . . ,N}. For a diagonal matrix Σ we will write the diagonal elements with a single
index Σi ∶= Σii. For a diagonalizable matrix A the diagonal matrix of eigenvalues is λA = λA and
the individual eigenvalues are λAi ; similarly for a generic matrix B the matrix of singular values
is σB = σB (with the singular values on the main diagonal) and the individual singular values
are σBi . We generically denote ρA the asymptotic limit of the empirical distribution of eigenvalues
or singular values of a matrix A. Symbol P refers to the set of probability densities with finite
support. A matrix M with elements Mi,j may also be written [Mij] or [Mcd]. Finally, the symbol
x ∼ y means equality in distribution for two random variables; x ∼ p instead means that x is a
sample from p whenever p is a probability distribution or a sample from p(x)dx if p is a probability
density function.

2. Denoising of an Hermitian rotationally invariant matrix

Before considering the richer dictionary learning models, we start with the simplest possible
model of inference of a large matrix: linear-rank rotationally invariant matrix denoising. It will
only require known tools from random matrix theory.

2.1. The model. Let a matrix signal S = S† ∈ KN×N with S ∼ PS,N for some known prior
distribution (which in general does not factorize over the matrix entries), and ξ = ξ† ∈ KN×N a
standard Wigner noise matrix with probability density function (p.d.f.)

dPξ,N(ξ) = CN dξ exp Tr[ − βN
4
ξ2]

with CN the normalization factor. Consider a matrix denoising problem with data Y = Y † ∈ KN×N

generated according to the observation model

Y =
√
λS + ξ.(2)
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The hidden matrix S to recover from the data is rotationally invariant in the sense that it is drawn
from a prior distribution such that

dPS,N(S) = dPS,N(O†SO)
for any orthogonal (β = 1) or unitary (β = 2) matrix O. It can thus be diagonalized as S = Ũ †λSŨ

where Ũ ∼ µ(β)
N with µ

(β)
N the normalized Haar measure over the orthogonal group O(N) if β = 1

or over the unitary group U(N) if β = 2. Matrix S has O(1/
√
N) entries. This scaling for the

entries of S and of the Wigner matrix are such that the (real) eigenvalues of S,ξ and therefore Y
remain O(1) in the limit N → +∞. The joint probability density function (j.p.d.f.) of eigenvalues
of the matrix Y generated according to model (2) is rigorously established in the case where S
has independent entries (which we do not necessarily assume), and is obtaind with techniques of a
similar flavor as our strategy (i.e., based on the use of spherical integrals) [73]; see also [1] for an
approach based on Dyson’s Brownian motion.

The above model defines a random matrix ensemble for Y which is linked to the Rosenzweig-
Porter random matrix model [74] from condensed matter. A generalized version of it has a rich
behavior with a localization transition and regions with “multifractal eigenstates”, see [75–78].
The regime we are interested in, namely with both λS and the eigenvalues of ξ being order 1,
corresponds precisely to the critical scaling regime where a recently discovered transition from
non-ergodic extended states to ergodic extended states happens in the model (i.e., the transition
towards multifractality), see the discussion on the regime γ = 1 in [77]. We find the connection with
inference particularly intriguing and the results of this paper may thus may be of independent
interest in this context. In particular, if there is an information-theoretic transition in this inference
problem it may happen to be connected to the γ = 1 ergodicity-breaking transition found in [77].

We consider a generic j.p.d.f. pS,N(λS) of eigenvalues which is symmetric1 (i.e., invariant under
any permutation of the entries of λS) and whose one-point marginal is assumed to weakly converge
as N → +∞ to a well defined measure ρS with finite support and without point masses; in particular
S needs to be full-rank. We discuss at the end of this section how to overcome this latter constraint.
Generically, rotational invariance implies that the prior over S = Ũ †λSŨ can be decomposed as

dPS,N(S) = dµ(β)
N (Ũ)dpS,N(λS).(3)

A (rather generic) special case of rotationally invariant measures for the signal are those of the form

dPS,N(S) ∝ dµ
(β)
N (Ũ)dλS exp Tr[ − βN

4
V (λS)] ∣∆N(λS)∣β(4)

for a rotation invariant matrix potential TrV (S) = TrV (λS), and where the Vandermonde determi-
nant for a N ×N diagonal matrix A with diagonal entries (Ai)i≤N reads

∆N(A) ∶=
1,N

∏
i<j

(Ai −Aj) = det[(Ac)d−1].(5)

In this case the eigenvalues j.p.d.f. has the form

pS,N(λS) ∝ exp Tr[ − βN
4
V (λS)] ∣∆N(λS)∣β.(6)

The case of a standard real symmetric or complex Hermitian Wigner matrices then corresponds to
V (λS) = λ2

S. Wishart matrices S =XX† with X ∈ KN×M have a density for N ≤M corresponding
to V (λS) = 2(1 −M/N − 1/N + 2/(βN)) lnλS + 2(M/N)λS (see more details later in Section 3).

1We require symmetry except in the trivial case pS,N(λ
S
) = δ(λS

−λS
0 ) for some fixed λS

0 .
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The main object of interest is the mutual information between data and signal:

I(Y ;S) =H(Y ) −H(Y ∣ S)
=H(Y ) −H(ξ)

= −EY ln∫ dPS,N(s)CN exp Tr[ − βN
4

(Y −
√
λs)2] +E lnCN exp Tr[ − βN

4
ξ2]

= −EY ln∫ dPS,N(s) exp
βN

2
Tr[

√
λsY − λ

2
s2] + βλN

4
ETrS2.(7)

2.2. Free entropy and mutual information through random matrix theory. We define
the free entropy fN = fN(Y ) as minus the first term in (7) divided by N2, without the expectation.
The mutual information will directly be deduced from the free entropy, and using that the later is
expected to concentrate onto its Y -average. Using the eigen-decomposition s = U †λsU the free
entropy reads

fN ∶= 1

N2
ln∫ dPS,N(s) exp

βN

2
Tr[

√
λsY − λ

2
s2]

= 1

N2
ln∫ dpS,N(λs) exp [ − βλN

4
Trλ2

s]∫ dµ
(β)
N (U) exp

β
√
λ

2
NTr[U †λsUY ]

= 1

N2
ln∫ dλs expN2( 1

N2
lnpS,N(λs) − βλ

4N
Trλ2

s + I
(β)
N (λs,λY ,

√
λ)).(8)

There appears the HarishChandra-Itzykson-Zuber (HCIZ) spherical integral [70,79], which is only a
function of the eigenspectra of its arguments: for N ×N symmetric/Hermitian matrices A and B,

I
(β)
N (A,B, γ) = I(β)N (λA,λB, γ) ∶= 1

N2
ln∫ dµ

(β)
N (U) exp

βγ

2
NTr [U †λAUλB],(9)

where the integration is over O(N) when β = 1 or U(N) when β = 2. We recall known facts about
it in Appendix A. It has a well-defined limit [79,80]:

I(β)[ρA, ρB, γ] ∶= lim
N→+∞

I
(β)
N (λA,λB, γ),

where ρA, ρB are the asymptotic densities of eigenvalues (i.e., one-point correlation functions) of A
and B, respectively. In the present case, the eigenvalues λY of the data matrix Y and associated
asymptotic density ρY are fixed by the model; λY can be simulated and ρY can be obtained using
free probability, see, e.g., [81,82]. Thus, a standard saddle-point argument leads to the following
conjecture for the free entropy fN = fN(Y ) as N → +∞.

Conjecture 1 (Free entropy of Hermitian rotationally invariant matrix denoising). The free entropy
of model (2) verifies

fN = sup
λs∈RN

{ 1

N2
lnpS,N(λs) − βλ

4N
Trλ2

s + I
(β)
N (λs,λY ,

√
λ)} + τN .(10)

Assuming there exists a functional Γ depending only on the asymptotic density of eigenvalues ρs
associated with λs and such that

Γ[ρs] = lim
N→+∞

1

N2
lnpS,N(λs)

we get, in terms of the density of eigenvalues,

fN → sup
ρs∈P

{Γ[ρs] −
βλ

4 ∫ dρs(x)x2 + I(β)[ρs, ρY ,
√
λ]} + τ.
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The optimization is over the set P of probablity densities with finite support. The constants τN and
τ fix the constraint fN(λ = 0) = 0 (the spherical integral cancels when λ = 0):

τN ∶= − sup
λs∈RN

1

N2
lnpS,N(λs) + oN(1) and its limit τ ∶= − sup

ρs∈P
Γ[ρs].

For the typical form of eigenvalues density (6) we have

1

N2
lnpS,N(λs) = β

2N2

1,N

∑
i≠j

ln ∣λsi − λsj ∣ −
β

4N
TrV (λs)

and the functional

Γ[ρs] =
β

2 ∫ dρs(x)dρs(y) ln ∣x − y∣ − β
4 ∫ dρs(x)V (x).

Because we do not rigorously control the saddle-point estimation we state the result as a conjecture,
but it should not be out of reach to turn it into a theorem using techniques as in [68].

This free entropy was not averaged with respect to Y . But it is expected that additionally it is
self-averaging as it depends only on the spectrum λY of Y :

EfN = fN + oN(1).
Note that from this conjecture, the minimum mean-square error (MMSE) can be deduced using
the I-MMSE relation for gaussian channels [83] 2

1

N2
E∥S −E[S ∣ Y ]∥2 = 4

βN2

d

dλ
I(Y ;S) +O(1/N) = 1

N
ETrλ2

S −
4

β

d

dλ
EfN +O(1/N).(11)

Regularity of eigenvalues and singular values distributions. All along the paper we assume that
all eigenvalues (and later singular values) distributions are such that empirical distributions of
eigen/singular values converge weakly to well defined asymptotic probability densities with i)
(possibly disconnected) finite support, and ii) without any point masses. Cases of distributions
with point masses (such as a matrix S of rank lower than N with a point mass δ0 in its eigenvalues
distribution; for example a rank-deficient Wishart matrix with M > N) can be approximated by
considering regularizations. If the original signal matrix, say S ∈ RN×N , has a rank(S) < N with a
finite fraction of eigen/singular values strictly null, one may instead consider from the beginning the
same inference model but with full-rank signal Sε ∶= S +Zε where Zε is an independent rotationally
invariant regularization with norm smaller than ε, such as a Wigner matrix with sufficiently small
variance. In certain cases it should then be possible to obtain the j.p.d.f. of the resulting matrix
ensemble. The asymptotic formulas for the free entropies and mutual informations are expected
to be continuous in ε. Thus assuming that the convergence to the asymptotic value is uniform
in ε, we can permute the N → +∞ and ε → 0+ limits to obtain the formulas for “non full-rank”
cases and densities with point masses. For the rest of the paper, we will thus restrict all theoretical
arguments to full-rank cases without point masses.

2The factor 4 that differs from the 2 in the usual I-MMSE relation [83] comes from the fact that the Wigner
matrix to denoise has only a fraction N(N +1)/(2N2

) = 1/2+O(1/N) of independent entries. The O(1/N) correction
comes from the diagonal terms in matrix S for which the signal-to-noise ratio is different than the one of the
off-diagonal entries. The complex noise case of the I-MMSE relation is discussed in Section V.D of [83].
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Let us also mention that despite we focus on full-rank square models of matrix denoising (2)
with S a N ×N matrix, we believe that by combining our approach together with the idea of
“quadratization of rectangular matrices” found in [84], and exploited, e.g., in [85,86], then it should
not require too much work to generalize the results on matrix denoising of Sections 2 and 3 to the
rectangular setting S ∈ KN×M , N ≠M .

2.3. Simplifications in the Bayes-optimal setting using the Nishimori identity. The
above conjecture has already reduced the computation of an integral over Θ(N2) degrees of
freedom (the matrix elements) onto an optimization problem over Θ(N) eigenvalues (or a functional
optimization over a density). But we claim that because of the fact that we are in the Bayesian
optimal setting the formula can be further simplified, see Conjecture 2 below. Indeed, because
in this matched setting the posterior is the “correct” one, and as a consequence, a fundamental
property known as the Nishimori identity holds. This identity states that for any well-behaved
function g ∶ RN×N ↦ R we have (here we state a restricted form of the most general identity found
in [67])

E⟨g(s)⟩ = E g(S)(12)

where the signal S ∼ PS,N , while s is a sample from the Bayes-optimal posterior j.p.d.f.

dPS∣Y,N(s ∣ Y ) = 1

Z(Y )dPS,N(s) exp Tr[ − βN
4

(Y −
√
λs)2],

and the Gibbs-bracket ⟨ ⋅ ⟩ is the associated expectation. In particular we have

E⟨Trλks
N

⟩ = E
TrλkS
N

,(13)

the kth moment of the empirical density of eigenvalues of the signal.

We now give an heuristic argument based on four steps and leading to Conjecture 2 below; we
believe that this may be the starting point of a rigorous proof strategy. Let ρ̂s,N be the empirical
density of the eigenvalues λs of the posterior sample. Define its moments

mk,N ∶= ∫ dxxkρ̂s,N(x) = Trλks
N

.

(1) First, note that in expression (8) the density ρ̂s,N plays the role of an order parameter
for a “mean-field” free entropy functional given by the exponent in the integrand in (8),
or equivalently, by the functional to be extremized in Conjecture 1. Concretely, one can
express the integrand in (8) entirely in terms of the moments (mk,N)k≥1 (this point is briefly
detailed in Appendix C).

(2) Second, we assume that the extremizer ρ̂∗s,N in Conjecture 1 is such that the corresponding

moments m∗
k,N are close to the Gibbs average ⟨mk,N⟩ = N−1⟨Tr(λs)k⟩. In other words

m∗
k,N = ⟨mk,N⟩ + oN(1).

This is a natural self-consistency hypothesis for any “replica-symmetric” mean-field theory,
where the optimal value of the order parameter generally coincides with the Gibbs average
(the reader may recall the solution of the Curie-Weiss model for the prime example of
this mechanism). Replica symmetry, namely the self-averaging/concentration of the order
parameters (the moments (mk,N)k), is generically rigorously valid in Bayes-optimal inference
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of low-rank models [67, 87] and we think that this property extends to linear-rank regimes.

(3) Third, we assume that the Gibbs expectation of the moments concentrates with respect to
the data Y : ⟨mk,N⟩ = E⟨mk,N⟩ + oN(1). This translates to

⟨mk,N⟩ = N−1E⟨Trλks⟩ + oN(1) = E⟨(λs1)k⟩ + oN(1).
This is again true in low-rank Bayes-optimal inference [67,87].

(4) Finally, from the two previous points and the Nishimori identity (13) we conclude

m∗
k,N = E(λS1 )k + oN(1).

We have thus found that, somewhat remarkably, the extremizer in Conjecture 1 is nothing else
than the empirical density of eigenvalues of the signal ρ̂∗s,N = ρ̂S,N . Taking N → +∞, the argument
becomes exact: the empirical densities ρ̂∗s,N → ρ∗s = ρS the asymptotic density of eigenvalues of the

signal; this gives the formula (14) below. In particular the supremum in both the non trivial term
where the spherical integral appears in Conjecture 1 and the constant term τN (or τ in the case of
infinite N) are the same. Consequently we obtain a greatly simplified expression for the mutual
information using relation (7), the fact that N−1TrS2 = N−1Trλ2

S concentrates onto N−1ETrS2

when N → +∞, and the concentration assumption for the free entropy EfN = fN + oN(1). We also
obtain a formula for the MMSE using the I-MMSE relation (11).

Conjecture 2 (Mutual information of Hermitian rotationally invariant matrix denoising). Let
λs ∈ RN be the eigenvalues of a random matrix s ∼ PS,N , i.e., λs ∼ pS,N . The mutual information
of model (2) verifies

1

N2
I(Y ;S) = βλ

2N
Trλ2

s − I
(β)
N (λs,λY ,

√
λ) + oN(1).

By introducing the density of eigenvalues we get

1

N2
I(Y ;S) → βλ

2 ∫ dρs(x)x2 − I(β)[ρs, ρY ,
√
λ](14)

where ρs is the asymptotic spectral density of s ∼ PS,N .

We deduce from (11) and a convexity argument (as (I(Y ;S))N is a sequence of concave functions
in λ) that the minimum mean-square error verifies

1

N2
E∥S −E[S ∣ Y ]∥2 = 2

N
ETrλ2

S −
4

β

d

dλ
I
(β)
N (λS,λY ,

√
λ) + oN(1),(15)

or, working with the eigenvalues densities,

1

N2
E∥S −E[S ∣ Y ]∥2 → 2∫ dρS(x)x2 − 4

β

d

dλ
I(β)[ρS, ρY ,

√
λ].

Remark 1: The spherical integral I(β) or I
(β)
N is difficult to compute. One route is to try using

the HCIZ formula, but it is known that the ratio of determinants involved in the formula (see
Appendix A) is notoriously difficult to evaluate analytically or even numerically. Another one
is to employ its asymptotic hydrodynamic description [79, 80] but this is challenging too. The
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HCIZ formula can be evaluated exactly in very special cases (e.g., the uniform and Wigner cases
below) or perturbatively (see Section 3), or approximated by using sampling techniques [88]. We
wish to point out that an easy and nice application of the HCIZ formula is to check that the
asymptotic mutual information obtained in Conjecture 2 is the same for a signal S or its centered
(trace-less) version S − Id,NN−1TrS (where Id,N is the identity of size N); this can be checked
using basic properties of determinants. We know a-priori that this must be so because in the
Bayesian-optimal case the statistician knows the asymptotic value of N−1TrS → Eλs1 (which is
nothing else than the first moment of distribution of the signal) and can subtract it from the data
matrix, so information-theoretically this has no influence.

Remark 2: Conjecture 2 was first obtained in the thesis of C. Schmidt [53] in the real case β = 1 (see
Appendix 7). But what we believe are crucial steps and justifications were completely omitted in his
derivation, and it is not obvious to us how the final (correct) result was obtained. In particular, [53]
jumps from equation (8) to the final Conjecture 2 without justification (see the transition from
equation (A.79) to (A.83) in Appendix 7 of [53]).

Remark 3: The formula for the MMSE involves the derivative of the HCIZ formula with respect to
λ. This can be computed in cases where some expression for the asymptotic value I(β)[ρS, ρY ,

√
λ]

is known. This is for example the case for the sanity checks of the next paragraphs, and also in
terms of perturbative expansions presented in Section 3 for small and large signal-to-noise ratio. It
is possible to deduce from the HCIZ formula an expression for the derivative directly in terms of
the eigenvalues and eigenvectors of Y . While this is not directly used in the present paper it could
be of interest in numerical approaches and for the analysis of the various variational problems in
this paper. For this reason we include it in Appendix B.

Let us comment on an a-priori quite surprising observation. Consider three scenarios for the
prior over the eigenvalues λS of the signal:

(1) The prior over the eigenvalues is of the form (6). When N → +∞ (which can be thought
of as a vanishing temperature limit), strongly coupled eigenvalues λS drawn according
to pS,N(λS) freeze into a configuration of minimal energy (which includes the external
potential V plus the long range Coulomb repulsion due to the Vandermonde). The resulting
one-point marginal is a non-trivial density ρS.

(2) The prior is factorized as pS,N(λS) = ∏i≤N ρS(λSi ), where ρS corresponds to the asymptotic
marginal from the prior in case (1). In this case the prior does not induce any sort of
interaction among eigenvalues and fluctuations survive as N → +∞: the “temperature
remains finite” and no freezing phenomenon occurs.

(3) The eigenvalues are deterministic and given to the statistician, i.e., pS,N(λS) = δ(λS −λS0 ),
where the fixed configuration λS0 has an empirical density converging to ρS.

By construction these three priors have the same one-point marginals (in the large size limit).
For example, in the Wigner case, (1) would correspond to (6) with V (λS) = λ2

S, and case (2) to
pS,N(λS) = ∏i≤N(4 − (λSi )2)1/2/(2π) a product of semicircle laws. For case (3) one can generate a
typical sample from priors (1) or (2) and fix it. For the Wishart ensemble it would correspond
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to V (λS) = 2(1 −M/N − 1/N + 2/(βN)) lnλS + 2(M/N)λS in (6) for case (1), and pS,N(λS) =
∏i≤N ρMP(λSi ) a product of Marcenko-Pastur laws (31).

Now, we claim that in all three cases Conjecture 2 holds without any difference apart from
possible oN(1) corrections. Indeed, in case (3) the integration over λs in (8) is trivial and it gives
directly Conjecture 2. In case (2) if one plugs pS,N(λS) = ∏i≤N ρS(λSi ) in formula (10) the term
N−2 lnpS,N(λs) = oN(1), so one may think that the prior has no influence on the formula. But this
is not true, because the influence of this prior manifests itself through the data Y which strongly
depends on it. Going again through the four points above leading to the simplified Conjecture 2,
one can see that they all remain valid. And because the moments E(λS1 )k are the same in scenarios
(1) and (2) (and (3) as well), the last point based on the Nishimori identity (13) identifies the same
maximizing (m∗

k,N), i.e., the same optimal density ρ∗s → ρS.

Let us provide an alternative information-theoretic counting argument in order to obtain Con-
jecture 2 “directly” without going through all the previous steps, and that justifies a-posteriori
the equivalence of these seemingly very different situations at the level of the mutual information
(which is thus insensitive to possible strong correlations between the eigenvalues of S and only
depends on their density). By the chain rule for mutual information it can be decomposed as (recall

S = Ũ †λSŨ)

1

N2
I(Y ;S) = 1

N2
I(Y ; (Ũ ,λS)) = 1

N2
I(Y ; Ũ ∣ λS) + 1

N2
I(Y ;λS).

Now, because there are only N unknowns for the eigenvalues while there are N(N − 1)/2 for the
angles defining the eigenbasis Ũ , the second term in the right-hand side in the above decomposition
is O(1/N). Thus, at leading order O(N2), the mutual information I(Y ;S) and the one given the
eigenvalues I(Y ; Ũ ∣ λS) are equal. Said differently, there are so much fewer eigenvalues λS than
angular degrees of freedom and data points that their inference has comparably negligible cost. In
particular in I(Y ; Ũ ∣ λS) the set of eigenvalues is given, so that their correlations does not matter
and the mutual information can only depend on their density ρS. Since the priors (1)–(3) above
have the same density the corresponding mutual informations are identical. Finally, note that by
the same arguments we also have that I(Y ; Ũ ∣ λS) (and thus I(Y ;S) too) is equal, at leading

order in N , to I(Y ; Ũ) = I(
√
λ Ũ †λSŨ + ξ; Ũ).

2.4. A sanity check: the case of a Wigner signal. Consider the problem of denoising a Wigner
matrix: S is itself a standard Wigner with same distribution as the noise ξ. So V (S) = S2 in (4).
The data Y is therefore also a centered Wigner matrix with law

P (Y ) ∝ exp Tr[ − βN

4(1 + λ)Y
2]

whose asymptotic spectral density is a semicircle of width σY ∶=
√

1 + λ. This case is completely
decoupled in the sense that each i.i.d. entry of the matrix S is corrupted independently by an i.i.d.
gaussian noise, so we should recover the known formulas for scalar decoupled gaussian channels [83].
This can be verified as follows: in this case the supremum over ρs in Conjecture 1 is attained for
ρs being itself a semicircle of width σs = 1. Note that in this particular case, this can be deduced
without making use of the Nishimori identity by realizing that whenever λ→ +∞ or λ→ 0+ it has
to be so. Indeed in the noiseless limit λ→ +∞ the posterior is peaked on the ground-truth signal S
and thus a sample s will match it and have the same spectrum λs = λS whose density is a semicircle
of width 1. In the opposite completely noisy limit limit λ = 0, a sample from the posterior is simply
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drawn according to the prior PS,N which is the law of a standard Wigner matrix. Therefore in both
cases the density ρs is a semicircle of width 1, but only in the second case the actual eigenvalues
will match those of S. For any intermediate value of λ the eigenvalues λs will be in a mixture that
polarize more towards λS as λ increases, but which maintains the same asymptotic density. In the
complex case β = 2, the asymptotic spherical integral I(2)[ρs, ρY ,

√
λ] has a closed expression when

evaluated for two semicircle laws [89]:

I(2)[ρs, ρY ,
√
λ] = 1

2
(
√

4σ(λ)4 + 1 − 1 − ln (1 +
√

4σ(λ)4 + 1) + ln 2),(16)

where σ(λ)2 ∶=
√
λσY σs =

√
λ(1 + λ). Moreover, according to “Zuber’s 1

2 -rule” [90] we can simply
relate the real case β = 1 to the complex one β = 2:

I(1)[ρs, ρY ,
√
λ] = 1

2
I(2)[ρs, ρY ,

√
λ].(17)

Using that the second moment E(λS1 )2 = ∫
2

−2 dxx
2
√

4 − x2/(2π) = 1 we reach from Conjecture 2 the
expected expression:

1

N2
I(Y ;S) → β

4
(2λ + 1 −

√
4λ(1 + λ) + 1 + ln (1 +

√
4λ(1 + λ) + 1) − ln 2) = β

4
ln(1 + λ).(18)

The minimum mean-square error is thus

1

N2
E∥S −E[S ∣ Y ]∥2 → 1

1 + λ.(19)

So we recover the formulas of [83]. Note that in the present case, the convergence → in the above
identities are actually equalities for any N (but our derivation here is asymptotic in nature).

2.5. An explicit model with uniform spectral distribution. We consider model (2) with λS

being a uniform permutation of equally spaced eigenvalues in [−
√

3,
√

3):

pS,N(λS) = 1

N !
1(λS ∈ Π(√γ( − 1

2
,

1

N
− 1

2
,

2

N
− 1

2
, . . . ,

1

2
− 1

N
)))(20)

where, letting v ∈ RN , Π(v) is the set of all N ! permutations of v, 1(⋅) is the indicator function and
γ = γN → 12 enforces Trλ2

S = N . The advantage of this model is that the HCIZ integral appearing
in Conjecture 2 is explicit when β = 2. Let λs ∼ pS,N . The HCIZ integral (see Appendix A) does
not depend on the ordering of the eigenvalues, therefore we can consider the increasing ordering
λsi =

√
γ(i − 1)/N − √

γ/2. Denote σ ∶= γλ. The HCIZ formula then gives (because the ratio of
determinants is non-negative we can insert an absolute value)

N2I
(2)
N (λs,

√
λλY ,1) = ln

∏k≤N−1 k!

NN(N−1)/2 + ln ∣
det[(exp

√
σλYj )i−1 exp(−N√

σλYj /2)]
∆N(λS)∆N(

√
λλY )

∣

= ln
∏k≤N−1 k!

NN(N−1)/2 + ln ∣
det[(exp

√
σλYj )i−1]

∆N(λS)∆N(
√
λλY )

∣ − N
2

√
σTrλY .

The matrix [(exp
√
σλYj )i−1] is a generalized Vandermonde, and thus

det[(exp
√
σλYj )i−1] =

1,N

∏
i<j

(exp
√
σλYi − exp

√
σλYj ).
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The mutual information from Conjecture 2 then reads:

1

N2
I(Y ;S) = λ − 1

N2

1,N

∑
i<j

ln ∣ exp
√
σλYi − exp

√
σλYj ∣ +

1

N2

1,N

∑
i<j

ln(
√
λ∣λYi − λYj ∣) +

√
σ

2N
TrλY

− 1

N2
ln
∏k≤N−1 k!

NN(N−1)/2 +
1

N2

1,N

∑
i<j

ln (√γ ∣i − j∣
N

) + oN(1).(21)

The MMSE can then be obtained using the I-MMSE relation (11):

β

N2
E∥S −E[S ∣ Y ]∥2 = 4 − 4

N2

1,N

∑
i<j

e
√
σλYi d

dλ(
√
σλYi ) − e

√
σλYj d

dλ(
√
σλYj )

e
√
σλYi − e

√
σλYj

+ 1

λ
+ 4

N2

1,N

∑
i<j

d
dλ(λYi − λYj )
λYi − λYj

+
√
γ

λ

1

N
TrλY + 2

√
σ

N
∑
i≤N

d

dλ
λYi + oN(1).

Introducing the Y -eigenvectors Y ψY
i = λYi ψY

i , the Hellmann-Feynman theorem implies

d

dλ
λYi = 1

2
√
λ
(ψY

i )†SψY
i =∶ 1

2
√
λ
pi

where S is the ground-truth in (2) (not to be confused with s, another independent sample from
PS,N). As a consequence we finally obtain the explicit expression

β

N2
E∥S −E[S ∣ Y ]∥2 = 4 −

2
√
γ

N2

1,N

∑
i<j

e
√
σλYi ( 1√

λ
λYi + pi) − e

√
σλYj ( 1√

λ
λYj + pj)

e
√
σλYi − e

√
σλYj

+ 1

λ
+ 2√

λN2

1,N

∑
i<j

pi − pj
λYi − λYj

+
√
γ

λ

1

N
TrλY +

√
γ

N
∑
i≤N

pi + oN(1).(22)

Let us introduce the asymptotic spectral densities ρs and ρY associated with the matrices s and
Y . Then the above expression reads, in the large size limit N → +∞,

1

N2
I(Y ;S) → λ + lnλγ

4
+ 1

2 ∫ dρY (x)dρY (y) ln ∣ x − y
expx

√
λγ − exp y

√
λγ

∣.(23)

We used that

1

N2

1,N

∑
i<j

ln
∣i − j∣
N

→ 1

2 ∫[0,1]×[0,1]
dxdy ln ∣x − y∣ = −3

4
= lim
N→+∞

1

N2
ln
∏k≤N−1 k!

NN(N−1)/2

so these two terms asymptotically cancel each other. We also used that Y , as a sum of asymptotically
trace-less matrices, is asymptotically trace-less too and therefore the term ∫ dρY (x)x = 0.

Note that, as explained below Conjecture 2, we could have fixed from the beginning one arbitrary
permutation of the eigenvalues: pS,N(λS) = δ(λS −√

γ(−1/2,1/N − 1/2,2/N − 1/2, . . . ,1/2 − 1/N)),
instead of considering the uniform measure (20) over permutations. This would have lead to the
same calculations which is easily seen. What is less trivial to see, because in that case we could not
simplify anymore the HCIZ formula using the generalized Vandermonde form, is that the result
would be asymptotically the same if the prior was instead uniform but not necessarily equally
spaced, i.e., pS,N = U[−

√
3,

√
3)⊗N .

The λ-dependent data spectral distribution ρY can be obtained from free probability as follows;
we refer to [81,91] for clean definitions, domains of definitions and properties of the functions we
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Figure 1. Left: Asymptotic N → +∞ spectral density ρY (x) (red) for the denoising

model (2) with λ = 20 and a signal S with uniform eigenvalues in [−
√

3,
√

3). It is
compared to the empirical spectral density of Y for a realization of size N = 5000
(blue). Right: The same for a smaller signal-to-noise ratio λ = 2. As expected, the
spectrum ressembles more the semicircle law in that case. The density does approach
Wigner’s semicircle law of radius 2 as λ→ 0+.

are going to use now. The complex-valued Green function (or minus Stieljes transform) associated
with ρ, whose domain is the complex plane minus the support of ρ, is

Gρ(z) ∶= ∫ dρ(x) 1

z − x.

The Blue function is its functional inverse verifying Bρ(Gρ(z)) = Gρ(Bρ(z)) = z. Then the complex
valued R-transform is defined as

Rρ(z) = Bρ(z) −
1

z
= ∑
i≥1

ki z
i−1,

where the coefficients (ki)i≥1 in its series expansion are the so-called free cumulants associated

with density ρ. Asymptotically, the matrix
√
λS has eigenvalue density ρ√λS which is the uniform

distribution in [−
√

3λ,
√

3λ). The associated Green function is

Gρ√
λS

(z) = 1

2
√

3λ
ln
z +

√
3λ

z −
√

3λ
, thus Rρ√

λS
(z) =

√
3λ coth(z

√
3λ) − 1

z
.

The R-transform of the standard Wigner semicircle law is the identity: RρZ(z) = z. Finally, by
additivity of the R-transform for asymptotically free random matrices, the R-transform of the
spectral density of the data matrix is

RρY (z) = Rρ√
λS

(z) +RρZ(z) =
√

3λ coth(z
√

3λ) − 1

z
+ z.

Its Blue function is thus BρY (z) =
√

3λ coth(z
√

3λ)+z from which we get a transcendental equation
for its Green function:

z =
√

3λ coth(GρY (z)
√

3λ) +GρY (z).(24)
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MI Wigner

MMSE Uniform, finite N
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Figure 2. Main: The abciss corresponds to the signal-to-noise ratio λ in model (2).
The blue dots correspond to the mutual information (MI) for the uniform spectrum
case evaluated from (21) for N = 1000 averaged over 100 independent realizations;
the orange dots are the MMSE in the same monte-carlo experiment, evaluated
from (22). The pink dots correspond to the asymptotic N → +∞ mutual information
for the uniform spectrum case evaluated from (23). The finite N and asymptotic
N → +∞ values of the mutual information match very closely as can be seen from
the superposition of the pink and blue dots. The red dashed line is the mutual
information for the Wigner signal case (18) and the black one the MMSE (19). All
is for β = 2. The curves for the uniform and semicircle laws match surprinsingly
well but are actually different. Inset: These curves quantify the relative difference
between the empirical curves (the blue or orange dots) for the uniform case and
the (dashed) curves for the Wigner case. The relative difference is typically of order
O(10−3). When comparing instead the N → +∞ curve for the uniform case (pink
dots) to the Wigner mutual information so that any finite size effects are removed,
a difference of the same order survives (which is much higher than the expected
numerical precision for these computations). This confirms that the curves are not
exactly the same.

This equation can be solved numerically using a complex non-linear solver. A Mathematica code
to do so is provided in Appendix D. From its solution we can access the spectral density:

ρY (x) =
1

π
lim
ε→0

∣IGρY (x − iε)∣.(25)

Figure 1 shows in red the asymptotic prediction from the spectrum extracted from the numerical
solution of (24) and (25). It almsot perfectly matches the empirical density of eigenvalues of Y for
realisations of the model for large sizes, see the blue histograms.

Given a signal-to-noise ratio λ, we can compute the mutual information in the large size limit
N → +∞ using formulas (23), (24) and (25). This yields the pink dots of Figure 2. The blue dots
are instead for the mutual information for large realizations of the model (2) for a S with a uniform
spectrum, see formula (21). The orange dots are for the MMSE for that case, see formula (22).
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These curves are compared to the case of Wigner signal and match surprisingly well up to relative
differences of O(10−3). But our perturbative expansions of the next section as well as the comparison
with the asymptotic predictions from (23) show that this difference, even if small, is not just due
to numerical imprecisions: the curves really are different even in the large size limit. Yet, it is
very interesting to observe that the simple (decoupled) case of matrix denoising with S a Wigner
matrix allows us to very accurately approximate the information-theoretic quantities of the much
less trivial setting where S has a uniform spectrum (and therefore the matrix elements of S are
dependent, as opposed to the Wigner case). Further investigation around this fact is needed and
left for future work.

3. Perturbative expansions for Hermitian matrix denoising

We exploit perturbative expansions of the HCIZ integral, for small [92] and large [89] λ, to discuss
the corresponding expansions of the mutual information and MMSE as predicted by Conjecture 2.
In this section we only consider complex cases β = 2, for which expansions of the HCIZ integral
have been worked out.

3.1. Small signal-to-noise regime. Let A and B two hermitian N ×N matrices. We use an

expansion of the HCIZ integral (9) in the complex case I
(2)
N (A,B,

√
λ) in terms of moments

θp ∶= lim
N→+∞

1

N
TrAp = lim

N→+∞

1

N
∑
i≤N

(λAi )p and θ̄p ∶= lim
N→+∞

1

N
TrBp = lim

N→+∞

1

N
∑
i≤N

(λBi )p

for integer p ≥ 1. Note that by concentration θp is also equal to limN→+∞N−1ETrAp and similarly
for θ̄p. We assume that A and B are trace-less, i.e, θ1 = θ̄1 = 0. Then, according to [92],

lim
N→+∞

I
(2)
N (A,B,

√
λ) = I(2)[ρA, ρB,

√
λ] = ∑

n≥2

λ
n
2Fn(A,B)(26)

with (terms up to n = 8 are explicitly derived in [92] and diagrammatic rules are given for higher
orders; see also Appendix D for their complete expressions)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F2 = 1
2θ2θ̄2,

F3 = 1
3θ3θ̄3,

F4 = 3
4θ2θ̄2 − 1

2θ
2
2 θ̄4 − 1

2θ4θ̄2
2 + 1

4θ4θ̄4.

(27)

We will also make use of the derivatives with respect to the moments θ̄p. These read

∂

∂θ̄p
I(2)[ρA, ρB,

√
λ] = D̄p

p
for p ≥ 2, with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D̄2 = λθ2 + λ2 1
2(3θ2 − 4θ4θ̄2) +O(λ5/2),

D̄3 = λ3/2θ3 +O(λ5/2),
D̄4 = −λ2(2θ2

2 − θ4) +O(λ3).

where the higher order corrections come from the structure of F5 and F6 and can be worked out
from [92].

These formulas are applied for A = S and B = Y =
√
λS + ξ with N−1TrS = oN(1) and

N−1TrY = oN(1). As explained in Remark 1 after Conjecture 2 the mutual information remains
the same if we center the signal to make S and Y trace-less. Although this is not necessary, and
one can work out the expansion for a non-centered signal and data, this turns out to be a major
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simplification in the ensuing calculations. For the mutual information, according to Conjecture 2
we find the expansion when β = 2:

lim
N→+∞

1

N2
I(Y ;S) = λθ2 − ∑

n≥2

λ
n
2Fn(28)

and for the MMSE

lim
N→+∞

β

N2
E∥S −E[S ∣ Y ]∥2 = 4θ2 − 4

∂

∂λ
I(2)[ρS, ρY ,

√
λ] − 4∑

p≥2

∂

∂θ̄p
I(2)[ρS, ρY ,

√
λ]dθ̄p
dλ

= 4θ2 − 4∑
n≥2

n

2
λ
n
2
−1Fn − 4∑

p≥2

D̄p

p

dθ̄p
dλ

.(29)

In these expressions Fn and Dp are given by their expansions in terms of the moments

{θp = limN→+∞N−1TrSp = limN→+∞N−1ETrSp,

θ̄p = limN→+∞N−1TrY p = limN→+∞N−1ETrY p,

which themselves are polynomials in
√
λ. To go further we must fix a specific model of interest.

Example 1 (Wigner signal): Let ξ = ξ† ∈ CN×N , ξ ∼ exp Tr[−N2 ξ2] a standard Hermitian Wigner
matrix; this corresponds to a potential V (x) = x2 in (4). Take an i.i.d. copy ξ′ and set S = ξ′ and

Y =
√
λξ′ + ξ. We note that Y ∼

√
1 + λξ. Wigner’s semicircle law

ρξ(x) = 1(∣x∣ ≤ 2)
√

4 − x2

2π

implies for even moments (odd moments vanish)

θ2p = lim
N→+∞

1

N
ETrξ2p = 1

p + 1
(2p

p
), θ̄2p = lim

N→+∞

1

N
ETrY 2p = (1 + λ)p

p + 1
(2p

p
).

From θ2 = 1, θ4 = 2, θ6 = 5 and θ̄2 = 1 + λ, θ̄4 = 2(1 + λ)2, θ̄6 = 5(1 + λ)3 we find

F2 =
1

2
(1 + λ), F4 = −

1

4
(1 + λ)2 and F6 =

1

3
(1 + λ)3.

From the expansion (28) for the mutual information we get

lim
N→+∞

1

N2
I(Y ;S) = λ

2
− λ

2

4
+ λ

3

6
+O(λ4)(30)

We recognize the expansion of 1
2 ln(1 + λ) and the result is consistent with (18).

Example 2 (Wishart signal): Consider S =XX† and Y =
√
λXX† + ξ, where the noise ξ ∈ CN×N

is an Hermitian Wigner matrix normalized as in the previous example and X ∈ CN×M is drawn
from PX,M(X) ∝ exp Tr[−MXX†]. Let ϕ ∶= N/M . For ϕ ≤ 1 the eigenvalue j.p.d.f. is well defined,
and corresponds to the potential V (x) = 2(1 − 1/ϕ) ln ∣x∣ + 2x/ϕ in (4) (see, e.g., [91]). When ϕ > 1
the matrix is rank deficient and there is no well defined j.p.d.f. for the eigenvalues but the model
can be regularized as explained in Section 2 and the final conjectures apply. In particular the
Marcenko-Pastur distribution for the eigenvalues of S =XX† is well defined for all ϕ > 0:

ρMP(x) = max(1 − 1/ϕ,0)δ(x) + 1(c ≤ x ≤ d)
2πϕx

√
(x − c)(d − x)(31)
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where c ∶= (√ϕ−1)2 and d ∶= (√ϕ+1)2. The spectral moments are deduced by standard integration
methods and we find

lim
N→+∞

1

N
Tr(XX†)p = lim

N→+∞

1

N
ETr(XX†)p = 1

p
∑
k≤p

ϕk−1(p
k
)( p

k − 1
).

In particular for the first moment limN→+∞N−1ETrXX† = 1.

Now, as explained before, in order to compute the mutual information it is convenient to center
the signal so that it becomes trace-less. In other words we replace XX† by S =XX† − Id,N so that

N−1TrS → 0. This also implies Y =
√
λ(XX† − Id,N) + ξ and N−1TrY → 0. The first moments of

the spectral density of this S are in the asymptotic limit θ2 = ϕ, θ3 = ϕ2, θ4 = ϕ3+2ϕ2, θ5 = ϕ4+5ϕ3,
θ6 = 5ϕ3 + 9ϕ4 + ϕ5 and those of Y are θ̄1 = 0, θ̄2 = 1 + λϕ, θ̄3 = λ3/2ϕ2, θ̄4 = λ2(ϕ3 + 2ϕ2) + 4λϕ + 2,
θ̄5 = O(λ3/2), θ̄6 = 5 +O(λ). This yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F2 = ϕ
2 + λ

ϕ2

2 ,

F3 = λ3/2 ϕ4

3 ,

F4 = −ϕ4

4 − λϕ3

2 + λ2 1
4(ϕ6 − ϕ4),

F5 = O(λ3/2),
F6 = ϕ3

3 − ϕ4

6 +O(λ).

(32)

For the mutual information we find

lim
N→+∞

1

N2
I(Y ;S) = λϕ

2
− λ2ϕ

2

4
+ λ3ϕ

3 − ϕ4

6
+O(λ4).(33)

We note that the contribution of the order O(λ3) only comes from the order O(λ) in F4 and the
constant term in F6. We also remark that for ϕ = 1 the first two orders are the same than the pure
Wigner case of Example 1. It is possible to show that this is a universal feature for all matrices S
such that N−1TrS → 0 and N−1TrS2 → 1, see the next example.

Example 3 (general case): As before (θp)p≥1 correspond to the asymptotic spectral moments of the
signal S. It easy to skim through the above calculations and obtain the first terms of an expansion
for general signals with even spectral density such that θ2 = 1 and θ2p+1 = 0, p ≥ 0 (note that for the
trace-less Marchenko-Pastur distribution this is true only if p = 0). At third order the resulting
expansion can be read off by removing the contribution of F3 and the term −ϕ4/6 from F6 and we
find

lim
N→+∞

1

N2
I(Y ;S) = λ

2
− λ

2

4
+ λ

3

6
+O(λ4).(34)

The generic case until fourth order is heavy to handle by hand. We provide in Appendix D a
Mathematica code to get the following expansions. Let (kp)p≥2 be the free cumulants associated
with the asymptotic spectral density ρS of S (see, e.g., [4, 81] to know about free cumulants). For
N → +∞ followed by λ→ 0+ and a ρS such that θ1 = k1 = 0 and θ2 = k2 = 1,

lim
N→+∞

1

N2
I(Y ;S) = λ

2
− λ

2

4
+ λ3 1 − k2

3

6
− λ4 1 + 4k2

3 + k2
4

8
+ o(λ4).(35)

Or expressed in terms of the moments (the mapping between moments and free cumulants can be
obtained using the routines in Appendix D),

lim
N→+∞

1

N2
I(Y ;S) = λ

2
− λ

2

4
+ λ3 1 − θ2

3

6
− λ4 5 + 4θ2

3 + θ2
4 − 4θ4

8
+ o(λ4).(36)
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Interestingly, for any even spectral density this matches the pure Wigner case of Example 1 up to
third order. However this breaks down at fourth order as soon as the fourth moment θ4 of ρS is
different from 2. This is another indication that the curves for the uniform spectrum and Wigner
cases of Figure 2 are different. Indeed, it can be checked that the (Fn) in the expansion (28) for
these two cases are very close but different. Or that their respective expansions (36) are the same
up to order three, but the order four for the Wigner case is −1

8λ
4 while it is −1

8
26
25λ

4 for the case of

uniform spectrum in [−
√

3,
√

3), and is thus very close.

3.2. Large signal-to-noise regime. For this regime we can use a result of [89]. We briefly
indicate here the main steps of this application for the ease of the reader. Let ρZ and its asymptotic
cumulative density of eigenvalues FZ(x) ∶= ∫

x

−∞ dρZ(u). It is monotone increasing and has a inverse

F −1
Z (p) which solves p = FZ(x). Then (ρ√λS is the asymptotic spectral density of

√
λS)

I(2)[ρS, ρY ,
√
λ] = ∫

1

0
dpF −1√

λS
(p)F −1

Y (p)

− 1

2 ∫ dρ√λS(x)dρ√λS(y) ln ∣x − y∣ − 1

2 ∫ dρY (x)dρY (y) ln ∣x − y∣

− 3

4
− π

2

6 ∫
1

0
dpρ√λS(F −1√

λS
(p))ρY (F −1

Y (p)) +O(λ−3/2).(37)

Now we notice the scaling properties

ρaZ(u) =
1

a
ρZ(u), F −1

aZ(p) = aF −1
Z (p), ρaZ(F −1

aZ(p)) =
1

a
ρZ(F −1(p)).

These imply

I(2)[ρS, ρY ,
√
λ] =

√
λ∫

1

0
dpF −1

S (p)F −1
Y (p) − 3 + lnλ

4

− 1

2 ∫ dρS(x)dρS(y) ln ∣x − y∣ − 1

2 ∫ dρY (x)dρY (y) ln ∣x − y∣

− π2

6
√
λ
∫

1

0
dpρS(F −1

S (p))ρY (F −1
Y (p)) +O(λ−3/2).(38)

Example: Consider as before S =XX† and Y =
√
λXX† + ξ constructed as in the Wishart case

of Example 2 from the previous section. The density of eigenvalues of Y can be computed by
R-transform techniques [93,94]. It does not appear to be easy to analytically compute the terms of
the expansion (and will not be done here) but the integrals can be computed numerically.

4. Denoising of a rotationally invariant matrix: non-Hermitian case

4.1. The model. We consider again a model of the form (2) but we now relax the hypothesis that
S is Hermitian. This time we consider that ξ is a standard (non-Hermitian) Ginibre matrix with
law

dPξ,N(ξ) = CN dξ exp Tr[ − βN
2
ξξ†].

Its entries are typically of order O(1/
√
N) and singular values O(1). The planted full-rank matrix

signal S ∈ KN×N is no longer Hermitian but is still rotationally invariant in the sense that

dPS,N(S) = dPS,N(OSÕ)
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for any orthogonal/unitary O, Õ. It has O(1/
√
N) entries and O(1) singular values. Its singular

values decomposition (SVD) reads S = ŨσSṼ . Its singular values σS have a generic empirical
distribution converging as N → +∞ to ρS with finite support. Left and right rotational invariance
implies that its measure can be decomposed as

dPS,N(S) ∝ dµ
(β)
N (Ũ)dµ(β)

N (Ṽ )dpS,N(σS),
where the Vandermonde determinant and other terms inherent to the change of variable are included
in the generic symmetric j.p.d.f. pS,N(σS) of the singular values. For example, in the case of a
measure defined by a rotationally invariant potential it reads [95]

dPS,N(S) ∝ dµ
(β)
N (Ũ)dµ(β)

N (Ṽ )dσS exp Tr[ − βN
2
V (σS)] ∣∆N(σ2

S)∣β(∏
i≤N

σSi )
β−1
.(39)

4.2. Free entropy through random matrix analysis. Using the SVD s = UσsV the free
entropy reads

fN ∶= 1

N2
ln∫ dPS,N(s) exp

βN

2
Tr[

√
λY †s +

√
λY s† − λs†s]

∝ 1

N2
ln∫ dpS,N(σs) exp ( − βλN

2
Trσ2

s + (β − 1) ∑
i≤N

lnσsi )

× ∫ dµ
(β)
N (U)dµ(β)

N (V ) expβ
√
λNRTr[Y †UσsV ]

= 1

N2
ln∫ dσs expN2( 1

N2
lnpS,N(σs) − βλ

2N
Trσ2

s + J
(β)
N (σs,σY ,2

√
λ)) +O(1/N).

Here and everywhere integrals over indivudual singular values are restricted to R≥0. The expression
of the rectangular log-spherical integral density is [96, 97]

J
(β)
N (A,B, γ) = J(β)

N (σA,σB, γ) ∶= 1

N2
ln∫ dµ

(β)
N (U)dµ(β)

N (V ) exp
βγ

2
NRTr [σAUσBV ](40)

for generic N ×N matrices A, B with respective singular values σA and σB. It has a well-defined
limit [98, 99]:

J(β)[ρA, ρB, γ] ∶= lim
N→+∞

J
(β)
N (σA,σB, γ),

where ρA, ρB are the asymptotic normalized densities of singular values associated with A and B,
respectively. Let ρY be the the asymptotic singular values density associated with the data Y ;
again both σY and ρY are obtainable. In the large size limit N → +∞ we obtain by saddle-point
the following conjecture for fN(Y ):

fN = sup
σs∈RN

≥0

{ 1

N2
lnpS,N(σs) − βλ

2N
Trσ2

s + J
(β)
N (σs,σY ,2

√
λ)} + τN .

Focusing on the case of a prior of the form (39),

fN = sup
σs∈RN

≥0

{β
2

1,N

∑
i≠j

ln ∣(σsi )2 − (σsj)2∣
N2

− β
2
∑
i≤N

λ(σsi )2 + V (σsi )
N

+ J(β)
N (σs,σY ,2

√
λ)} + τN .

Introducing asymptotic densities of singular values it reads

fN → sup
ρs∈P≥0

{β
2 ∫ dρs(x)dρs(y) ln ∣x2 − y2∣ − β

2 ∫ dρs(x)(λx2 + V (x)) + J(β)[ρs, ρY ,2
√
λ]} + τ.
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The optimization is over a p.d.f. with bounded non-negative support. The constants τN and τ are
fixed by the constraint fN(λ = 0) = 0:

τN ∶= − sup
σs∈RN

≥0

{β
2

1,N

∑
i≠j

ln ∣(σsi )2 − (σsj)2∣
N2

− β
2
∑
i≤N

V (σsi )
N

} + oN(1),

τ ∶= − sup
ρs∈P≥0

{β
2 ∫ dρs(x)dρs(y) ln ∣x2 − y2∣ − β

2 ∫ dρs(x)V (x)}.

Again, as fN ends up being solely a function of the singular values of the data matrix, it is expected
to be self-averaging with respect to Y : EfN = fN + oN(1).

The free entropy is linked to the mutual information through

I(Y ;S) = −EfN + βλN
2

ETrSS†.

With the Ginibre noise instead of Wigner and for a non-Hermitian signal S the I-MMSE relation
reads

1

N2
E∥S −E[S ∣ Y ]∥2 = 2

βN2

d

dλ
I(Y ;S).(41)

Like in the Hermitian case, the Nishimori identities combined with the concentration of the moments
of the density of singular values of the posterior samples imply together that the supremum is
attained for the density of singular values of the planted signal S.

Conjecture 3 (Mutual information of rotationally invariant matrix denoising). Let the singular
values σs ∼ pS,N of a random matrix drawn according to the prior PS,N . The mutual information of
model (2) in the case where S is not necessarily Hermitian and the noise ξ is a standard Ginibre
matrix verifies

1

N2
I(Y ;S) = βλ

N
Trσ2

s − J
(β)
N (σs,σY ,2

√
λ) + oN(1).

Introducing asymptotic densities of singular values it reads as N → +∞
1

N2
I(Y ;S) → βλ∫ dρs(x)x2 − J(β)[ρs, ρY ,2

√
λ]

where ρs is the asymptotic density of singular values of s ∼ PS,N .

We deduce from (41) that the minimum mean-square error verifies

1

N2
E∥S −E[S ∣ Y ]∥2 = 2

N
ETrσ2

s −
2

β

d

dλ
J

(β)
N (σs,σY ,

√
λ) + oN(1),

or, working with the asymptotic densities of singular values,

1

N2
E∥S −E[S ∣ Y ]∥2 → 2∫ dρs(x)x2 − 2

β

d

dλ
J(β)[ρs, ρY ,

√
λ].

5. Hermitian positive definite dictionary learning

We now move to the more challenging problem of dictionary learning, first in the positive-definite
case. Its analysis will require the introduction of the main methodological novelty of this paper:
the spectral replica method.
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5.1. The model. Consider a ground-truth matrix signal X = [Xik] ∈ KN×M , with

M = αN + o(N)
with fixed α > 0, and with prior distribution X ∼ PX,N which is centered EXik = 0 and such that
typically Xik = O(1). This prior is not necessarily rotationally invariant nor factorized over the
matrix entries, but we require that it induces a symmetric j.p.d.f. over the singular values of X.
Let Z = Z† ∈ KN×N a noise Wigner matrix with p.d.f.

PZ,N(Z) ∝ exp Tr[ − β
4
Z2].

With this scaling the eigenvalues of Z are O(
√
N). Consider having access to an Hermitian data

matrix Y = [Yij] ∈ KN×N with entries generated through the following observation channel:

Y =
√

λ

N
XX† +Z.(42)

Matrix
√
λ/NXX† has O(1) entries and O(

√
N) eigenvalues like the noise, thus the correct scaling

of the signal-to-noise
√
λ/N . The Bayesian posterior reads

dPX ∣Y,N(x ∣ Y ) = 1

Z(Y )dPX,N(x) exp
β

2
Tr[

√
λ

N
Y xx† − λ

2N
(xx†)2].

Note the invariance of the model under X →XU for any M ×M orthogonal/unitary U such that
PX,N(XU) = PX,N(X).

The mutual information I(Y ;X), which we aim at computing, is obtained by similar manipula-
tions as in the previous sections:

I(Y ;X)
MN

= − 1

MN
EY ln∫ dPX,N(x) exp

β

2
Tr[

√
λ

N
Y xx† − λ

2N
(xx†)2] + βλ

4MN2
ETr(XX†)2

where the first term is minus the expected free entropy

EfN ∶= 1

MN
EY lnZ(Y ).

Note that compared with our analysis on matrix denoising, we now do consider the expectation
over the data in the free entropy.

In the case where the matrix X is rotationally invariant, and therefore XX† too, the results of
the previous section on denoising can be applied. But it is important to notice right away that
even in this case, the previous conjectures do not give any information about the main quantity of
interest, namely, the overlap between the ground-truth X and a sample x from the posterior PX ∣Y,N :

q ∶= lim
N→+∞

1

N2
E⟨∣TrxX†∣⟩.(43)

The absolute value is needed because Y contains no information about the sign of X, so x and
−x have same posterior weight. Only the MMSE on the product XX† is obtainable through
this approach, through the I-MMSE identity. But this quantity is much less interesting than q
as it does not carry information about the reconstruction of the internal structure of XX†. In
particular, as noted in [53], in the present linear-rank regime of Hermitian dictionary learning with
a factorized prior PX,N = g⊗N(N+1)/2 over the matrix entries, the MMSE on XX† is expected to
be a universal quantity independent of the specific distribution g of the individual entries of X
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(as long as the first few moments exist). This is because the entries of XX† are sums of many
independent random contributions and thus the resulting matrix should behave at the level of the
mutual information and MMSE on XX† as a random matrix from the Wishart ensemble (i.e., as
if X had i.i.d. standard normal entries) due to strong universality properties [100]. Therefore, it is
crucial to:

● access the non-universal PX,N -dependent scalar overlap q, both in rotationally invariant and
non rotationally invariant models;

● go beyond models with factorized distributions over the components of the hidden matrices.

Concerning the second point: as it will become clear, the spectral replica method presented
below does not a-priori require the hidden matrix X (or S,T in the non-symmetric case) to have
independent entries. But the possibility to concretely evaluate expressions in the ensuing conjectures
depends on the solution of a classical (but in general highly non-trivial) RMT sub-problem, namely
that of evaluating the j.p.d.f. of the matrix product between two i.i.d. samples from the prior PX,N .
As a consequence, in situations where this task can be solved (despite the lack of independence
of the signal matrix entries) then quantitative predictions may be reachable. Advancing on the
above two points is the main role of the spectral replica method as compared with the pure RMT
approaches.

To fix ideas let us consider at the moment the complex case β = 2. Model (42) is equivalent to
three coupled real models:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

RYij ∼ N(
√

λ
N

⟨Xi,X̄j⟩+⟨X̄i,Xj⟩
2 , 1

2) for i < j ∈ [N]2,

IYij ∼ N(
√

λ
N

⟨Xi,X̄j⟩−⟨X̄i,Xj⟩
2i , 1

2
) for i < j ∈ [N]2,

Yii ∼ N(
√

λ
N ∥Xi∥2,1) for i ∈ [N].

The average free entropy then concretely reads

EfN = 1

NM
E ln∫ dPX,N(x) exp∑

i≤N
(
√

λ

N
Yii∥xi∥2 − λ

2N
∥xi∥4)

× exp 2
1,N

∑
i<j

(
√

λ

N
RYij

⟨xi, x̄j⟩ + ⟨x̄i,xj⟩
2

− λ

2N
(⟨xi, x̄j⟩ + ⟨x̄i,xj⟩

2
)

2

)

× exp 2
1,N

∑
i<j

(
√

λ

N
IYij

⟨xi, x̄j⟩ − ⟨x̄i,xj⟩
2i

− λ

2N
(⟨xi, x̄j⟩ − ⟨x̄i,xj⟩

2i
)

2

).(44)

5.2. Replica trick. The new important difficulty is that the lack of rotational invriance of X
and therefore of S =XX† prevents the direct use of spherical integration of the rotational degrees
of freedom. But combining random matrix theory with the replica method will allow to face this
difficulty. The approach starts from the replica trick:

lim
N→+∞

EfN = lim
N→+∞

lim
u→0+

1

NMu
lnEZ(Y )u = lim

u→0+
lim

N→+∞

1

NMu
lnEZ(Y )u,(45)

where we assumed commutation of limits in u and N in the second equality. We therefore need to
evaluate the expectation of the replicated partition function. We direclty integrate the quenched
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gaussian observations in (44) using the following useful formula:

if Y ∼ N(
√

λ

N
f0, γ) then EY ∣f0∏

a≤u
expγ(

√
λ

N
Y fa −

λ

2N
f 2
a) =

0,u

∏
a<b

exp
γλ

N
fafb.(46)

In the Bayes-optimal setting the ground-truth X plays a totally similar role as one additional
replica, so we rename it x0 ∶=X. We set xai = (xaik)k≤M and introduce the notation

∫ dPX,N({x}u0)⋯ = ∫
RMNu

u

∏
a=0

dPX,N(xa)⋯ .

The above formula (46) applied thrice yields

EZ(Y )u = ∫ dPX,N({x}u0)
0,u

∏
a<b

exp
λ

N
∑
i≤N

∥xai ∥2∥xbi∥2

× exp
2λ

N

1,N

∑
i<j

⟨xai , x̄aj ⟩ + ⟨x̄ai ,xaj ⟩
2

×
⟨xbi , x̄bj⟩ + ⟨x̄bi ,xbj⟩

2

× exp
2λ

N

1,N

∑
i<j

⟨xai , x̄aj ⟩ − ⟨x̄ai ,xaj ⟩
2i

×
⟨xbi , x̄bj⟩ − ⟨x̄bi ,xbj⟩

2i

= ∫ dPX,N({x}u0)
0,u

∏
a<b

exp
λ

N
∑
i,j≤N

(R⟨xai , x̄aj ⟩R⟨xbi , x̄bj⟩ + I⟨xai , x̄aj ⟩I⟨xbi , x̄bj⟩)

= ∫ dPX,N({x}u0)
0,u

∏
a<b

exp
λ

N
∑
i,j≤N

R(⟨xai , x̄aj ⟩⟨x̄bi ,xbj⟩)

= ∫ dPX,N({x}u0)
0,u

∏
a<b

expλN ∑
k,`≤M

( 1

N
∑
i≤N

xaikx̄
b
i`)(

1

N
∑
j≤N

x̄ajkx
b
j`)(47)

= ∫ dPX,N({x}u0)
0,u

∏
a<b

exp
λ

N
∑

k,`≤M
[( ∑

i≤N

xaikx̄
b
i` + x̄aikxbi`

2
)

2

+ ( ∑
i≤N

xaikx̄
b
i` − x̄aikxbi`

2i
)

2

].

Define the complex-valued M ×M overlap matrix

Qab ∶= ( 1

N
∑
i≤N

xaikx̄
b
i`)

k,`≤M
= (xa)⊺x̄b

N
= (Qba)†.(48)

Keep in mind that Qab has same singular values as N−1(xb)†xa. To simplify the expression we use
the gaussian identity

∫
R
dz exp(−γz2 + κz) =

√
π

γ
exp

κ2

4γ

with γ = N,κ =
√
λ∑i(xaikx̄bi` + x̄aikxbi`) for the real part and γ = N,κ = −i

√
λ∑i(xaikx̄bi` − x̄aikxbi`) for

the imaginary one. It introduces M ×M real-valued gaussian fields

qab = (qabk`)k,`≤M and rab = (rabk`)k,`≤M ,
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(which play the role of new spins/variables that are going to interact with the replicas) and yields

EZu ∝ ∫ dPX,N({x}u0)∫
RM2u(u+1)

0,u

∏
a<b
drab dqab

× exp ∑
k,`≤M

(
√
λrabk` ∑

i≤N
(xaikx̄bi` + x̄aikxbi`) − i

√
λqabk` ∑

i≤N
(xaikx̄bi` − x̄aikxbi`) −N(rabk`)2 −N(qabk`)2)

= ∫ dPX,N({x}u0)∫
RM2u(u+1)

0,u

∏
a<b
drab dqab

× expNTr[
√
λ(rab − iqab)⊺Qab +

√
λ(rab + iqab)(Q̄ab)⊺ − (rab)⊺rab − (qab)⊺qab]

= ∫ dPX,N({x}u0)∫
CM2u(u+1)

0,u

∏
a<b
dzab expNTr[

√
λ(zab)†Qab +

√
λ((zab)†Qab)† − (zab)†zab]

= ∫ dPX,N({x}u0)∫
CM2u(u+1)

0,u

∏
a<b
dzab expNRTr[2

√
λ(zab)†Qab − (zab)†zab]

where we define the complex-valued matrix zab ∶= rab + iqab (note the integration over C). The same
computations can be carried out in the real case. The generic formula then reads

EZu ∝ ∫ dPX,N({x}u0)∫
KM2u(u+1)

0,u

∏
a<b
dzab expβNRTr[

√
λ(zab)†Qab − 1

2
(zab)†zab](49)

with Qab,zab ∈ KM×M .

5.3. Spectral replica symmetric ansatz. Until now the computation is standard. The novelty
starts here. We introduce the singular value decompositions

zab = U abσabz V
ab and Qab =AabσabQB

ab.

All matrices are of size M ×M ; note that the overlaps (Qab)a<b have rank equal to min(N,M), so
(σabQ )a<b have min(N,M) non-zero entries on their diagonal. Matrices (zab)a<b are instead full-rank.
We have the change of variable

dzab = dµ(β)
M (U ab)dµ(β)

M (V ab)dσabz ∣∆M((σabz )2)∣β( ∏
k≤M

σz,abk )β−1
.

The dependence of the replicated system in the spins (xa)a is through the overlap matrices (Qab)a<b.
Changing variables for (Qab)a<b we have the completely generic change of density

dPX,N({x}u0) = dP(Q),M((Qab)a<b)
= dP(A,B)∣(σQ),M((Aab,Bab)a<b ∣ (σabQ )a<b)dP(σQ),M((σabQ )a<b)

for a generic conditional j.p.d.f. P(A,B)∣(σQ),M of the singular vectors and j.p.d.f. of singular values
P(σQ),M . This measure couples all matrices of singular vectors and singular values. It thus seems
hopeless to go further without assuming some sort of simplification. We are now in position to
move forward thanks to a novel type of decoupling assumption, which we think is the weakest (and
most natural) possible assumption allowing to carry on computations from there.

The spectral replica symmetric ansatz states that the replicated partition function is dominated
by configurations such that the joint law P(σQ),M((σabQ )a<b) factorizes as N,M → +∞ into a product
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of same laws:

Assumption (spectral replica symmetry): P(σQ),M((σabQ )a<b) →
0,u

∏
a<b
pM(σabQ ).(50)

The convergence → means that both the left and right hand sides weakly converge to the same
asymptotic distribution as N → +∞. The j.p.d.f. pM(σabQ ), which is shared by assumption by the

different overlap matrices/pairs of replica indices a < b, may be obtained using random matrix
theory from the knowledge of PX,N . We will discuss further this point in the next section. Note
that we do not assume anything at the level of singular vectors which is an important feature. The
decoupling is only assumed at the spectral level. So we have now that at leading exponential order

EZu ∝∫
0,u

∏
a<b
dσabz dσ

ab
Q ∣∆M((σabz )2)∣β( ∏

k≤M
σz,abk )β−1

exp Tr[ − βN
2

(σabz )2]pM(σabQ )

× ∫ dP(A,B)∣(σQ),M((Aab,Bab)a<b ∣ (σabQ )a<b)

× ∫
0,u

∏
a<b
dµ

(β)
M (U ab)dµ(β)

M (V ab) expβ
√
λNRTr[(V ab)†σabz (U ab)†AabσabQB

ab].(51)

We change variables as (U ab)†Aab → U ab and Bab(V ab)† → V ab; this change has unit Jacobian
determinant. These new matrices are still independent and Haar distributed, and this for arbitrary
dependency between the unitary Aab and Bab. Therefore the conditional law P(A,B)∣(σQ),M does not
matter as it can directly be integrated to one even if the singular vectors depend on each others.
The last term then becomes

∫
0,u

∏
a<b
dµ

(β)
M (U ab)dµ(β)

M (V ab) exp
β

2

2
√
λN

M
MRTr[V abσabz U

abσabQ ]

which is a rectangular log-spherical integral as (40). All these manipulations allow us to factorize
the integrals over different pairs (a, b) with a < b of replica indices (two pairs sharing one replica
index are different and decouple too). To sum up: the i.i.d. Haar matrices coming from the gaussian
fields (zab)a<b destroyed the dependence between the singular vectors of the overlaps (without the
need of any kind of assumption), while the spectral replica symmetric ansatz formalizes the idea
that the dependence between the singular values of different overlaps are weak. We end up with

EZu ∝ (∫ dσz dσQ exp
βMN

2
[

1,M

∑
k≠`

ln ∣(σzk)2 − (σz` )2∣
MN

− Trσ2
z

M

+ 2 lnpM(σQ)
βMN

+ 2M

βN
J

(β)
M (σz,σQ,

2
√
λN

M
) + 2(β − 1)

β
∑
k≤M

lnσzk
MN

])
u(u+1)/2

.(52)

Therefore the replica computation gives, using formula (45) and after evaluation of the above
integral by saddle-point as N → +∞ followed by the analytic continuation u→ 0+, the Conjecture 4
below.

Our computation shows that one of the order parameters is the matrix σQ of singular values of
the overlap matrix Q ∶= N−1x†x̃ between i.i.d. samples x, x̃ from the posterior distribution PX ∣Y,N
(i.e., two conditionally independent replicas). Let us see how the scalar overlap q defined by (43)
can be deduced from it. A general Nishimori identity reads (see [67])

E⟨g(x, x̃)⟩ = E⟨g(x,X)⟩.(53)
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When two or more replicas appear inside a Gibbs bracket ⟨ ⋅ ⟩ it has to be understood as the
expectation with respect to the product Gibbs measure. From it, one can deduce the non-universal
scalar overlap q. Indeed, the latter is equal to

q ∶= lim
N→+∞

1

N
E⟨∣TrxX†∣⟩ = lim

N→+∞

1

N
E⟨∣TrQ∣⟩ = lim

N→+∞

1

N
∣TrE⟨Q⟩∣ = 1

N
∣TrQ∣ + oN(1).(54)

The second equality follows from (53), while the third and last by concentration of the spectral
moments of Q; this does not mean that Q concentrates elementwise, only the moments N−1TrQk =
N−1TrE⟨Q⟩k +oN(1) do. Finally, because E⟨Q⟩ = E[⟨x⟩⟨x⟩†] is positive definite, its trace is also the
sum of its singular values which, by the assumed self-averaging of the (moments of the) distribution
of singular values, must be relatively close to TrσQ of singular values of Q (which is not symmetric).
Therefore, the mean of the singular values of the overlap matrix yield the scalar overlap q.

Conjecture 4 (Replica symmetric formula for Hermitian dictionary learning). Let the j.p.d.f.

of the M singular values of O(1) of the matrix N−1x†
0x̃0, where x0, x̃0 are i.i.d. N ×M random

matrices drawn from the prior PX,N , be pM .

The mutual information of model (42) verifies

1

MN
I(X;

√
λ

N
XX† +Z) = −β

4
sup

(σz ,σQ)∈SM (λ)
{

1,M

∑
k≠`

ln ∣(σzk)2 − (σz` )2∣
MN

− Trσ2
z

M

+ 2 lnpM(σQ)
βMN

+ 2M

βN
J

(β)
M (σz,σQ,

2
√
λN

M
)} + βλ

4

ETr(XX†)2

MN2
+ τN .(55)

The set of extrema SM(λ) is defined as

SM(λ) ∶= {(σz,σQ) ∈ RM
≥0 ×RM

≥0 ∶ σQ is of rank min(M,N),
∇σzgRS

M (σz,σQ, λ) = ∇σQgRS
M (σz,σQ, λ) = 0},

where gRS
M ∶ RM

≥0 ×RM
≥0 ×R≥0 ↦ R is the replica symmetric potential function defined by the curly

brackets in the variational problem (55). Constant τN fixes I(X;Z) = 0, i.e.,

τN ∶= β
4

sup
(σz ,σQ)∈SM (0)

gRS
M (σz,σQ, λ = 0) + oN(1).

Denote σ∗
Q the overlap singular values achieving the supremum in (55). The overlap (54) is then

q = 1

N
Trσ∗

Q + oN(1).(56)

Introducing asymptotic singular values densities ρz and ρQ associated to σz and σQ, respectively,
and assuming it exists a functional Γ depending only on the asymptotic density ρQ and such that

Γ[ρQ] ∶= lim
M→+∞

1

M2
lnpM(σQ),(57)

the conjecture can be re-expressed in the limit N → +∞ and M/N → α as

1

MN
I(X;

√
λ

N
XX† +Z) → −β

4
sup

(ρz ,ρQ)∈S(λ)
{α∫ dρz(x)dρz(y) ln ∣x2 − y2∣ − ∫ dρz(x)x2

+ 2α

β
Γ[ρQ] +

2α

β
J(β)[ρz, ρQ,

2
√
λ

α
]} + βλ

4α
lim

N→+∞

ETr(XX†)2

N3
+ τ.(58)
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The optimization is over probability densities with finite non-negative support belonging to the
extremal set

S(λ) ∶= {(ρz, ρQ) =(ρz, (1 −min(1, α))δ0 +min(1, α)ρ̃Q) with (ρz, ρ̃Q) ∈ P≥0 × P≥0 ∶
δρzg

RS[ρz, ρQ, λ] = δρ̃QgRS[ρz, ρQ, λ] = 0},
where δρzg

RS[ρz, ρQ, λ] and δρ̃Qg
RS[ρz, ρQ, λ] are the functional derivatives of the replica symmetric

potential functional gRS ∶ P≥0 ×P≥0 ×R≥0 ↦ R defined by the curly brackets in (64). Constant τ fixes
the contraint I(X;Z) = 0:

τ ∶= β
4

sup
(ρz ,ρQ)∈S(0)

gRS[ρz, ρQ, λ = 0].

Denoting by ρ∗Q = (1 −min(1, α))δ0 +min(1, α)ρ̃∗Q the density of singular values of the overlap that

achieves the supremum in (64), the overlap reads

q = ∫ dρ∗Q(x)x.(59)

Let us say few words about the interpretation of the role of the three contributions entering
this conjecture. i) Both terms depending only on a single density ρz or ρQ (or σz,σQ in the finite
system size case) play a symmetric role, and can be thought as “prior terms”. They tend to give to
their respective arguments the shape they would have in the case of no interation between them,
which happens only if λ = 0. The functional Γ[ρQ] (or the j.p.d.f. pM(σQ)) shapes the density ρQ
towards the one of a large random matrix N−1x†

0x̃0, where x0, x̃0 are i.i.d. N ×M random matrices
drawn from PX,N . In the non-interacting case λ = 0, this would correctly yield a scalar overlap
associated with a dumb estimator x̂ purely drawn from the prior PX,N (i.e., not having access to
data). The term associated with the spectral density ρz of the “conjugate spins/variables” tends
to shape it as a semicircle. ii) In contrast, the interaction term given by the spherical integral
J(β)[ρz, ρQ, f(λ,α)] depending on both densities is the “informative term”, in the sense that it is
the one conveying the information extracted from the data. The competition between these two
types of terms is controlled by the signal-to-noise ratio λ.

Evaluating the j.p.d.f. pM of singular values of the overlaps (48) translates in the presence of the
functional Γ[ρQ] assumed to depend solely on the density of singular values. Indeed, we expect that
the variational formula for the mutual information and scalar overlap are expressible in terms of
densities of singular values instead of the whole populations σz,σQ. In the Appendix C we argue
that the functional Γ exists in general. In the next section we provide its explicit form in the special
case of a Ginibre signal.

5.4. A more explicit special case: the Ginibre signal. The j.p.d.f. pM of singular values
entering the conjecture may be highly non-trivial to obtain from the knowledge of PX,N , but it has
the merit of being a well defined “standard” random matrix theory problem. In certain cases it is
known. E.g., for products of i.i.d. gaussian (Ginibre) matrices (or with an additional source [101]).
In this case the law pM is given by a determinantal point process defined in terms of the Meijer
G-function, see [85,102–106]. Products of finitely but arbitrarily many matrices are considered in
these references, but for us only the case of a product between two matrices is needed. There also
exist results for products of truncated unitary matrices [107, 108] and for more general product
ensembles (but with less explicit formulas) [86]. We refer to [109] for a review on the subject.
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See also [110, 111] for information about fluctuations and universality properties in such matrix
product ensembles, or [112–116] for results concerning their asymptotic density of eigenvalues and
singular values (instead of the j.p.d.f.). Using this body of work we can go further in explicitating
Conjecture 4 in these known cases. Here we restrict ourselves to the special case where the signal X
is a Ginibre matrix, so that XX† is Wishart. We want to find the j.p.d.f. of the matrix N−1x†

0x̃0

where x0, x̃0 are i.i.d. N ×M Ginibre matrices with O(1) entries, which is equivalent to find the

j.p.d.f. of the matrix y†
0ỹ0 where y0, ỹ0 are i.i.d. N ×M standard Ginibre matrices with law

PY0,N(y0) ∝ exp Tr[ − βN
2
y0y

†
0].

Let

n ∶= min(N,M).
The steps leading to equation (2.7) of [106] for the square case M = N , or those leading to (13)
of [85] for the general rectangular case (where M and N do not necessarily match), imply that the

j.p.d.f. pn of the n non-zero singular values σ of the matrix y†
0ỹ0 can be expressed in terms of a

two-matrix model:

pn(σ) ∝ ∣∆n(σ2)∣β(∏
k≤n

σk)
β(M−n+1)−1

L(σ)

∝ expn2( β
n2

1,n

∑
i<j

ln ∣σ2
i − σ2

j ∣ + β
M − n
n2

Tr lnσ + 1

n2
lnLn(σ) + on(1)),(60)

where the function

Ln(σ) ∶= ∫
Rn
≥0

dr ∣∆n(r2)∣β exp Tr[ − βN
2
r2] (∏

k≤n
rk)

β(N−M−n+1)−1

× ∫ dµ
(β)
n (U) exp Tr[ − βN

2
U †σ2Ur−2].(61)

The spherical integral appears in the function Ln(σ), that we re-express in a form appropriate for
a saddle-point evaluation:

∫ dr expn2( β
n2

1,n

∑
i<j

ln ∣r2
i − r2

j ∣ −
βN

2n2
Trr2 + βN −M − n

n2
Tr lnr + I(β)n (σ2,r−2,−N

n
) + on(1)).

Therefore we reach

lnLn(σ)
n2

= sup
r∈Rn

≥0

{ β
n2

1,n

∑
i<j

ln ∣r2
i − r2

j ∣ −
βN

2n2
Trr2 + βN −M − n

n2
Tr lnr + I(β)n (σ2,r−2,−N

n
)} + on(1).

Thus we end up with

2 lnpM(σ)
βMN

= sup
r∈Rn

≥0

{
1,n

∑
i≠j

ln ∣σ2
i − σ2

j ∣
MN

+ 2
M − n
MN

Tr lnσ +
1,n

∑
i≠j

ln ∣r2
i − r2

j ∣
MN

− Trr2

M
+ 2

N −M − n
MN

Tr lnr + 2n2

βMN
I
(β)
n (σ2,r−2,−N

n
)} + on(1).(62)

With this expression in hand we can write down a refined conjecture when the signal is Ginibre.
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Conjecture 5 (Replica symmetric formula for Hermitian dictionary learning with a Ginibre
signal). Let n ∶= min(N,M). In the case where the prior PX,N(X) ∝ exp Tr[−(β/2)XX†], the
mutual information of model (42) verifies

1

MN
I(X;

√
λ

N
XX† +Z) = −β

4
sup

(σz ,σQ,r)∈SM (λ)
{

1,M

∑
k≠`

ln ∣(σzk)2 − (σz` )2∣
MN

− Trσ2
z

M

+
1,n

∑
i≠j

ln ∣(σQi )2 − (σQj )2∣
MN

+ 2
M − n
MN

∑
i≤n

lnσQi +
1,n

∑
i≠j

ln ∣r2
i − r2

j ∣
MN

− Trr2

M
+ 2

N −M − n
MN

∑
i≤n

ln ri

+ 2n2

βMN
I
(β)
n (diag(((σQi )2)i≤n),r−2,−N

n
) + 2M

βN
J

(β)
M (σz,σQ,

2
√
λN

M
)}

+ βλ
4

ETr(XX†)2

MN2
+ τN .(63)

The above sums over (σQi )i≤n in the logarithmic and Vandermonde terms and the spherical integral

I
(β)
n only include the n non-zero diagonal elements of σQ (which can be taken ordered as σQ1 > σQ2 >
⋯ > σQn > σQn+1 = ⋯ = σQM = 0). The n × n matrix diag(((σQi )2)i≤n) is diagonal with ((σQi )2)i≤n as
entries on its diagonal. The set of extrema SM(λ) is

SM(λ) ∶= {(σz,σQ,r) ∈ RM
≥0 ×RM

≥0 ×Rn
≥0 ∶ σQ is of rank n,

∇σzgRS
M (σz,σQ,r, λ) = ∇σQgRS

M (σz,σQ,r, λ) = 0, ∇rgRS
M (σz,σQ,r, λ) = 0},

for the replica symmetric potential function gRS
M ∶ RM

≥0 ×RM
≥0 ×Rn

≥0 ×R≥0 ↦ R defined by the curly
bracket {⋯} in the variational problem (63). Constant τN fixes I(X;Z) = 0, i.e.,

τN ∶= β
4

sup
(σz ,σQ,r)∈SM (0)

gRS
M (σz,σQ,r, λ = 0) + oN(1).

Denote σ∗
Q the overlap singular values achieving the supremum in (63). The overlap (54) is then

given by q = N−1Trσ∗
Q + oN(1).

Introducing asymptotic singular values densities ρz, ρQ and ρr associated to σz, σQ and r,
respectively, the conjecture can be re-expressed in the limit N → +∞ and M/N → α as

1

MN
I(X;

√
λ

N
XX† +Z) → −β

4
sup

(ρz ,ρQ,ρr)∈S(λ)
{α∫ dρz(x)dρz(y) ln ∣x2 − y2∣ − ∫ dρz(x)x2

+min(1, α)min(1, α−1)∫ dρ̃Q(x)dρ̃Q(y) ln ∣x2 − y2∣

+ 2 min(1, α)(1 −min(1, α−1))∫ dρ̃Q(x) lnx

+min(1, α)min(1, α−1)∫ dρr(x)dρr(y) ln ∣x2 − y2∣ −min(1, α−1)∫ dρr(x)x2

+ 2(min(1, α−1) −min(1, α) −min(1, α)min(1, α−1))∫ dρr(x) lnx

+ 2

β
min(1, α)min(1, α−1)I(β)[ρ̃Q2 , ρr−2 ,

−1

min(1, α)] +
2α

β
J(β)[ρz, ρQ,

2
√
λ

α
]}

+ βλ
4α

lim
N→+∞

ETr(XX†)2

N3
+ τ.(64)
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The optimization is over probability densities with finite non-negative support belonging to the
extremal set

S(λ) ∶= {(ρz, ρQ, ρr) = (ρz, (1 −min(1, α))δ0 +min(1, α)ρ̃Q, ρr) with (ρz, ρ̃Q, ρr) ∈ P≥0 × P≥0× ∈ P≥0 ∶
δρzg

RS[ρz, ρQ, ρr, λ] = δρ̃QgRS[ρz, ρQ, ρr, λ] = δρrgRS[ρz, ρQ, ρr, λ] = 0},

where the three terms of the form δρgRS[⋯] are the functional derivatives of the replica symmetric
potential functional gRS ∶ P≥0 × P≥0 × P≥0 ×R≥0 ↦ R defined by the curly brackets in (64). Using a
standard change of density the following two densities belonging to P≥0 can be expressed in terms of
ρ̃Q and ρr over which the optimization takes place:

ρ̃Q2(x) = ρ̃Q(
√
x)

2
√
x

and ρr−2(x) =
ρr(1/

√
x)

2x3/2 .(65)

Constant τ fixes the contraint I(X;Z) = 0:

τ ∶= β
4

sup
(ρz ,ρQ,ρr)∈S(0)

gRS[ρz, ρQ, ρr, λ = 0].

Denoting by ρ∗Q = (1 −min(1, α))δ0 +min(1, α)ρ̃∗Q the density of singular values of the overlap that

achieves the supremum in (64), the overlap reads q = ∫ dρ∗Q(x)x.

5.5. Alternative “symmetric” method. In the case of the Hermitian model (42) it is possible
to derive another variational formula for the mutual information, conjectured equivalent. We
consider the real case β = 1 as the additional new assumption (just below) will be more transparent
in this case. The symmetry Asy =A⊺

sy ∶= (A +A⊺)/2 will be emphasized by the subscript “sy”.

We start again from identity (49). Our additional assumption is that the replicated partition
function is dominated by configurations such that

Assumption (trace symmetry): Tr(zab)⊺Qab ≈ TrzabQab ≈ Tr(zab)⊺Qba.

The symbol ≈ means that the ratio of the left and right-hand sides tend to 1 as N → +∞. This
assumption is not the same as assuming that zab is symmetric. It implies a fully symmetric
expression

EZ(Y )u ∝ ∫ dPX,N({x}u0)
0,u

∏
a<b
dzab expNTr[

√
λQab

syz
ab
sy −

1

2
(zab)⊺zab].

where the matrices have been symmetrized using basic properties of the trace. We now average a
function of the symmetric (zabsy)a<b only, and therefore the densities over (zab)a<b can be simplified.
Indeed, for any function of a symmetrized zsy we have that the expectation Ez g(zsy) verifies

Ez g(zsy) ∝ ∫
RM2

dz exp Tr[ − N
2
z⊺z] g(zsy)

∝ ∫
RM(M+1)/2

1,M

∏
k<`

dzsy,k` exp ( −Nz2
sy,k`) ∏

k≤M
dzsy,kk exp ( − N

2
z2

sy,kk) g(zsy)

∝ ∫
RM(M+1)/2

dzsy exp Tr[ − N
2
z2

sy] g(zsy).

We used that under the expectation Ez the random variables zk` and z`k are independent and
drawn from N(0,1/N) so that zsy,k` = zsy,`k ∶= (zk` + z`k)/2 ∼ N(0,1/(2N)) for k < ` while
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zsy,kk ∼ N(0,1/N). So at this stage

EZ(Y )u ∝ ∫ dPX,N({x}u0)
0,u

∏
a<b
dzabsy expNTr[

√
λQab

syz
ab
sy −

1

2
(zabsy)2].

Both matrices can now be diagonalized with real eigenvalues (instead of using the SVD as before):

zabsy = zbasy = (U ab)⊺λabz U ab and Qab
sy =Qba

sy = (V ab)⊺λabQV ab.

All matrices are M ×M and the overlaps are or rank min(M,N). The measure over the gaussian
fields, once expressed in the eigenbasis, becomes

dzabsy exp Tr[ − N
2
(zabsy)2] ∝ dµ

(1)
M (U ab)dλabz exp Tr[ − N

2
(λabz )2] ∣∆M(λabz )∣

As before, only the overlaps (Qab
sy)a<b depend on the replicas (xa)a so the measure dPX,N({x}u0)

induces a joint law dP ((Qab
sy)a<b) over these matrices. We change variables from matrices (Qab

sy)a<b
to eigenvalues and eigenvectors. Using a similar spectral replica symmetric ansatz as (50) but for
the j.p.d.f. of overlaps eigenvalues,

Assumption (spectral replica symmetry): P(λQ),M((λabQ )a<b) →
0,u

∏
a<b
pM(λabQ ),

we have the change of density

dPX,N({x}u0) = dP(Q),M((Qab
sy)a<b) → dP(V )∣(λQ),M((V ab)a<b ∣ (λabQ )a<b)

0,u

∏
a<b
pM(λabQ )dλabQ .

The replicated partition function is thus at leading order equal to

EZ(Y )u ∝ ∫
0,u

∏
a<b
dλabz dλ

ab
Q ∣∆(λabz )∣ exp Tr[ − N

2
(λabz )2]pM(λabQ )

× ∫ dP(V )∣(λQ),M((V ab)a<b ∣ (λabQ )a<b)

× ∫
0,u

∏
a<b
dµ

(1)
M (U ab) exp

1

2

2
√
λN

M
MTr[(U ab)⊺λabz U ab(V ab)⊺λabQV ab].

Each V ab can be absorbed in an independent Haar distributed U ab by the change of variable
U ab(V ab)⊺ → U ab (of unit Jacobian determinant), and the new matrices remain Haar and indepen-
dent. So the measure over eigenvectors can be integrated to one. The last term then makes appear
the HCIZ integral (9). We thus get

EZ(Y )u ∝ (∫ dλz dλQ exp
MN

2
[

1,M

∑
k≠`

ln ∣λzk − λz` ∣
MN

− Trλ2
z

M

+ 2 lnpM(λQ)
MN

+ 2M

N
I
(1)
M (λz,λQ,

2
√
λN

M
)])

u(u+1)/2
.

The replica computation gives, using (45) and after evaluation of the above integral by saddle-point
as N → +∞ followed by the analytic continuation u→ 0+, the following conjecture for the mutual
information. From the same arguments as before, we can also obtain the overlap from it.

Conjecture 6 (Replica symmetric formula for symmetric dictionary learning, symmetrized version).
Let the j.p.d.f. of the M eigenvalues of O(1) of the matrix (2N)−1(x⊺0x̃0 + x̃⊺0x0), where x0, x̃0 are
i.i.d. N ×M random matrices drawn from PX,N , be pM .
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The mutual information of model (42) in the real case β = 1 verifies

1

MN
I(X;

√
λ

N
XX⊺ +Z) = −1

4
sup

(λz ,λQ)∈SM (λ)
{

1,M

∑
k≠`

ln ∣λzk − λz` ∣
MN

− Trλ2
z

M

+ 2 lnpM(λQ)
MN

+ 2M

N
I
(1)
M (λz,λQ,

2
√
λN

M
)} + λ

4

ETr(XX⊺)2

MN2
+ τN .(66)

The set of extrema SM(λ) is defined as

SM(λ) ∶= {(λz,λQ) ∈ RM ×RM ∶ λQ is of rank min(M,N),
∇λzhRS

M (λz,λQ, λ) = ∇λQhRS
M (λz,λQ, λ) = 0},

where hRS
M ∶ RM ×RM ×R≥0 ↦ R is the replica symmetric potential function defined by the curly

brackets in (66). Constant ZN fixes the contraint I(X;Z) = 0, i.e.,

τN ∶= 1

4
sup

(λz ,λQ)∈SM (0)
hRS
M (λz,λQ, λ = 0) + oN(1).

Denote λ∗Q the overlap spectral density achieving the supremum in (66). The overlap (54) is then

q = 1

N
Trλ∗Q + oN(1).(67)

As for Conjecture 4, in case of existence of a functional Γ[ρQ] ∶= limM→+∞M−2 lnpM(λQ)
depending on the density ρQ of eigenvalues of Qsy, the conjecture can readily be expressed as a
variational problem over eigenvalues densities in the limit N → +∞ and M/N → α. Additionally,
by using the results of Section 5.4 this conjecture can be made more explicit in the special case of
a Ginibre signal if needed.

5.6. A comparison with previous attempts. The Bayes-optimal setting of linear-rank dictio-
nary learning has been previously studied in the inspiring works [52,53] (in the real case β = 1). But
we think that these approaches provide approximations to the exact asymptotic formulas. In [52] the
ansatz is the simplest one: the authors consider constant matrices zab = (z) in (49). It is probable
that this ansatz cannot capture the important rotational degrees of freedom of the model. In his
thesis [53] C. Schmidt proposed instead zab = z and, additionally, that it is symmetric z = z⊺ (while
there is no reasons for it to be so): we believe that these weaker assumptions nevertheless remain
too strong to yield the correct formulas. By symmetry he could work in eigenbasis zab = z = U⊺λzU .
This assumption that both eigenvalues and eigenvectors are replica independent is physically
equivalent to assume that the overlaps (Qab)a<b concentrate entrywise (but not towards a constant
matrix as the authors of [52] implicitely assumed). But we expect that only the joint statistics of
eigen/singular values can be self-averaging as often in random matrix theory. The same phenomenon
happens in large covariances matrices: only the spectral properties become deterministic while the
matrix entries fluctuate even in the large size limit.

In the most generic version of the method leading to Conjecture 4, our new ansatz is only at the
level of the distribution of singular values of the overlaps Qab =AabσabQB

ab: the matrices σabQ are
assumed to decouple and to have identical statistics in the large size limit. Nothing is assumed
on the singular vectors, which are naturally absorbed in the rectangular spherical integral J(β).
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The spectral decoupling assumption (50) allows us to carry on the computation while completely
capturing the relevant rotational degrees of freedom and invariances.

The spectral replica method therefore allows us to reduce the challenging task of computing the
quenched free entropy (or mutual information), which is an integral over Θ(N2) matrix elements
(and that additionally should be averaged over the data distribution), into two well defined RMT
sub-problems:

(1) obtaining the j.p.d.f. of the singular values (or eigenvalues) of a product of two i.i.d. random
matrices drawn from the prior distribution PX,N ;

(2) analyzing a Coulomb gas with multiple interacting populations/densities through spherical
integrals, i.e., an optimization problem over Θ(N) interacting degrees of freedom representing
the singular values (or eigenvalues) of certain matrix order parameters entering the analysis
(or equivalently, solving a functional optimization problem over the associated asymptotic
densities).

As discussed already, the first task does not require a-priori the prior PX,N to be factorized over
the entries of the matrix X. So in cases where the j.p.d.f. pM can be evaluated, the spectral replica
method yields concrete asympotic formulas for the mutual information and MMSE.

In the symmetric version of the replica approach leading to Conjecture 6, we only assume
replica symmetry in the sense that for typical realizations of the matrices zab and Qab, the
“macroscopic quantity” Tr(zab)⊺Qab is essentially invariant by transposition of zab. Or equivalently,
invariant under swithching of replica indices of the overlap matrix: Tr(zab)⊺Qab ≈ Tr(zab)⊺Qba.
This assumption allows to symmetrize the action and work with symmetric matrices. We then
assume the same spectral replica symmetric ansatz on the spectra of the symmetrized overlaps
(Qab

sy)a<b and carry on the computation using the standard spherical integral I(β).

We believe that our methodology yields asymptotically exact formulas for the main information-
theoretic quantities. There is a possibility that in special cases our formulas may be further simplified.
E.g., by finding simpler terms correctly capturing the interactions induced by the j.p.d.f. lnpM(λQ),
or by simplifying the HCIZ integral. But we doubt that this is possible in general because the
effective models described by our formulas correspond to strongly interacting eigenvalues/singular
values evolving at vanishing temperature. And, to the best of our knowledge, there is no systematic
exact simplifications for such Coulomb gas systems.

6. Dictionary learning

6.1. The model. Let the ground-truth dictionary S = [Sik] ∈ KN×K be drawn from a centered
distribution S ∼ PS,K , and the coefficients T = [Tjk] ∈ KM×K from T ∼ PT,K centered also, where
the entries of both S and T are typically O(1). These two priors should induce symmetric j.p.d.f.
of singular values for S and T . We set

N = αK + o(K) and M = γK + o(K)
with fixed α, γ > 0 as K → +∞. Consider having access to a data matrix Y = [Yij] ∈ KN×M with
entries generated according to

Y =
√

λ

N
ST † +Z,(68)
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with a Ginibre noise matrix Z ∈ KN×M with law

PZ,N(Z) ∝ exp Tr[ − β
2
ZZ†].

The scaling in N of the matrix entries and eigenvalues are the same as in the positive definite case
(42). We assume this time that both priors are bi-orthogonal/unitary rotationally invariant, i.e.,

dPS,K(S) = dPS,K(OSÕ) and dPT,K(T ) = dPT,K(OTÕ)(69)

for any orthogonal (β = 1) or unitary (β = 2) matrices O and Õ. Rotational invariance of the
prior was not needed in the Hermitian case of dictionary learning, but it seems required in the
less symmetric present setting. We jointly denote X ∶= (S,T ) and x ∶= (s, t) ∈ KN×K ×KM×K . Let
dPX,K(x) ∶= dPS,K(s)dPT,K(t). The joint posterior reads

dPX ∣Y,K(x ∣ Y ) = 1

Z(Y )dPX,K(x) exp
β

2
Tr[

√
λ

N
Y †st† +

√
λ

N
Y ts† − λ

N
s†st†t].(70)

Note the invariance of the model under (S,T ) → (SU ,TU) for any orthogonal/unitary U .

The object of interest is the average free entropy

EfN ∶= 1

NM
E lnZ(Y ).

It is linked to the mutual information by

1

MN
I(Y ; (S,T )) = −EfN + βλ

2MN2
ETrS†ST †T .

6.2. Replica trick and freeness assumption. As before, working in the Bayes-optimal setting
allows us to simply rename the ground truth x0 =X which will play the same role as all other
replicas xa = (sa, ta) ∈ KN×K ×KM×K of x. We set

∫ dPX,K({x}u0)⋯ = ∫
KNK(u+1)

u

∏
a=0

dPS,K(sa)∫
KMK(u+1)

u

∏
a=0

dPT,K(ta)⋯ .

The replica trick (45) requires computing the moments of the partition function. As in Section 5
we consider first the more cumbersome complex case β = 2. Model (68) is then equivalent to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

RYij ∼ N(
√

λ
N

⟨Si,T̄j⟩+⟨S̄i,Tj⟩
2 , 1

2
)

IYij ∼ N(
√

λ
N

⟨Si,T̄j⟩−⟨S̄i,Tj⟩
2i , 1

2
)

for (i, j) ∈ [N] × [M].

We integrate Y which is, conditionally on (S,T ), a complex gaussian multivariate random variable,
by using formula (46) and obtain that EZ(Y )u equals

∫ dPX,K({x}u0)EY ∣x0∏
a≤u

exp 2
N,M

∑
i,j

(
√

λ

N
RYij

⟨sai , t̄aj ⟩ + ⟨s̄ai , taj ⟩
2

− λ

2N
(
⟨sai , t̄aj ⟩ + ⟨s̄ai , taj ⟩

2
)

2

)

× exp 2
N,M

∑
i,j

(
√

λ

N
IYij

⟨sai , t̄aj ⟩ − ⟨s̄ai , taj ⟩
2i

− λ

2N
(
⟨sai , t̄aj ⟩ − ⟨s̄ai , taj ⟩

2i
)

2

)
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= ∫ dPX,K({x}u0)
0,u

∏
a<b

exp
2λ

N

N,M

∑
i,j

⟨sai , t̄aj ⟩ + ⟨s̄ai , taj ⟩
2

×
⟨sbi , t̄bj⟩ + ⟨s̄bi , tbj⟩

2

× exp
2λ

N

N,M

∑
i,j

⟨sai , t̄aj ⟩ − ⟨s̄ai , taj ⟩
2i

×
⟨sbi , t̄bj⟩ − ⟨s̄bi , tbj⟩

2i

= ∫ dPX,K({x}u0)
0,u

∏
a<b

exp
2λ

N

N,M

∑
i,j

(R⟨sai , t̄aj ⟩R⟨sbi , t̄bj⟩ + I⟨sai , t̄aj ⟩I⟨sbi , t̄bj⟩)

= ∫ dPX,K({x}u0)
0,u

∏
a<b

exp
2λ

N

N,M

∑
i,j

R(⟨sai , t̄aj ⟩⟨s̄bi , tbj⟩)

= ∫ dPX,K({x}u0)
0,u

∏
a<b

expβλNRTrQab
s (Qab

t )†.

We introduced the K ×K (a-priori non-Hermitian) overlap matrices and their SVD decompositions:

Qab
s ∶= ( 1

N
∑
i≤N

saiks̄
b
i`)

k,`≤K
= (sa)⊺s̄b

N
=Aab

s σ
ab
s B

ab
s ,

Qab
t ∶= ( 1

N
∑
j≤M

t̄ajkt
b
j`)

k,`≤K
= (ta)†tb

N
=Aab

t σ
ab
t B

ab
t .

The overlaps (Qab
s )a<b are of rank min(N,K), and thus (σabs )a<b have min(N,K) non-zero entries

on their diagonal, while (Qab
t )a<b have rank min(M,K) implying that (σabt )a<b have min(M,K)

non-zero entries on their diagonal. The following product form of the prior measure dPX,K({x}u0) =
∏u
a=0 dPS,K(sa)dPT,K(ta) induces a j.p.d.f. of the overlaps factorized over the two types of overlaps:

dP(Qs,Qt),K((Qab
s ,Q

ab
t )a<b) = dP(Qs),K((Qab

s )a<b)dP(Qt),K((Qab
t )a<b).(71)

At this stage we need one additional assumption when compared with the Hermitian case of

Section 5. For each pair a < b of replica indices let i.i.d. Haar matrices U ab,V ab ∼ µ(β)
K independent

of everything else. We assume the following equality in distribution in the large size limit3, which is
suggested by the combination of the independence (71) between the two types of overlaps together
with the rotational invariance (69) of both priors (from which the overlap matrices Qab

s and Qab
t

must inherit).

Assumption (equality in law):

For any pair a < b: TrQab
s (Qab

t )† ∼ Tr[U abQab
s V

ab(Qab
t )†] as M,N,K → +∞.

As a consequence,

EZ(Y )u ∝ ∫ dP(Qs,Qt),K((Qab
s ,Q

ab
t )a<b)

0,u

∏
a<b

expβλNRTrQab
s (Qab

t )†

= ∫ dP(Qs),K((Qab
s )a<b)dP(Qt),K((Qab

t )a<b)

×
0,u

∏
a<b
dµ

(β)
K (U ab)dµ(β)

K (V ab) expβλNRTr[U abQab
s V

ab(Qab
t )†].

3We note that this assumption is reminiscent of results in [117] (see also [118]) for the addition of two large
random matrices with at least one being bi-unitary invariant.
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We now change variables for the SVD decompositions of the overlaps:

dP(Qs),K((Qab
s )a<b) = dP(As,Bs)∣(σs),K((Aab

s ,B
ab
s )a<b ∣ (σabs )a<b)dP(σs),K((σabs )a<b),

and similarly for dP(Qt),K((Qab
t )a<b). The spectral replica symmetric ansatz reads in this case:

Assumption (spectral replica symmetry):

⎧⎪⎪⎨⎪⎪⎩

P(σs),K((σabs )a<b) → ∏0,u
a<b pS,K(σabs ),

P(σt),K((σabt )a<b) → ∏0,u
a<b pT,K(σabt ),

(72)

for certain j.p.d.f. pS,K and pT,K to be determined using RMT. As before, symbol → means that
both sides weakly converge to the same asymptotic distribution as N,M,K → +∞ together. Thus

EZ(Y )u ∝ ∫
0,u

∏
a<b
dpS,K(σabs )dpT,K(σabt )

× ∫ dP(As,Bs)∣(σs),K((Aab
s ,B

ab
s )a<b ∣ (σabs )a<b)dP(At,Bt)∣(σt),K((Aab

t ,B
ab
t )a<b ∣ (σabt )a<b)

× ∫
0,u

∏
a<b
dµ

(β)
K (U ab)dµ(β)

K (V ab) expβλNRTr[U abAab
s σ

ab
s B

ab
s V

ab(Bab
t )†σabt (Aab

t )†].

As before, the mechanism here is to absorb the left and right singular vectors into the Haar
distributed matrices: we redefine (Aab

t )†U abAab
s → U ab and Bab

s V
ab(Bab

t )† → V ab which remain
independent and Haar distributed; these changes have unit Jacobian determinant. Thus, the
distributions of singular vectors, which a-priori couple the different pairs of replicas, are integrated
and decoupling of the integrals over the pairs of indices a < b takes place. This yields

EZ(Y )u ∝ (∫ dpS,K(σs)dpT,K(σt)dµ(β)
K (U)dµ(β)

K (V ) expβλNRTr[UσsV σt])
u(u+1)/2

= (∫ dσs dσt expMN[ lnpS,K(σs)
MN

+ lnpT,K(σt)
MN

+ K2

MN
J

(β)
K (σs,σt,2λ)])

u(u+1)/2
.

Saddle-point estimation and taking u→ 0+ yields the following conjecture for the mutual information
and, thus, the non-universal scalar overlaps (see the justifications below (54)):

qs ∶= lim
N→+∞

1

N
E⟨∣TrsS†∣⟩ = lim

N→+∞

1

N
E⟨∣TrQs∣⟩ = lim

N→+∞

1

N
∣TrE⟨Qs⟩∣ =

1

N
∣TrQs∣ + oK(1),(73)

and qt defined similarly when replacing (s,S,Qs) by (t,T ,Qt). Here the overlaps Qs ∶= N−1s†s̃
and Qt ∶= N−1t†t̃ for two i.i.d. samples x = (s, t) and x̃ = (s̃, t̃) from the joint posterior distribution
PX ∣Y,N given by (70).

Conjecture 7 (Replica symmetric formula for dictionary learning). Let the j.p.d.f. of the K

singular values of O(1) of the matrix N−1s†
0s̃0, where s0, s̃0 are i.i.d. N ×K random matrices drawn

from PS,K, be pS,K. Similarly, let the j.p.d.f. of the K singular values of O(1) of N−1t†0t̃0, where
t0, t̃0 are i.i.d. M ×K random matrices drawn from PT,K, be pT,K.

The mutual information of model (68) verifies

1

MN
I((S,T );

√
λ

N
ST † +Z) = − K2

2MN
sup

(σs,σt)∈SK(λ)
{ lnpS,K(σs)

K2
+ lnpT,K(σt)

K2
+ J(β)

K (σs,σt,2λ)}

+ βλ

2MN2
ETrS†ST †T + τK .(74)
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The set of extrema SK(λ) is defined as

SK(λ) ∶= {(σs,σt) ∈ RK
≥0 ×RK

≥0 ∶ σs is of rank min(N,K), σt is of rank min(M,K),
∇σsgRS

K (σs,σt, λ) = ∇σtgRS
K (σs,σt, λ) = 0},

where gRS
K ∶ RK

≥0 × RK
≥0 × R≥0 ↦ R is the replica symmetric potential function defined by the curly

brackets {⋯} in the variational problem (74). Constant τK fixes I((S,T );Z) = 0, i.e.,

τK ∶= 1

2
sup

(σs,σt)∈SK(0)
gRS
K (σs,σt, λ = 0) + oK(1).

Denote (σ∗
s ,σ

∗
t ) the overlaps singular values achieving the supremum in (74). The scalar overlaps

are

qs =
1

N
Trσ∗

s + oK(1), qt =
1

N
Trσ∗

t + oK(1).(75)

Introducing asymptotic singular values densities ρs and ρt associated to σs and σt, respectively,
and assuming it exist functionals Γs and Γt depending only on the asymptotic singular values
densities ρs and ρt, respectively, and such that

Γs[ρs] ∶= lim
K→+∞

1

K2
lnpS,K(σs) and Γt[ρt] ∶= lim

K→+∞

1

K2
lnpT,K(σt),

the conjecture can be re-expressed in the limit K → +∞ with N/K → α and M/K → γ as

1

MN
I((S,T );

√
λ

N
ST † +Z) → − 1

2αγ
sup

(ρs,ρt)∈S(λ)
{Γs[ρs] + Γt[ρt] + J(β)[ρs, ρt,2λ]}

+ βλ
2

lim
K→+∞

ETrS†ST †T

MN2
+ τ.(76)

The optimization is over probability densities with finite non-negative support, and possibly a point
mass in δ0, belonging to the extremal set

S(λ) ∶= {(ρs, ρt) = ((1 −min(1, α))δ0 +min(1, α)ρ̃s, (1 −min(1, γ))δ0 +min(1, γ)ρ̃t)
with (ρ̃s, ρ̃t) ∈ P≥0 × P≥0 ∶ δρ̃sgRS[ρs, ρt, λ] = δρ̃sgRS[ρs, ρt, λ] = 0},

where δρ̃s/tg
RS[ρs, ρt, λ] are the functional derivatives of the replica symmetric potential functional

gRS ∶ P≥0 × P≥0 × R≥0 ↦ R defined by the curly brackets in (76). Constant τ fixes the contraint
I((S,T );Z) = 0, i.e.,

τ ∶= 1

2αγ
sup

(ρs,ρt)∈S(0)
gRS[ρs, ρt, λ = 0].

Denote (ρ∗s , ρ∗t ) = ((1 −min(1, α))δ0 +min(1, α)ρ̃∗s , (1 −min(1, γ))δ0 +min(1, γ)ρ̃∗t ) the densities
achieving the supremum in (76). The overlaps are

qs = ∫ dρ∗s(x)x, qt = ∫ dρ∗t (x)x.(77)
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Note that in the more symmetric special case of M = N and PS,K = PT,K (which does not
correspond to the Hermitian dictionary learning problem (42) as S and T remain i.i.d.), by
symmetry the replica symmetric formula can be simplified as

1

MN
I((S,T );

√
λ

N
ST † +Z) → − sup

ρ∈Sdiag(λ)
{Γ[ρ]
α2

+ J
(β)[ρ, ρ,2λ]

2α2
} + βλ

2
lim

K→+∞

ETrS†ST †T

N3
+ τdiag

where Sdiag(λ) is the “diagonal subset” of S(λ) where additionally ρs = ρt (and the definition of
τdiag is modified from τ accordingly), and Γ = Γs = Γt. The unique scalar overlap is in this case
qs = qt = ∫ dρ∗(x)x where ρ∗ achieves the supremum in the variational problem for the mutual
information.

Appendix A. Spherical integrals

In this appendix we present the HCIZ formula in the Hermitian and general non-Hermitian
matrix cases used in this work. For the derivations we refer to the very readable original papers by
Itzykson and Zuber [70], and Mehta [57].

A.1. Hermitian case. Consider Hermitian M ×M matrices A, B. These are diagonalized by
unitary matrices and have real eigenvalues. Recall the notation A = UAλA(UA)†, B = UBλB(UB)†.
Recall the definition of the Vandermonde (5). The HCIZ formula reads

∫
U(M)

dµ
(2)
M (U) expγMTr[AU †BU ] = ∏k≤M−1 k!

(γM)M(M−1)/2

det[expγMλAi λ
B
j ]

∆M(λA)∆M(λB) ,

where µ
(2)
M is the normalized Haar measure over the group of unitary M × M matrices and

[expγMλAi λ
B
j ] is the matrix (exp(γMλAi λ

B
j ))i,j≤M . Note that on the left hand side we can replace

A, B by λA, λB since UA, UB leave the Haar measure invariant. Note also that by permutation
symmetry the ratio of determinants is positive and independent of the ordering of eigenvalues. In the
limit M → +∞ the spherical integral can be described in terms of an hydrodynamical system (the
complex Burgers equation) thanks to the work of Matytsin [80] and proven in [79]. See also [89,119].
This is not used in this paper but may be useful for future analyses.

A.2. General non-Hermitian case. Let A, B be two general M ×M matrices. Their singular
value decomposition is A = UAσAV A and B = UBσBV B where σA, σB are the diagonal matrices
of non-negative singular values and UA, V A, UB and V B are unitary matrices. The spherical
integral involves the modified Bessel function of first kind:

I0(x) ∶= ∫
π

0

dθ

π
exp(x cos θ).

This function is positive, monotone increasing, I0(0) = 1, and grows as expx at infinity. We have

∫
U(M)×U(M)

dµ
(2)
M (U)dµ(2)

M (V ) expγMRTr[AUBV ]

= 2M(M−1)(∏k≤M−1 k!)2

M !(Mγ)M(M−1)

det[I0(MγσAi σ
B
j )]

∆M((σA)2)∆M((σB)2) .

As before, on the left hand side we can replace A, B by σA, σB, and the ratio of determinants is
positive and invariant under permutations of singular values. This formula first obtained in [96]
and proven in [97] can be derived by the same methods used for the classical HCIZ formula based
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on the solution of the heat equation. Like for the standard spherical integral, there also exists an
asymptotic M → +∞ representation of the rectangular spherical integral in terms of a complex
hydrodynamical system [98,99].

Appendix B. Minimum mean-square error: a more explicit formula

By the I-MMSE relation (11), we obtained in Conjecture 2 that the MMSE is directly proportional
to the derivative with respect to the signal-to-noise ratio λ of the HCIZ integral. Its dependence in
λ is through the data-matrix eigenvalues λY . From the HCIZ formula (see Appendix A) we get in
the complex case β = 2, using the Jacobi formula

∂

∂Xij

ln detX = (X−1)ji,

that the HCIZ derivative verifies

N2 d

dλ
I
(2)
N (λS,λY ,

√
λ) = N2

2
√
λ

d

d
√
λ
I
(2)
N (λ,

√
λλY ,1)

= 1

2
√
λ

d

d
√
λ

ln det[expNλSc (
√
λλYd )] −

1

2
√
λ

d

d
√
λ

ln det[(
√
λλYc )d−1]

= 1

2
√
λ
∑
i,j≤N

d ln det[expNλSc (
√
λλYd )]

d expNλSi (
√
λλYj )

d expNλSi (
√
λλYj )

d
√
λ

− 1

2
√
λ
∑
i,j≤N

d ln det[(
√
λλYc )d−1]

d(
√
λλYi )j−1

d(
√
λλYi )j−1

d
√
λ

= 1

2
√
λ
∑
i,j≤N

([expNλSc (
√
λλYd )]−1)jiNλSi (expNλSi (

√
λλYj ))

d
√
λλYj

d
√
λ

− 1

2
√
λ
∑
i,j≤N

([(
√
λλYc )d−1]−1)ji(j − 1)(

√
λλYi )j−2d

√
λλYi

d
√
λ
.

Introducing the Y -eigenvectors Y ψY
i = λYi ψY

i , the Hellmann-Feynman theorem implies

dλYi

d
√
λ
= (ψY

i )†SψY
i .

Thus

d
√
λλYi

d
√
λ

= (ψY
i )†(

√
λS + ξ)ψY

i +
√
λ(ψY

i )†SψY
i = (ψY

i )†(2
√
λS + ξ)ψY

i .

Putting everything together in (15) we find that the MMSE equals (when β = 2)

1

N2
E∥S −E[S ∣ Y ]∥2 = 4

N
ETrλ2

S

− 2√
λN2

∑
i,j≤N

([expNλSc (
√
λλYd )]−1)jiNλSi (expNλSi (

√
λλYj ))(ψY

j )†(2
√
λS + ξ)ψY

j

+ 2√
λN2

∑
i,j≤N

([(
√
λλYc )d−1]−1)ji(j − 1)(

√
λλYi )j−2(ψY

i )†(2
√
λS + ξ)ψY

i + oN(1).
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Besides the matrix inversions this formula also requires to compute eigenvectors of Y =
√
λS + ξ; it

may be more practical to use (ψY
i )†(2

√
λS + ξ)ψY

i = λYi +
√
λ(ψY

i )†SψY
i .

If one were to start instead from Conjecture 1 the computation would be similar, because at
the stationary point, the total λ-derivative is computed by taking a partial derivative only with
respect to the explicit λ dependence. Indeed, the terms coming from the implicit dependence in the
solution λs of the fixed point equations do not contribute.

Appendix C. Free entropy functional in terms of moments and existence of Γ[ρQ]

C.1. Free entropy functional in terms of moments. We briefly explain how the integrand in
(8), namely

1

N2
lnpS,N(λs) − βλ

4N
Trλ2

s + I
(β)
N (λs,λY ,

√
λ),

can be expressed entirely in terms of moments θp ∶= limN→+∞N−1Trλps for p ∈ N, in the special case
where the prior has the form (6). This means that the collection of moments can be considered as
the order parameters.

For I(2)[ρs, ρY ,
√
λ] we have the expansion (26) in powers of

√
λ for β = 2. For β = 1 we can

use this expansion in conjunction with “Zuber’s 1
2 -rule” [90]. The term lnpS,N(λs) contains the

potential V (λs) and the contribution of the Coulomb energy 1
2 ∑i≠j ln ∣λsi − λsj ∣. For the Coulomb

energy we can use the “multipole expansion” of the potential − ln ∣x− y∣. For x′, y′ ∈ [−1, 1] we have,

− log ∣x′ − y′∣ = ln 2 + ∑
n≥1

2

n
Tn(x′)Tn(y′)

where Tn, n ≥ 0, are orthogonal Chebyshev polynomials of the first kind satisfying

∫
1

−1
dx

1√
1 − x2

Tn(x)Tm(x) = δnm.

The first few polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1.

Since we expect (for small λ) that the density of eigenvalues is supported on an interval [a, b] we
use the change of variables x′ = (x −m)/d, y′ = 2(y −m)/d where m ∶= (a + b)/2, d ∶= (b − a)/2, so
that now for x, y ∈ [a, b] we have the expansion

− log ∣x − y∣ = − ln
d

2
+
+∞
∑
n=1

2

n
Tn(

x −m
d

)Tn(
y −m
d

).(78)

Assuming now that for N large enough the eigenvalues are essentially contained in a deterministic
interval [a, b] we have4

− 1

2N2

1,N

∑
i≠j

log ∣λsi − λsj ∣ ∝ −1

2
ln
d

2
+ 1

N2

1,N

∑
i≠j
∑
n≥1

1

n
∑
i≤N

Tn(
λsi −m
d

) ∑
j≤N

Tn(
λsj −m
d

) + oN(1).

This is clearly a function of the moments (θp) which can be worked out from the expression of the
Chebyshev polynomials. Potentials of polynomial form, such as V (λs) = λ2

s, are clearly a function

4To properly establish this relation one should regularize the Coulomb potential by introducing a cutoff at the
origin in order to remove a subdominant in N correction term from coincident points i = j on the right hand. This is
a standard discussion that we omit here, see Section 4.2 of [5].
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of moments. In the case of a Wishart potential proportional to V (λs) = 2(1 − ϕ−1) lnλs + 2ϕ−1λs

we can again use the “multipole expansion”

− lnx = − ln
d

2
+
+∞
∑
n=1

2

n
Tn(

x −m
d

)Tn( −
m

d
).

An alternative strategy to see that the integral (8) can be re-expressed in terms of a spectral
density as order parameter is the classical approach of introducing a Dirac delta function and
integrate over an appropriate space of normalized functions:

∫ dλs expN2( 1

N2
lnpS,N(λs) − βλ

4N
Trλ2

s + I
(β)
N (λs,λY ,

√
λ))

= ∫ D[ρ] expN2(∫ dρ(x)dρ(y) ln ∣x − y∣ − β
4 ∫ dρ(x)(V (x) + λx2) + I(β)N (ρ, ρ̂Y ,

√
λ))

× ∫ dλsδ(ρ − ρ̂s,N).

Here the spherical integral I
(β)
N (ρ, ρ̂Y ,

√
λ) has to be interpreted as definition (9) for any pair of

eigenvalues populations λs and λY with empirical densities given by ρ and ρ̂Y , respectively. Now,
the entropic contribution S[ρ] ∶= ln ∫ dλsδ(ρ − ρ̂s,N) can be evaluated by introducing a Fourier
representation of the Dirac delta:

expS[ρ] = ∫ dλs∫ D[g] exp (i∫ dxg(x)(Nρ(x) − ∑
i≤N

δ(λsi − x))) ∝ expNH[ρ],

where H[ρ] ∶= − ∫ dρ(x) lnρ(x) is the Shannon entropy of density ρ (see Section 4.2 in Chapter 4,
equations (4.14)–(4.18) in [5], or Appendix C of [120]). Therefore, at leading order exp(O(N2)) in
the integrand, this entropic contribution is negligible and thus integral (8) ends up being expressed
only as a functional integral over a density.

C.2. A formal remark concerning the existence of Γ[ρQ]. Let us discuss how to identify Γ
in the replica symmetric Conjecture 4 (and by extension in the other conjectures too) in cases
where the prior is not necessarily of the form (6); in the case where it is of the form (6) it follows
by the discussion of the previous section. We start from the replicated partition function (49) that
we recall here:

EZu ∝ ∫ dPX,N({x}u0)
0,u

∏
a<b
dzab expβNRTr[

√
λ(zab)†Qab − 1

2
(zab)†zab].(79)

As seen from the steps leading to (51), by rotational invariance of zab, the expectation of the above
exponential function with respect to the Haar distributed singular vectors (U ab,V ab) of zab is
independent of the singular vectors of the overlaps (Qab)a<b: the identity (51) reads, when we do
not change variables for the SVD decomposition of the overlaps,

EZu ∝ ∫ dPX,N({x}u0)
0,u

∏
a<b
dσabs exp ( ln ∣∆M((σabz )2)∣β + (β − 1)Trσabz

− βN
2

Tr(σabz )2 +M2J
(β)
M (zab,Qab,

2
√
λN

M
)).

This independence in the singular vectors is what suggests that the empirical spectral distributions

ρ̂abQ (σ) ∶= 1

M
∑
k≤M

δ(σQ,abk − σ) and ρ̂abz (σ) ∶= 1

M
∑
k≤M

δ(σz,abk − σ)(80)
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or their asymptotic limits are the correct order parameters instead of the whole populations σabQ
and σabz (the rectangular spherical integral depends only on these distributions by permutation
symmetry): the density of singular values must be sufficient to describe the system, no need of the
whole j.p.d.f. of singular values. Keep in mind that the density ρ̂abQ (σ) is a function of the replicas

through the definition of the overlaps Qab ∶= N−1(xa)⊺x̄b.
In order to replace the integrals over the singular values (σabQ ,σabz )a<b by integrals over densities

we need to introduce entropic contributions by using Delta function similarly as in the previous
section. Formally we can write that

EZu ∝ ∫ (
0,u

∏
a<b
D[ρabz ]D[ρabQ ]) expM2(Sz[(ρabz )] + SQ[(ρabQ )] +

0,u

∑
a<b
J

(β)
M (ρabz , ρabQ ,

2
√
λN

M
)

− βN
2M

0,u

∑
a<b
∫ dρabz (x)x2 + β

2

0,u

∑
a<b
∫ dρabz (x)dρabz (y) ln ∣x2 − y2∣ + oN(1)),(81)

where the integrations D[ρabz ],D[ρabQ ] are over all normalized empirical densities with finite support

over M singular values (which will tend to continuous non-negative normalized smooth functions
in the large size limit), and the entropies

SQ[(ρabQ )] ∶= 1

M2
ln∫

u

∏
a=0

dPX,N(xa)
0,u

∏
a<b
δ(ρabQ − ρ̂abQ ),

Sz[(ρabz )] ∶= 1

M2

0,u

∑
a<b

ln∫ dσabz δ(ρabz − ρ̂abz ).

In (81) the spherical integral J
(β)
M (ρabz , ρabQ , γ) has to be understood as definition (40) evaluated for

any populations of singular values σabs ,σ
ab
Q ∈ RN

≥0 whose empirical densities are given by ρabz , ρ
ab
Q ,

respectively. Standard computations discussed in the previous section imply

ln∫ dσabz δ(ρabz − ρ̂abz ) ∝MH[ρabz ]

where H[ρabz ] is the Shannon entropy of density ρabz . As we restrict the integral over densities with
finite, N -independent support, then Sz[(ρabz )] = O(1/N).

The spectral replica symmetric ansatz is then equivalent to assume that

SQ[(ρabQ )] → u(u + 1)
2

ΓM[ρQ] ∶=
u(u + 1)

2

1

M2
ln∫ dPX,N(x0)dPX,N(x1) δ(ρQ − ρ̂Q),

where ρ̂Q is the empirical density of the matrix N−1(x0)⊺x̄1. Thanks to this decoupling assumption
we can carry on the computation similarly as before as the integrals are factorized over the pairs
of replica indices. It yields in the limit the formula (64), in which we formally have identified the
functional Γ as the limit of the entropy contribution ΓM from above.

Appendix D. Mathematica codes

D.1. Small signal-to-noise expansion. The two first functions provided below allowing to
convert moments to free cumulants and vice-versa are taken from [121].

This function gives the free cumulants as function of generic moments (Mi) of a density.
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In[1]:= m[z_] := 1 + M1 z + M2 z^2 + M3 z^3 + M4 z^4 + M5 z^5

+ M6 z^6 + M7 z^7 + M8 z^8;

Simplify[Table[{k, (-(k - 1)^(-1)/k!)*D[m[z]^(1 - k), {z, k}] /.

{z -> 0}}, {k, 2, 8}]]

The next function gives the moment generating function expressed with the free cumulants and
thus allows us to read the expression of the moments in terms of free cumulants. We force the
values of the first two free cumulants to k1 = 0 and k2 = 1 (but this is not necessary).

In[2]:= k1 = 0; k2 = 1; m[z_] = 1;

r[z_] := k1 + k2 z + k3 z^2 + k4 z^3 + k5 z^4 + k6 z^5

+ k7 z^6 + k8 z^7 + k9 z^8;

Do[rtmp[z_] = PolynomialMod[z r[z], z^(k + 1)];

m[z_] = PolynomialMod[1 + rtmp[z m[z]], z^(k + 1)], {k, 0, 8}];

Collect[m[z], z]

We now express the asymptotic moments mi = θi ∶= limN→+∞N−1TrSi of the signal S as a function
of the free cumulants (ki) of its asymptotic spectral density thanks to the previous function. We
focus on trace-less signals m1 = 0 = k1 and with normalized variance m2 = 1 = k2; the first condition
does not change anything from the information-theoretic point of view as explained in Remark 1
below Conjecture 2, and the second condition simply amounts to a rescaling of λ if not a-priori
verified.

In[3]:= m3 = k3;

m4 = k4 + 2;

m5 = 5 k3 + k5;

m6 = 3 k3^2 + 6 k4 + k6 + 5;

m7 = 7 k3 k4 + 21 k3 + 7 k5 + k7;

m8 = 28 k3^2 + 8 k3 k5 + 4 k4^2 + 28 k4 + 8 k6 + k8 + 14;

We express the free cumulants (ci) of the data Y as a function of the free cumulants (ki) of the
signal S. The (ci) are the (φ̄i) in the Zinn-Justin and Zuber expansion [92] (see also [122] for the
same expansion in terms of trace-moments, also found in [92]). The Wigner matrix ξ only shifts

the second free cumulant of
√
λS (which is λ) by 1. Below, variable snr refers to λ.

In[4]:= c2 = snr + 1;

c3 = k3 snr^(3/2);

c4 = k4 snr^2;

c5 = k5 snr^(5/2);

c6 = k6 snr^3;

c7 = k7 snr^(7/2);

c8 = k8 snr^4;

The terms (Fn) in the Zinn-Justin and Zuber expansion of the spherical integral [92], expressed
with the free cumulants (ci) of the data matrix, and the moments (mi) of the signal S; the (mi)
are the (θi) in the expansion of [92].
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In[5]:= F2 = c2/2;

F3 = c3 m3/3;

F4 = c4 m4/4 - 1/2 (c2^2/2 + c4);

F5 = c5 m5/5 - m3 (c2 c3 + c5);

F6 = - 1/2 m3^2 (c2^3/3 + c2 c4 + c3^2 + c6)

+ 1/6 (2 c2^3 + 12 c2 c4 + 5 c3^2 + 7 c6)

- m4 (c2 c4 + c3^2/2 + c6) + (c6 m6)/6;

F7 = - m3 m4 (c2^2 c3 + c2 c5 + 2 c3 c4 + c7)

+ m3 (5 c2^2 c3 + 7 c2 c5 + 8 c3 c4 + 4 c7)

- m5 (c2 c5 + c3 c4 + c7) + c7 m7/7;

F8 = - m3 m5 (c2^2 c4 + c2 c3^2 + c2 c6 + 2 c3 c5

+ c4^2 + c8) + m3^2 (2 c2^4 + 16 c2^2 c4

+ 20 c2 c3^2 + 16 c2 c6 + 24 c3 c5 + 11 c4^2 + 9 c8)

- 1/2 m4^2 (c2^4/4 + c2^2 c4 + 2 c2 c3^2

+ c2 c6 + 2 c3 c5 + 3/2 c4^2 + c8)

+ 1/2 m4 (c2^4 + 11 c2^2 c4 + 14 c2 c3^2

+ 16 c2 c6 + 18 c3 c5 + 11 c4^2 + 9 c8)

- 3/8 (3 c2^4 + 24 c2^2 c4 + 24 c2 c3^2

+ 24 c2 c6 + 24 c3 c5 + 15 c4^2 + 10 c8)

- m6 (c2 c6 + c3 c5 + c4^2/2 + c8) + c8 m8/8;

The expansion of the mutual information is, according to our Conjecture 2, given up to O(λ4) by

In[6]:= MI8 = snr - F2 snr - F3 snr^(3/2) - F4 snr^2 - F5 snr^(5/2)

- F6 snr^3 - F7 snr^(7/2) - F8 snr S^4;

MutualInfo = Collect[Simplify[MI8], snr];

Only the first four order are reliable. This code gives the generic expansions (35) and (36) in the
case m1 = 0 and m2 = 1 (but this can be easily adapted using the code).

D.2. Useful code to produce Figures 1 and 2. This parts evaluates the spectral density of
the data matrix Y by solving the transcendental equation (24) for its Green function. The spectral
density is then extracted from its imaginary part.

In[7]:= snr = 1; step = 0.0005; zAndrho = {}; init = I/5; bound = 4;

Do[zAndrho = Append[zAndrho, {z, Abs[Im[g /.

FindRoot[SetAccuracy[z == Sqrt[3 snr] Coth[g Sqrt[3 snr]] + g, 30],

{g, init}, WorkingPrecision -> 20]]]/Pi}], {z, -bound, bound, step}];

As there may be multiple solutions depending on the initial point init for the search (that may
need to be tuned), a sanity check is to check that the solution found is properly normalized:

In[8]:= Print["Normalization = ", Total[zAndrho[[All, 2]]] step];

Now we find an interpolating function for the spectral density of Y from the previously equally
spaced computed points, using Hermite polynomials. Plotting this interpolating function is what
gives the asymptotic red curves in Figure 1:
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In[9]:= z = zAndrho[[All, 1]]; rho = Chop[zAndrho[[All, 2]]];

rhoInterp = ListInterpolation[rho, {Min[z], Max[z]},

Method -> "Hermite"];

We can now (approximately) compute the asymptotic mutual information using formula (23), based
on the interpolation function, and compare the results to the Wigner case:

In[10]:= MI = snr + Log[snr 12]/4 + 0.5 NIntegrate[rhoInterp[x] rhoInterp[y]

* Log[Abs[(x - y) / (Exp[x Sqrt[12 snr]] - Exp[y Sqrt[12 snr]])]],

{x, Min[z] , Max[z]}, {y, Min[z], Max[z]}];

Print["|Uniform - Wigner mutual info.| = ", Abs[MI - 0.5 Log[1 + snr]]];

Using these pieces of code and running them for various λ, one can obtain the pink dots in Figure 2.
The finite size curves (blue and orange dots) are instead simply obtained by averaging the associated
formulas over many large realizations of the model.
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[111] W. FitzGerald and N. Simm. Fluctuations and correlations for products of real asymmetric random matrices.
arXiv preprint arXiv:2109.00322, 2021.

[112] E. Gudowska-Nowak, R. A. Janik, J. Jurkiewicz, and M. A. Nowak. Infinite products of large random matrices
and matrix-valued diffusion. Nuclear Physics B, 670(3):479–507, 2003.

[113] Z. Burda, R. A. Janik, and B. Waclaw. Spectrum of the product of independent random gaussian matrices.
Physical Review E, 81(4):041132, 2010.

[114] Z. Burda, A. Jarosz, G. Livan, M. A. Nowak, and A. Swiech. Eigenvalues and singular values of products of
rectangular gaussian random matrices. Physical Review E, 82(6):061114, 2010.

[115] F. Götze and A. Tikhomirov. On the asymptotic spectrum of products of independent random matrices. arXiv
preprint arXiv:1012.2710, 2010.

[116] S. O’Rourke and A. Soshnikov. Products of independent non-hermitian random matrices. Electronic Journal
of Probability, 16:2219–2245, 2011.

[117] F. Benaych-Georges. Rectangular random matrices, related convolution. Probability Theory and Related Fields,
144(3-4):471–515, 2009.

[118] S. T. Belinschi, F. Benaych-Georges, and A. Guionnet. Regularization by free additive convolution, square and
rectangular cases. Complex Analysis and Operator Theory, 3(3):611–660, 2009.

[119] G. Menon. The complex burgers’ equation, the hciz integral and the calogero-moser system, 2017.
[120] Y. V. Fyodorov and I. Williams. Replica symmetry breaking condition exposed by random matrix calculation

of landscape complexity. Journal of Statistical Physics, 129(5):1081–1116, 2007.
[121] W. Bryc. Computing moments of free additive convolution of measures. Applied mathematics and computation,

194(2):561–567, 2007.
[122] B. Collins. Moments and cumulants of polynomial random variables on unitarygroups, the itzykson-zuber

integral, and free probability. International Mathematics Research Notices, 2003(17):953–982, 2003.

(Jean Barbier) International Center for Theoretical Physics (ICTP), Trieste, Italy.

Email address: jbarbier@ictp.it

(Nicolas Macris) Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

Email address: nicolas.macris@epfl.ch


	1. Introduction
	2. Denoising of an Hermitian rotationally invariant matrix
	2.1. The model
	2.2. Free entropy and mutual information through random matrix theory
	2.3. Simplifications in the Bayes-optimal setting using the Nishimori identity
	2.4. A sanity check: the case of a Wigner signal
	2.5. An explicit model with uniform spectral distribution

	3. Perturbative expansions for Hermitian matrix denoising
	3.1. Small signal-to-noise regime.
	3.2. Large signal-to-noise regime

	4. Denoising of a rotationally invariant matrix: non-Hermitian case
	4.1. The model
	4.2. Free entropy through random matrix analysis

	5. Hermitian positive definite dictionary learning
	5.1. The model
	5.2. Replica trick
	5.3. Spectral replica symmetric ansatz
	5.4. A more explicit special case: the Ginibre signal
	5.5. Alternative ``symmetric'' method
	5.6. A comparison with previous attempts

	6. Dictionary learning
	6.1. The model
	6.2. Replica trick and freeness assumption

	Appendix A. Spherical integrals
	A.1. Hermitian case
	A.2. General non-Hermitian case

	Appendix B. Minimum mean-square error: a more explicit formula
	Appendix C. Free entropy functional in terms of moments and existence of [Q]
	C.1. Free entropy functional in terms of moments
	C.2. A formal remark concerning the existence of [Q]

	Appendix D. Mathematica codes
	D.1. Small signal-to-noise expansion
	D.2. Useful code to produce Figures 1 and 2

	References

