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Abstract

Multi-core machines are ubiquitous. However, most induc-
tive logic programming (ILP) approaches use only a sin-
gle core, which severely limits their scalability. To address
this limitation, we introduce parallel techniques based on
constraint-driven ILP where the goal is to accumulate con-
straints to restrict the hypothesis space. Our experiments on
two domains (program synthesis and inductive general game
playing) show that (i) parallelisation can substantially reduce
learning times, and (ii) worker communication (i.e. sharing
constraints) is important for good performance.

1 Introduction

Inductive logic programming (ILP) (Muggleton 1991) is a
form of machine learning. Given positive and negative ex-
amples of a predicate and background knowledge (BK), the
ILP problem is to find a set of logical rules (a hypothesis),
which, with the BK, entails the positive examples and none
of the negative examples. Key features of ILP include its abil-
ity to (i) learn from small amounts of data, (ii) support re-
lational data, and (iii) induce human-readable hypotheses
(Cropper et al.2021).

Although powerful, ILP approaches often struggle with
scalability: efficiently searching a large hypothesis space
(the set of all hypotheses) for a solution (a hypothesis
that correctly generalises the examples). Parallelisation is
one approach to improving scalability. However, although
multi-core machines are ubiquitous, most ILP approaches
are single-core learners (Muggleton [1995; |Srinivasan [2001;
Cropper and Muggleton[2016; lLaw, Russo, and Broda2014).

To overcome this limitation, we introduce parallel tech-
niques based on constraint-driven ILP where the goal is
to accumulate constraints to restrict the hypothesis space.
In particular, we build on the learning from failures (LFF)
(Cropper and Morel 120214,b) approach, which supports
predicate invention and learning optimal and recursive pro-
grams. A LFF learner works by repeatedly generating and
testing hypotheses on training examples. If a hypothesis fails
to correctly generalise the examples, the learner deduces
constraints to explain the failure, which it then uses to rule
out other hypotheses and thus restrict the hypothesis space.
The process repeats until a solution is found.

We introduce two general constraint-driven parallel ILP
approaches based on parallel conflict-driven clause learn-
ing (CDCL) SAT techniques (Martins, Manquinho, and Lynce
2012), namely portfolio and divide-and-conquer approaches.
In our portfolio approach, parallel LFF learners compete by
searching the same hypothesis space using different heuris-
tics. In our divide-and-conquer approach, we divide the hy-
pothesis space into disjoint subspaces which we assign to
parallel LFF learners who each search them. Figure 1 illus-
trates these strategies. We also allow learners to exchange
learned constraints, similar to how parallel SAT techniques
share clauses.

Overall, our contributions are:

e We introduce parallel ILP approaches inspired by portfo-
lio and divide-and-conquer approaches used by CDCL SAT
solvers.

e We implement the techniques to parallelise the LFF im-
plementation Popper.

e We experimentally show on two domains (program syn-
thesis and inductive general game playing) that (i) our
parallel methods can lead to linear speedups with up to
four processors in general, (ii) our parallel methods can
lead to super-linear speedup in some cases, and (iii) that
communication (i.e. sharing constraints) is important for
good performance.

2 Related Work

21 Sequential ILP

Many ILP systems, such as Progol (Muggletonl [1995)
and Aleph (Srinivasan 2001), often struggle with large
numbers of examples because of their sequential set
covering approach. A notable exception is QuickFOIL
(Zeng, Patel, and Page 12014) which builds on FOIL (Quinlan
1990) by introducing (i) a new scoring function for clauses,
and (ii) a highly efficient relational database implementa-
tion. The authors show that their approach can scale to
datasets with millions of background facts and hundreds
of thousands of examples. However, because it builds on
FOIL, QuickFOIL inherits its limitations, including (i) difficulty
learning recursive programs, (ii) no support for predicate in-
vention, and (iii) no guarantees about the optimality of solu-
tions. These limitations apply to almost all classical ILP sys-
tems (Cropper et al.|2021).
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Figure 1: One sequential and two parallel search strategies for finding a solution in the same hypothesis space.

Modern meta-level ILP
(Corapi, Russo, and Lupu 2011;
2016; Law, Russo, and Broda
Kaminski, Eiter, and Inoue 2018; Evans et al. 2021;
Cropper and Morel 2021a) can often learn recursive
and optimal programs and perform predicate invention.
Although there is no standard definition for meta-level ILP
most approaches encode the ILP problem as a meta-level
logic program, i.e. a program that reasons about programs.
These approaches delegate the search for a hypothesis to
an off-the-shelf solver, such as an answer set programming
(ASP) solver (Gebser et al!|2014), after which the meta-level
solution is translated back to a standard solution for the
ILP task. However, modern meta-level ILP approaches
often struggle in terms of scalability. For instance, ILASP
(Law, Russo, and Brodd 2014) struggles to learn rules with
lots of literals because it precomputes every possible rule
that may appear in a program, which is often infeasible. The
same issue prevents HEXMIL (Kaminski, Eiter, and Inoue
2018) from scaling to large problems. As far as we are
aware, there is no parallel meta-level ILP system.

approaches
Cropper and Muggleton
2014;

2.2 Parallel ILP

Fonseca et al. (2009) survey parallel ILP techniques. They
divide approaches into three categories: search, data, and
evaluation. Search approaches parallelise the search of the
hypothesis space. Our approaches are in this category. Data
approaches divide the training examples amongst the work-
ers which learn solutions for them in parallel. Evaluation ap-
proaches evaluate candidates rules in parallel.

We discuss three notable parallel approaches.
Dehaspe and De Raedt (1995) parallelise the search for
a hypothesis in the ILP system Claudien. Claudien works by
maintaining a priority queue of potential clauses to add to
a hypothesis. If a clause is too general, it is removed from
the queue and its specialisations are added. In the parallel
approach, parallel workers process clauses in the queue.
The authors experimentally show that the parallelisation
speed-up is roughly proportional to the number of workers.

Wang and Skillicornl (2000Q) parallelise Progol by allocat-
ing a subset of the positive examples (and all of the negative
examples) to each worker. Each worker applies the standard
Progol sequential algorithm to find a good clause for its sub-
set of the positive examples, which it then communicates
to the other workers, who may then incorporate the clause
into their local theory. The authors show linear speedups
with four and six processors.

Srinivasan, Faruquie, and Joshi (2012) use the MapRe-
duce paradigm to parallelise the scoring step of Aleph,
where a clause is generated and its score is calculated as
a function of the examples. Their results are generally posi-
tive, especially when the number of examples is large. How-
ever, although the authors rightly claim that their approach
is not specific to Aleph, it is specific to the classic set cover-
ing approach.

These three approaches are all limited because they in-
herit the same limitations as their sequential counterparts.
By contrast, a key contribution of this paper is the introduc-
tion of parallel techniques that can learn optimal and recur-
sive programs and perform predicate invention.

More recently, Katzouris, Artikis, and Paliouras
(2017) introduce p-OLED, a parallel version of OLED
(Katzouris, Artikis, and Paliouras 2014), which learns event
definitions in the form of even calculus theories. In their
parallel approach, a clause is evaluated in parallel on
sub-streams of the input stream and its independent
scores are combined. Their evaluations show that their
approach can reduce training times and, in some cases, is
capable of super-linear speed-ups. In contrast to p-OLED,
our approaches learn general definite programs, including
programs with recursion and predicate invention.

2.3 Parallel SAT

Our parallel ILP approaches are based on paral-
lel  conflict-driven-clause-learning  SAT  techniques
(Martins, Manquinho, and Lynce [2012), of which there
are two main approaches. Divide-and-conquer approaches
divide the search space into sub-spaces which are allo-
cated to sequential workers. Workers co-operate through
the exchange of learnt conflicts. Portfolio approaches
(Hamadi, Jabbour, and Sais[2009) allow multiple sequential
workers to compete on the same search space by employ-
ing different search heuristics, such as different restart
policies, branching heuristics, random seeds, etc. Workers
also co-operate through the exchange of learnt conflicts.
This exchange can be done through message passing
(Schubert, Lewis, and Becker [2009), which is necessary
for distributed approaches, or through shared memory
(Hamadi, Jabbour, and Saisi2009). In this paper, we transfer
these high-level ideas to the area of constraint-driven ILP. In
our approach, the search space is the hypothesis space and
workers can co-operate through the exchange of learned
constraints, i.e. clauses that describe conflicts.



3 Problem Setting

We now define the LFF problem, on which the approaches
in Section[dlare based. We assume familiarity with logic pro-
gramming (Lloyd 2012).

The key idea of LFF is to use hypothesis constraints to re-
strict the hypothesis space. Let £ be a language that de-
fines hypotheses, i.e. a meta-language. For instance, con-
sider a meta-language formed of two literals, h_lit/4 and
b_lit/4, which represent head and body literals respectively.
With this language, we can denote the clause last(A,B) +
tail(A,C), head(C,B) as the set of literals {h_lit(0,last,2,(0,1)),
b_lit(0,tail,2,(0,2)), b_lit(0,head,2,(2,1))}. The first argument
of each literal is the clause index, the second is the predicate
symbol, the third is the arity, and the fourth is the literal vari-
ables, where O represents A, 1represents B, etc.

A hypothesis constraint is a constraint expressed in L.
Let C' be a set of hypothesis constraints written in a lan-
guage L. A set of definite clauses H is consistent with C'
if, when written in £, H does not violate any constraint
in C. For instance, the constraint « h_lit(0,last,2,(0,1)),
b_lit(0,last,2,(1,0)) would be violated by the definite clause
last(A,B) < last(B,A). Let H be a hypothesis space. We de-
note as H¢ the subset of H which do not violate any con-
straint in C.

We define the LFF problem:

Definition 1 (LFF input). The LFF input is a tuple
(ET,E~,B,H,C) where ET and E~ are sets of
ground atoms denoting positive and negative examples
respectively; B is a Horn program denoting background
knowledge; H is a hypothesis space, and C is a set of
hypothesis constraints.

We define a LFF solution:

Definition 2 (LFF solution). Given an input tuple
(ET,E~,B,H,C), a hypothesis H € H¢ is a solu-
tion when H is complete (Ve € ET, BUH [ e) and
consistent (Ve € E—, BU H [~ e).

If a hypothesis is not a solution then it is a failure or a
failed hypothesis. A hypothesis is incomplete when de €
ET, HU B £ e. A hypothesis is inconsistent when Je €
E~, H U B [ e. A hypothesis is totally incomplete when
Ve e EY, HUB [ e.

Let cost : H — R be an arbitrary cost function. We de-
fine an optimal solution:

Definition 3 (Optimal solution). Given an input tuple
(ET,E~,B,H,C), ahypothesis H € Hc is optimal when
(i) H is a solution, and (ii) VH’ € H, where H' is a solution,
cost(H) < cost(H').

In this paper, we define the cost(H) to be the total number
of literals in the logic program H.

Hypothesis Constraints |Cropper and Morel (20214,b) in-
troduce hypothesis constraints based on subsumption
(Plotkin [1971). A clause C; subsumes a clause Cy (C; =
C5) if and only if there exists a substitution 6 such that
C160 C (5. A clausal theory T4 subsumes a clausal theory
T (T1 < Ty) if and only if VC5 € T, dC, € T; such that
(' subsumes Cs. A clausal theory T is a specialisation of

a clausal theory T5 if and only if T5 < T7. A clausal theory
T is a generalisation of a clausal theory T5 if and only if
T, < T5s. If a hypothesis H is incomplete, a specialisation
constraint prunes specialisations of H, as they are guaran-
teed to also be incomplete. If a hypothesis H is inconsistent,
a generalisation constraint prunes generalisations of H, as
they are guaranteed to be inconsistent as well. If a hypothe-
sis H is totally incomplete, a redundancy constraint prunes
hypotheses that contain a specialisation of H as a subset.

4 Parallel Algorithms

We now describe our parallel ILP approaches. We first de-
scribe the sequential ILP system Popper, which we paral-
lelise.

41 Popper

Algorithm [ shows the high-level Popper algorithm, which
solves the LFF problem (Definition [). Popper takes as
input positive (pos) and negative (neg) examples, back-
ground knowledge (bk), and a maximum hypothesis size
(max_size). Popper uses a generate, test, and constrain
loop. Popper starts with a base generator ASP program
whose models correspond to hypotheses (definite pro-
grams). The idea is to augment this generator program with
constraints to eliminate models and thus restrict the hypoth-
esis space. The constraints are initially empty (line 3).

In the generate stage (line 5), Popper uses Clingo
(Gebser et alli2014), an ASP system, to search for a model
of the generator program with exactly m literals which Pop-
per then converts to a hypothesis (a definite program).

In the test stage (line 9), Popper tests a hypothesis on
the given training examples. If a hypothesis fails, i.e. is in-
complete or inconsistent, then, in the constrain stage (line
12), Popper learns hypothesis constraints (described as ASP
constraints) from the failure. Popper adds the constraints to
the generator program to prune models and constrain sub-
sequent hypothesis generation. For instance, if a hypothesis
is incomplete, i.e. does not entail all the positive examples,
Popper builds a specialisation constraint to prune hypothe-
ses that are logically more specific.

To find an optimal solution, Popper progressively in-
creases the number of literals allowed in a hypothesis when
the hypothesis space is empty at a certain size (e.g. when the
generator program together with the learned constraints
has no more models) (line 6). This loop repeats until either
(i) Popper finds an optimal solution, or (ii) there are no more
hypotheses to test. Popper is guaranteed to find the optimal
solution when every hypothesis is guaranteed to terminate,
such as when the hypothesis space only contains Datalog
programs.

4.2 Parallel Solving

The simplest way to parallelise Popper is to parallelise the
search for a model in the generate stage using the parallel
capabilities of Clingo (Gebser, Kaufmann, and Schaub2012).
Clingo incorporates a SAT solver which supports parallel
search using shared memory multi-threading (cf. Section



Algorithm 1: Popper

Algorithm 2: Portfolio

1 def popper(pos, neg, bk, max_size):

2 m=1

3 cons = {}

4  while m < max_size:

5 h = generate(cons, m)

6 if h == UNSAT:

7 m+= 1

8 else:

9 outcome = test(pos, neg, bk, h)
10 if outcome == (COMPLETE, CONSISTENT)
1 return h

12 cons += constrain(h, outcome)

13 return UNSAT

[2.3). Learned conflict clauses (known as nogoods) are ex-
changed among worker threads according to various heuris-
tics. To implement this approach, we simply enable Clingo’s
parallel mode (using the flag ‘~parallel-mode &’) which runs
k workers in a portfolio configuration. In our experiments,
we call this approach ParSearch.

4.3 Portfolio

Similar to parallel portfolio SAT approaches, our parallel
portfolio ILP approach involves multiple workers searching
the same hypothesis space using different strategies. Algo-
rithm [2] shows the main portfolio worker algorithm, which
we call Portfolio and which is almost identical to Popper (Al-
gorithm[d). A master controls the workers. The master first
creates an empty message queue to allow workers to com-
municate. This queue is a many-to-many queue that allows
each worker to receive a copy of any message put onit. The
master then spawns k workers who each search the same
hypothesis space.

In addition to the standard Popper inputs, a Portfolio
worker receives as input a message queue for communi-
cating constraints (g_cons) and a flag to denote whether
to send constraints to other workers. Each worker calls the
generate step (i.e. Clingo) with different search heuristics so
that they find models (and thus hypotheses) in a different
order to the other workers. In this paper, we use the simple
approach of calling Clingo with the arguments --rand-freq=p
and --seed=s. The --rand-freq flag tells Clingo to perform ran-
dom (rather than heuristic) decisions with probability p. The
value s is a seed. We set p = 0.01 and s to be the workerid.
A direction for future work is to determine how to choose a
suitable Clingo heuristic. To be clear, each Portfolio worker
has its own single-threaded ASP solver. As with Popper, Port-
folio is guaranteed to find the optimal solution when every
hypothesis is guaranteed to terminate.

Portfolio.,,,, The Portfolio approach, by default, does not
permit communication between workers (i.e. the communi-
cation flag is false by default). If the communication option
(com) is true, then workers exchange constraints with other
workers. We call this communication-enabled version of the
algorithm Portfolio.,.,,. When one Portfolio.,,, worker finds
an incomplete or inconsistent hypothesis, it builds the con-
straints and sends them to the other workers (line 15) and

1 def port(pos, neg, bk, max_size, g_cons, com):

2 m=1

3 cons = {}

4 while m < max_size:

5 h = generate(cons, m)

6 if h == UNSAT:

7 m+= 1

8 else:

9 outcome = test(pos, neg, bk, h)
10 if outcome == (COMPLETE, CONSISTENT)
1 return h

12 cons’ = constrain(h, outcome)
13 cons += cons’

14 if com:

15 g_cons.put(cons’)

16 cons += g_cons.get()

17 return UNSAT

also receives them (line 16). As Popper is essentially learning
nogoods by testing hypotheses, our sharing of learned con-
straints can be seen as exchanging externally learnt nogoods
between multiple solvers.

4.4 Divide and Conquer

Similar to parallel D&C SAT approaches, our parallel D&C
ILP approach involves multiple workers searching disjoint
hypothesises spaces. In this paper, we take the simple ap-
proach of splitting the hypothesis space by the hypothesis
size. A direction for future work is to study alternative meth-
ods to divide the hypothesis space.

Algorithm [3] shows the D&C worker algorithm, which we
call D&C. As with Portfolio, a master controls the workers.
In addition to creating an empty message queue to share
constraints between workers (q_cons), the master creates
a second message queue (q_size) to maintain hypothesis
sizes to be searched. The master populates the size queue
with all possible hypothesis sizes in increasing order. The
master then spawns k£ workers.

In addition to the standard Popper inputs, a D&C worker
receives as input a message queue for communicating con-
straints (g_cons), a message queue for receiving hypothesis
sizes to explore (q_sizes), and a flag to denote whether to
send constraints to other workers. A worker pops the small-
est size m off the size queue and then searches for a solu-
tion with exactly m literals. If there is no solution, the worker
loops again and pops another size off the queue. Since each
worker only considers solutions with exactly m literals, they
all consider disjoint regions of the hypothesis space. If a
worker finds a solution, they inform the master. If a solu-
tion of size m is found, the master waits until all workers
searching for hypotheses of size k < m have finished be-
fore returning the solution to guarantee that D&C returns
an optimal solution.

D&C.,,, The D&C approach, by default, does not permit
communication between workers (i.e. the communication
is defaulted to false). If the communication option (com) is
true, then workers exchange constraints with other work-



Algorithm 3: D&C
1 def dac(pos, neg, bk, g_size, g_cons, com):

2 cons = {}

3 while |qg_size| > 1:

4 m = g_size.get()

5 while true:

6 h = generate(cons, m)

7 if h == UNSAT:

8 break

9 outcome = test(pos, neg, bk, h)
10 if outcome == (COMPLETE, CONSISTENT)
1 return h

12 cons’ = constrain(h, outcome)
13 cons += cons’

14 if com:

15 g_cons.put(cons’)

16 cons += g_cons.get()

17 return UNSAT
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Figure 2: Divide-and-conquer strategy with and without
communication. With communication enabled, learned con-
straints are passed as messages between workers.

ers. We call this communication-enabled version of the al-
gorithm D&C..,,,,,. FigureQlillustrates the difference between
D&C and D&C.or,.-

4.5 Implementation

We implemented the systems in Python 3 using the multi-
processing module. Each process is an instance of Popper
which maintains its own ASP solver. Rather than use shared
memory, we use a message queue to allow workers to com-
municate.

5 Experiments

We claim that our parallelisation approaches can reduce
learning times and thus improve scalability. Our experi-
mentd] therefore aim to answer the question:

Q1 Can our parallel approaches reduce learning times?

To answer this question, we compare the performance of
our approaches when given progressively more workers
(CPUs).

'All the implementation code and experimental data will be
made open-source and freely available after the paper has gone
through review.

f(A,B):- empty(A),empty(B).

f(A,B):- head(A,D),odd(D),tail(A,C),f(C,B).

f(A,B):- tail(A,C),head(A,E),even(E),
f(C,D),prepend(E,D,B).

Figure 3: An example solution described as Prolog program
for the filter task.

Our parallel approaches allow workers to exchange
learned constraints. To evaluate the impact of communica-
tion, our experiments aim to answer the question:

Q2 Can communication (sharing constraints) reduce learn-
ing times?

Settings. We use Clingo version 5.5.0, SWI-Prolog 7.6.3
and Python 3.9.6. All experiments were performed on a
server with an AMD Opteron™ Processor with 32 cores, 64
threads, and 256GB of RAM. We give all the approaches
identical inputs in all the experiments. We enforce a time-
out of five minutes per task. We repeat each experiment
five times and measure mean learning time and standard
deviation.

5.1 Domains

We consider two domains: program synthesis and inductive
general game playing.

Program synthesis Program synthesis has long been con-
sidered a difficult problem in ILP (Muggleton et al.[2012). In-
deed, most ILP systems cannot learn recursive programs.
Cropper and Morel (2021a) showed that Popper can learn
recursive programs with higher accuracies and in less time
than other ILP systems. In this experiment, we try to answer
the experimental questions using a similar program synthe-
sis dataset.

We use four challenging synthesis tasks: (find dupl) find
a duplicate element in a list, (sorted) determine whether
a list is sorted, (dropk) drop the first k elements in a list,
and (filter) remove all odd elements from a list. Figure
shows an example solution for the filter task. We provide as
background knowledge the dyadic relations head, tail, ele-
ment, increment, decrement, geq and the monadic relations
empty, zero, one, even, and odd. We also include the triadic
relation prepend in the filter experiment.

For each task, we generate 10 positive and 10 negative
training examples. Each list is randomly generated and has
a maximum length of 50. We sample the list elements uni-
formly at random from the set {1,2,...,100}.

IGGP The general game playing (GGP) frame-
work (Genesereth and Bj6rnsson 12013) is a system for
evaluating an agent’s general intelligence across a wide
range of tasks. In the GGP competition, agents are tested
on games they have never seen before. In each round,
the agents are given the rules of a new game. The rules
are described symbolically as a logic program. The agents
are given a few seconds to process the rules of the game,
then they start playing, thus producing game traces. The



nextscore(A,B,C):- score(A,B,C),does(A,D,F),
does(A,E,F),different(D,E).

nextscore(A,B,C):- different(B,E),does(A,E,G),
score(A,F,C),does(A,F,D),beats(G,D).

nextscore(A,B,C):- score(A,B,F),beats(E,G),
does(A,D,G),succ(F,C),
different(B,D),does(A,B,E).

Figure 4: An example solution described as Prolog program
for the rps task.

winner of the competition is the agent who gets the best
total score over all the games. In this experiment, we use
the IGGP dataset (Cropper, Evans, and Law 12020) which
inverts the GGP task: an ILP system is given game traces
and the task is to learn a set of rules (a logic program) that
could have produced these traces. We focus on two IGGP
games: minimal decay and rock, paper, scissors (rps) and on
learning the next relations, which is the most challenging
one to learn (Cropper, Evans, and Law 2020). Figure [
shows an example solution for the rps task.

5.2 Results

Figure B shows the experimental results. Popper is the
single-core baseline.

ParSearch. The results show no major benefit from
ParSearch, i.e. running Popper with parallel Clingo enabled.
For instance, in the filter experiment, the difference in run-
ning time between Popper and ParSearch is less than 5%.
This result may surprise the reader, especially as parallel
Clingo has been shown to outperform sequential Clingo
(Gebser, Kaufmann, and Schaub 12012). The reason is that
the bottleneck in Popper is rarely generating a hypothesis,
i.e. searching for a syntactically valid program. Instead, the
bottleneck is mostly the sheer number of hypotheses to con-
sider. There is, therefore, little benefit from parallelising only
the generate part.

Portfolio. The results are mixed for the Portfolio approach
without communication. In two tasks it performs worse than
Popper (dropk and sorted), in one better (minimal decay),
and about the same in the rest. This result is expected. The
only way that Portfolio can outperform Popper is when a
worker happens to find a solution quicker than Popper be-
cause of its different search heuristics. However, since Pop-
per performs iterative deepening search on the hypothesis
sizes, whereby it proves that there is no solution at a certain
size before going to the next size, both Popper and Portfo-
lio should roughly take the same amount of time to search
the space of programs smaller than the solution. It is only
when searching the part of the space at the size of the solu-
tion that Portfolio has the opportunity to outperform Pop-
per, hence the modest improvements.

Portfolio.,,,,. The results are very strong for the
Portfolio.,,, approach. In all cases, Portfolio.,,, outper-
forms Popper and a paired t-test confirms the significance
at the p < 0.01 level. For instance, in the minimal decay

experiment, given one worker, Portfolio,.,,, takes about the
same time (around 250s) as Popper, which is to be expected
as there is no parallelisation with only one worker. Given
more workers, Portfolio.,,, starts to outperform Popper.
With two workers, the learning time of Portfolio.,,, is
almost halved to 136s. With four workers, the learning
time of Portfolio.,,, is halved again to 60s. With eight
workers, the learning time of Portfolio.,., is almost halved
again to around 35s. Similar reductions are demonstrated
in all the tasks. This result strongly suggests that the
answer to Q1 is yes: our parallelisation approaches can
significantly reduce learning times and that the speed-up
is roughly proportional to the number of workers. In all
cases, Portfolio.,,, outperforms Portfolio and a paired
t-test confirms the significance at the p < 0.01 level. This
result clearly demonstrates that communication between
workers is important for good learning performance (Q2).

D&C. Figure[d excludes the results of D&C (D&C without
communication) results. We have excluded the results for
D&C because it struggles to find solutions for any tasks in
the given time limit. This result may surprise the reader, as
they may think that D&C would in the worst-case simulate
Popper. However, the key omission of D&C is the inability
to learn constraints from failed hypotheses from multiple
hypothesis sizes. A key reason why Popper can efficiently
find solutions is that it first considers smaller hypotheses be-
fore larger ones. By learning constraints from small failed
hypotheses, Popper can prune large parts of the hypoth-
esis space. So when Popper increases the hypothesis size
bound, the space for the next size is greatly reduced from
constraints learnt when learning for smaller sizes. However,
in the D&C approach, there is no transfer of knowledge be-
tween the hypothesis sizes. By contrast, D&C...,,, performs
reasonably well, outperforming Popper on four of the six
tasks. The most impressive results are in the minimal decay
task. With one worker, D&C..,.,,, takes around 250s. With two
workers, the running time of D&C..,,, is reduced to one fifth
(45s). Given eight workers, D&C,.,,, takes around 1s to find
a solution. This result again clearly demonstrates that com-
munication between workers is important for good learning
performance (Q2).

6 Conclusions and Limitations

To improve the ILP scalability problem, we have intro-
duced parallel ILP approaches inspired by parallel SAT
approaches, namely portfolio and divide-and-conquer ap-
proaches. Our implementations parallelise Popper, a state-
of-the-art constraint-driven ILP system. Our experiments
on two domains (program synthesis and inductive general
game playing) show that (i) our parallel methods can lead to
linear speedups with up to four processors in general, (ii) our
parallel methods can lead to super-linear speedup in some
cases, and (iii) that communication (i.e. sharing constraints)
is important for good performance. As far as we are aware,
this work is the first to clearly demonstrate the ability to par-
allelise state-of-the-art ILP systems that support predicate
invention and learning recursive programs.
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Figure 5: Experimental results.

6.1 Limitations and Future Work

There are many limitations of this work, which open much
scope for future work.

Better implementation. Our implementations are based
on message passing via inter-process communication. As
our workers learn many, and at times large, constraints, mes-
sage passing involves non-trivial overhead, not least due to
copying. On a single machine, we could exploit shared mem-
ory for improved performance, e.g. due to less copying.

Better constraints. Parallel SAT solver workers tend to per-
form checks on the clauses that they receive. One such
check ensures that a new propositional constraint is not sub-
sumed by any known constraint (Hamadi, Jabbour, and Sais
2009). We could also check subsumption of our learned
first-order constraints, though this does have non-trivial
cost. SAT solvers also employ heuristics for deciding which
constraints to share. For example, typically only small
learned constraints are sent to other workers, based on
some cut-off value (Martins, Manquinho, and Lynce [2012).
Another heuristic is to only send (long) constraints to work-
ers searching a similar part of the solution space (ibid.). We

could empirically test if parallel SAT techniques like these
are beneficial to parallel constraint-driven ILP.

Distributed approaches. Ourimplementations support lo-
cal parallelisation, i.e. on one machine. Our choice for mes-
sage passaging is an advantage here, as it should generalise
to distributed parallelisation, where we could potentially
harness hundreds of CPUs.

Combination of D&C and Portfolio The D&C approach
sometimes has one worker working on size £ and other
workers doing nothing, as they have finished working on
other sizes. Instead of them waiting, they could start work
on the same size k, each with a new search heuristic. In line
with a distributed approach having many workers, we could
follow the parallel SAT strategy of first splitting the search
space and then applying a portfolio of workers to each sub-
space.

References

Corapi, D.; Russo, A.; and Lupu, E. 2011. Inductive Logic
Programming in Answer Set Programming. In Muggleton,
S.; Tamaddoni-Nezhad, A.; and Lisi, F. A., eds., Inductive
Logic Programming - 21st International Conference, ILP 2011,
Windsor Great Park, UK, July 31- August 3, 2011, Revised Se-
lected Papers, volume 7207 of Lecture Notes in Computer
Science, 91-97. Springer.

Cropper, A.; Dumancic, S.; Evans, R.; and Muggleton, S. H.
2021. Inductive logic programming at 30. arXiv.

Cropper, A.; Evans, R.; and Law, M. 2020. Inductive general
game playing. Machine Learning, 109(7): 1393-1434.
Cropper, A.; and Morel, R. 2021a. Learning programs by
learning from failures. Mach. Learn., 110(4): 801-856.

Cropper, A.; and Morel, R. 2021b. Predicate Invention by
Learning From Failures. CoRR.

Cropper, A.; and Muggleton, S. H. 2016. Metagol System.
https://github.com/metagol/metagol.

Dehaspe, L.; and De Raedt, L. 1995. Parallel inductive logic
programming. In The MLnet Familiarization Workshop on
Statistics, Machine Learning and Knowledge Discovery in
Databases.

Evans, R.; Hernandez-Orallo, J.; Welbl, J.; Kohli, P.; and Ser-
got, M. J. 2021. Making sense of sensory input. Artif. Intell.,
293:103438.

Fonseca, N. A.; Srinivasan, A.; Silva, F. M. A.; and Camacho,
R. 2009. Parallel ILP for distributed-memory architectures.
Mach. Learn., 74(3): 257-279.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo = ASP + Control: Preliminary Report. CoRR,
abs/1405.3694.

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Multi-
threaded ASP solving with clasp. TPLP.

Genesereth, M. R.; and Bjoérnsson, Y. 2013. The International
General Game Playing Competition. Al Magazine, 34(2):
107-111.

Hamadi, Y.; Jabbour, S.; and Sais, L. 2009. ManySAT: a Paral-
lel SAT Solver. J. Satisf. Boolean Model. Comput.



Kaminski, T.; Eiter, T.; and Inoue, K. 2018. Exploiting An-
swer Set Programming with External Sources for Meta-
Interpretive Learning. Theory Pract. Log. Program., 18(3-4):
571-588.

Katzouris, N.; Artikis, A.; and Paliouras, G. 2016. Online learn-
ing of event definitions. TPLP, 16(5-6): 817-833.

Katzouris, N.; Artikis, A.; and Paliouras, G. 2017. Parallel On-
line Learning of Event Definitions. In Lachiche, N.; and Vrain,
C., eds., Inductive Logic Programming - 27th International
Conference, ILP 2017, Orléans, France, September 4-6, 2017,
Revised Selected Papers, volume 10759 of Lecture Notes in
Computer Science, 78-93. Springer.

Law, M.; Russo, A.; and Broda, K. 2014. Inductive Learning
of Answer Set Programs. In JELIA.

Lloyd, J. W. 2012.  Foundations of logic programming.
Springer Science & Business Media.

Martins, R.; Manquinho, V. M.; and Lynce, I. 2012. An
overview of parallel SAT solving. Constraints An Int. J.
Muggleton, S. 1991. Inductive Logic Programming. New Gen-
eration Computing, 8(4): 295-318.

Muggleton, S. 1995. Inverse Entailment and Progol. New
Generation Comput., 13(3&4): 245-286.

Muggleton, S.; De Raedt, L.; Poole, D.; Bratko, I.; Flach, P. A;;
Inoue, K.; and Srinivasan, A. 2012. ILP turns 20 - Biography
and future challenges. Machine Learning, 86(1): 3-23.
Plotkin, G. 1971. Automatic Methods of Inductive Inference.
Ph.D. thesis, Edinburgh University.

Quinlan, J. R. 1990. Learning Logical Definitions from Rela-
tions. Mach. Learn., 5: 239-266.

Schubert, T.; Lewis, M.; and Becker, B. 2009. PaMiraXT: Par-
allel SAT Solving with Threads and Message Passing. J. Satisf.
Boolean Model. Comput., 6(4): 203-222.

Srinivasan, A. 2001. The ALEPH manual. Machine Learning
at the Computing Laboratory, Oxford University.

Srinivasan, A.; Faruquie, T. A.; and Joshi, S. 2012. Data and
task parallelism in ILP using MapReduce. Mach. Learn.,
86(1): 141-168.

Wang, Y.; and Skillicorn, D. 2000. Parallel inductive logic in
data mining. Citeseer.

Zeng, Q.; Patel, J. M.; and Page, D. 2014. QuickFOIL: Scalable
Inductive Logic Programming. Proc. VLDB Endow., 8(3): 197-
208.



	1 Introduction
	2 Related Work
	2.1 Sequential ILP
	2.2 Parallel ILP
	2.3 Parallel SAT

	3 Problem Setting
	4 Parallel Algorithms
	4.1 Popper
	4.2 Parallel Solving
	4.3 Portfolio
	4.4 Divide and Conquer
	4.5 Implementation

	5 Experiments
	5.1 Domains
	5.2 Results

	6 Conclusions and Limitations
	6.1 Limitations and Future Work


