
Reconfigurable Intelligent Surface-assisted Edge
Computing to Minimize Delay in Task Offloading

Mithun Mukherjee∗, Vikas Kumar†, Suman Kumar‡, Jaime Lloret§, Qi Zhang¶, and Mian Guo‖
∗School of Artificial Intelligence, Nanjing University of Information Science and Technology, China, m.mukherjee@ieee.org

†Bharat Sanchar Nigam Limited, India, vikas.kr@bsnl.co.in
‡Department of Mathematics, IGNTU Amarkantak, MP, India, suman@igntu.ac.in

§Universitat Politecnica de Valencia, Spain, jlloret@dcom.upv.es
¶DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark, qz@ece.au.dk
‖School of Electronics and Information, Guangdong Polytechnic Normal University, P.R. China, mian.guo@ieee.org

Abstract—The advantage of computational resources in edge
computing near the data source has kindled growing interest in
delay-sensitive Internet of Things (IoT) applications. However,
the benefit of the edge server is limited by the uploading and
downloading links between end-users and edge servers when
these end-users seek computational resources from edge servers.
The scenario becomes more severe when the user-end’s devices
are in the shaded region resulting in low uplink/downlink quality.
In this paper, we consider a reconfigurable intelligent surface
(RIS)-assisted edge computing system, where the benefits of
RIS are exploited to improve the uploading transmission rate.
We further aim to minimize the delay of worst-case in the
network when the end-users either compute task data in their
local CPU or offload task data to the edge server. Next, we
optimize the uploading bandwidth allocation for every end-user’s
task data to minimize the maximum delay in the network.
The above optimization problem is formulated as quadratically
constrained quadratic programming. Afterward, we solve this
problem by semidefinite relaxation. Finally, the simulation results
demonstrate that the proposed strategy is scalable under various
network settings.

I. INTRODUCTION

In recent years, several industries have been focusing their
technological advancement towards high performance com-
puting in cloud data centers. For example, in 2020, NVDIA
announced the potential use of DGX A100 NVIDIA’s third-
generation Artificial Intelligence (AI) system box [1] that is
aimed at the massive gain in performance for AI-related and
cutting-edge applications with less power consumption. At the
same time, we are witnessing the paradigm changing from
constituting a well-run centralized data center infrastructure
to the network edge [2]–[5], particularly when there is a need
to deliver proximity, low-latency, and reliable services for the
mission-critical applications, such as remote-surgery, industrial
automation and driverless cars. The leading industries with
their cloud service providers (e.g., EGX Edge AI platform,
NVIDIA RTX graphics with CloudXR, GPU virtualization,
and Qualcomm Technologies’ Boundless XR client optimiza-
tions [6] and EdgeConneX [7]) are making their way for the
deployment of edge-assisted service provisioning.

A. Motivation
Although MEC brings computational, caching, and storage

resources towards the network edge, the connectivity and

coverage of the access points and base station play critical
roles. To say, when end-users aim to avail the computing,
caching, and storage resources of edge server, they need
to rely on the wireless channels. Basically, irrespective of
application type and service, the uploading/downloading time
is an important factor in delay-sensitive service provisioning.
This becomes even worse when the network coverage is poor
near the cell edge or blocked by obstacles. The uploading and
downloading rate and the resulting latency are significantly
affected by communication resource allocation. This, in turn,
affects the computation delay of end-user’s task. To address
the above shortcoming that arises due to the connectivity and
coverage of the network services, reconfigurable intelligent
surface (RIS) [8] can assist MEC.

B. Related Work

The role of RIS has been studied in the MEC system, where
the end-users aim to offload their computation-intensive tasks
to the edge server that resides at the access point [9], [10].
They formulated a latency minimization problem by optimiz-
ing the task offloading data size, edge computing resource
allocation and RIS phase shift coefficients. To maximize the
total amount of data (in terms of bits) processed by end-
users and edge server, Chu et al. [11] suggested how to
adjust the phase shift of the RIS in addition to the transmit
power and time allocation for the end-users, and edge server’s
computing resource allocation for the end-users. Another study
in [12] shows how the edge server adjusts the RIS controller
to maximize its revenue while guaranteeing the customized
information rate for each end-user. Later, another parallel work
studied the RIS-enabled MEC system in [13]. Again, this was
to minimize the latency, which is basically calculated as the
sum of two end-user’s computation offloading time. Moreover,
Cao et al. [14] have shown how RIS can resolve the link
blockage problem in the mm-Wave MEC system to guarantee
real-time offloading from the end-users. This is an interesting
and detailed study on how RIS can directly affect the task
offloading chances for the end-users that suffer from mm-Wave
link blockage.

Recently, over-the-air computation (AirComp) [15] that
integrates communication and computation has attracted

ar
X

iv
:2

10
9.

07
62

0v
1

 [
cs

.I
T

]
 1

5
Se

p
20

21

Edge
server

RISs
End-user in
shaded or
dead zone

Edge
server

RIS-assisted

(a) (b)

End-user
in good
reception
zone

Fig. 1. (a) An illustration of a RIS-assisted edge computing system with end-
users under good and shadowed region. (b) The RIS can assist to improve
the uplink and downlink quality for the end-users under shadowed region.

academia and industries’ attention due to its fast data aggrega-
tion from IoT devices. However, due to the unreliable channel
conditions, the performance of AirComp is severely limited.
To address this, RIS [16]–[18] has been found a suitable
candidate to assist the uplink and downlink transmission.

C. Our Contributions and Organization

We summarize our main contributions as follows: We con-
sider an RIS-assisted edge computing system, where end-users
offload their task data to the edge server to minimize the over-
all delay. We aim to leverage the benefits of RIS for the uplink
transmission rate in data offloading to the edge server. With the
assistance of RIS, a delay-minimization problem is formulated
by optimizing the offloading decision variables and bandwidth
allocation for the offloaded task data. We formulate the above
optimization problem as Quadratically Constrained Quadratic
Programming (QCQP) problem. Afterward, we apply semi-
definite relaxation (SDR) to solve the problem. Finally, we
show that the proposed offloading strategy with RIS can
achieve better performance than without RIS assistance and
local CPU only approaches.

The rest of the paper is organized as follows. In Section II,
we discuss the RIS-assisted MEC system model. We formulate
the optimization problem and apply SDR in Section III. The
simulation results are presented in Section IV. Finally, we
conclude our work in Section V.

II. SYSTEM MODEL

We consider an RIS-assisted edge computing system, as
shown in Fig. 1. The set of the end-users is denoted as M =
{1, 2, . . . ,M}, where M is the total number of end-users in
the network. Due to the limited computational resources (in
terms of CPU speed) in local CPU, these end-users often
offload task data to edge server when the tasks demand fast
processing. Note that among these end-users, we assume that
K end-users have good reception quality and the remaining
(M − K) end-users are in poor signal reception area. We
denote the end-users in good and poor signal reception areas as
the ith and the jth end-user, respectively, where i = 1, . . . , K
and j = (K + 1), . . . , M . We further denote the offloading
decision variable for the mth end-user at local device of each

end-user as xm and the task processing decision variable at
edge server for the end-user as ym, where m = 1, . . . , M and

xm =

1
when the mth end-user’s task data is
locally processed,

0 otherwise,

ym =

1
when the mth end-user’s task data is
offloaded and processed at the edge server,

0 otherwise.

Note that xm + ym = 1. Moreover, these binary decision
variables satisfy xm(1− xm) = 0 and ym(1− ym) = 0.

A. Local Computing Delay

When a task is locally processed by the end-user, the
computation delay becomes

TLi =
xiDi L

f li
[s] i ∈ {1, 2, . . . ,K}, (1a)

TLj =
xj Dj L

f lj
[s] j ∈ {(K + 1), . . . ,M}, (1b)

where Di and Dj is the input data size [bits] of the ith and
jth end-user, respectively, L is the processing density [CPU
cycles/bit] for a task, and fi and fj denote the CPU clock
speed [CPU cycles/s] of the ith and jth end-user, respectively.
We assume equal task processing density for every end-users.

B. Offloading Delay for End-users without RIS Assistance

Basically, this is the case when the end-users are in good
signal reception area. When the ith end-user task data is
offloaded and processed at the edge server, the offloading delay
becomes

TE
i = yi

(
Di

ηi βi C︸ ︷︷ ︸
uploading

+
Di L

fei︸ ︷︷ ︸
computation

)
[s] , (2)

where ηi is the spectral efficiency of uplink transmission
between the ith end-user and edge server, C is the total
uplink bandwidth, βi is the fraction of total uplink bandwidth
allocated to the ith end-user, and fei is the CPU rate allocated
by the edge server to process the ith end-user’s offloaded task.

C. Offloading Delay for End-users with RIS Assistance

When the jth end-user with poor wireless connection of-
floads its task data to the edge server with RIS assistance, the
offloading delay can be written as

TE
j = yj

(
Dj

ηj βj C︸ ︷︷ ︸
uploading

+
Dj L

fej︸ ︷︷ ︸
computation

)
[s] , (3)

where ηj is the spectral efficiency of RIS-assisted uplink
transmission between the jth end-user and the edge server,
βj is the fractional value of total uplink bandwidth allocated
to the jth end-user and fej is the CPU rate allocated by edge
server to process the jth end-user’s offloaded task.

III. PROBLEM FORMULATION

We write the delay of the worst case in the network as
max{(T L

i + TE
i), (T

L
j + TE

j)}∀i ∈ N1, j ∈ N2, where
N1 = {1 . . .K}, N2 = {K + 1, . . .M}. We aim to minimize
the maximum delay by jointly optimizing the task offloading
decision vector ξ = [xm, ym]

ᵀ and the bandwidth allocation
vector r = [βm]ᵀ, where

T L
i + TE

i =
Di Lxi
f li

+
Di yi
ηi βi C

+
Di Lyi
fei

[s] , (4a)

T L
j + TE

j =
DjLxj
f lj

+
Djyj
ηj βj C

+
DjLyj
fej

[s] . (4b)

We define the above optimization problem as

min
ξ, r

max{(T L
i + TE

i), (T
L
j + TE

j)} ∀ i ∈ N1, j ∈ N2

(5a)
s.t. xm(1− xm) = 0, (5b)

ym(1− ym) = 0, (5c)
xm + ym = 1, (5d)
K∑
i=1

βi +

M∑
j=K+1

βj ≤ 1, (5e)

where the constraint (5e) corresponds to the total uplink
bandwidth C. Now, we take an auxiliary variable t as

max
i∈N1,j∈N2

{
(T L
i + TE

i), (T
L
j + TE

j)
}
= t , (6)

then, from (4) and (6), we write

Di Lxi βi
f li

+
Di yi
ηi C

+
Di Lyi βi

fei
− βi t ≤ 0, (7a)

DjLxjβj
f lj

+
Djyj
ηj C

+
DjLyjβj

fej
− βj t ≤ 0. (7b)

Accordingly, the optimization problem becomes

min
ξ, r

t (8a)

s.t. xm(1− xm) = 0, (8b)
ym(1− ym) = 0, (8c)
xm + ym = 1, (8d)
K∑
i=1

βi +

M∑
j=K+1

βj ≤ 1, (8e)

(7a) and (7b) . (8f)

A. Vector-matrix Formation

Now, we denote w = [x1, x2, . . . , xK , xK+1, . . . , xM , y1,
y2, . . . , yK , yK+1, . . . , yM ,β1,β2,. . . , βK , βK+1, . . . , βM , t]

ᵀ

and define the unit vector as eq = [01×(q−1), 1,

01×(3M+1−q)]
ᵀ. Then, the matrix form of problem (8)

can be expressed as

min
w

eᵀ(3M+1)w (9a)

s.t. wᵀAx,mw − eᵀmw = 0, (9b)
wᵀAy,mw − eᵀm+Mw = 0, (9c)

eᵀmw + eᵀm+Mw = 1, (9d)
K∑
i=1

eᵀi+2Mw +

M∑
j=K+1

eᵀj+2Mw ≤ 1, (9e)

wᵀAβx,iw +wᵀAβy,iw + bᵀ
cy,iw

+wᵀAβt,iw ≤ 0 , (9f)
wᵀAβx,jw +wᵀAβy,jw + bᵀ

cy,jw

+wᵀAβt,jw ≤ 0 , (9g)

where

Ax,m =

 0(m−1)×(3M+1)

eᵀm
0(3M+1−m)×(3M+1)

 ,
Ay,m =

 0(M−1+m)×(3M+1)

eᵀ(m+M)

0(2M+1−m)×(3M+1)

 ,
bcy,i = kcieM+i, k

l
i =

Di L

f li
, kei =

Di L

fei
, kci =

Di

ηiC
,

Aβx,i =
kli
2


0(i−1)×(3M+1)

eᵀi+2M

0(2M−1)×(3M+1)

eᵀi
0(M+1−i)×(3M+1)

 ,

Aβy,i =
kei
2


0(M−1+i)×(3M+1)

eᵀi+2M

0(M−1)×(3M+1)

eᵀi+M
0(M+1−i)×(3M+1)

 ,
bcy,j = kcjeM+j , k

l
j =

Dj L

f lj
, kej =

Dj L

fej
, kcj =

Dj

ηjC
,

Aβt,i = −
1

2


0(2M−1+i)×(3M+1)

eᵀ3M+1

0(M−i)×(3M+1)

eᵀi+2M

 ,

Aβx,j =
klj
2


0(j−1)×(3M+1)

eᵀj+2M

0(2M−1)×(3M+1)

eᵀj
0(M+1−j)×(3M+1)

 ,

Aβy,j =
kej
2


0(M−1+j)×(3M+1)

eᵀj+2M

0(M−1)×(3M+1)

eᵀj+M
0(M+1−j)×(3M+1)

 ,

Aβt,j = −
1

2


0(2M−1+j)×(3M+1)

eᵀ3M+1

0(M−j)×(3M+1)

eᵀj+2M

 .
B. QCQP Formulation

Defining z = [wᵀ 1]ᵀ, the problem (9) can be transformed
into homogeneous separable QCQP formulation as follows

min
z

zᵀ Bz (10a)

s.t. zᵀ Bx,m z = 0, (10b)
zᵀ By,m z = 0, (10c)
zᵀ Bxy,m z = 1, (10d)
M∑
m=1

zᵀ Bβ,m z ≤ 1, (10e)

zᵀ Bβxy,m z ≤ 0, (10f)

where

B =

[
0(3M+1)×(3M+1)

1
2e(3M+1)

1
2e

ᵀ
(3M+1) 0

]
,

By,m =

[
Ay,m − 1

2eM+m

− 1
2e

ᵀ
M+m 0

]
, bxy,m = em + em+M ,

Bxy,m =

[
0(3M+1)×(3M+1)

1
2bxy,m

1
2b

ᵀ
xy,m 0

]
,

Bβ,m =

[
0(3M+1)×(3M+1)

1
2em+2M

1
2e

ᵀ
m+2M 0

]
,

Bβxy,m =

[
Aβxy,m

1
2bcy,m

1
2b

ᵀ
cy,m 0

]
,Bx,m =

[
Ax,m

1
2em

1
2e

ᵀ
m 0

]
,

Aβxy,m = Aβx,m +Aβy,m +Aβt,m, bcy,m = kcmem+M .

Next, we apply the SDR to obtain the desired results. Let Y =
z zᵀ with rank(Y) = 1. Then, the separable semi-definite
programming (SDP) problem can be expressed by relaxing
problem (10) is as follows

min
Y

Tr(BY) (11a)

s.t. Tr(Bx,mY) = 0, (11b)
Tr(By,mY) = 0, (11c)
Tr(Bxy,mY) = 1, (11d)
M∑
m=1

Tr(Bβ,mY) ≤ 1, (11e)

Tr(Bβxy,mY) ≤ 0 . (11f)

We solve the above SDP problem in a polynomial time using a
standard SDP software SeDuMi [19]. We obtain the offloading
decision xm and ym of the original problem (8) from Y.
We use randomization method [20] to find binary offloading

decisions. Accordingly, the probability of task processing at
end-user and edge server is given as

P lm =
plm

plm(1− pem) + (1− plm) pem
, (12a)

P em =
pem

plm(1− pem) + (1− plm) pem
, (12b)

where plm = xm and pem = ym. Now, we generate N i.i.d.
feasible offloading solutions as ξ(n) = [(q

(n)
1)ᵀ . . . (q

(n)
M)ᵀ]ᵀ

using the probabilities in (12), for n = 1, . . . , N , as follows

qm=

{
[1, 0] with probabilityP lm (at local CPU) ,
[0, 1] with probabilityP em (at edge server) .

(13)

Next, we solve the problem (5) for the optimal resource
allocation corresponding to offloading decision ξ(n) obtained
using (13). Therefore, (4) can be rewritten as

T L
i + TE

i = kfi +
kηi
βi
, (14a)

T L
j + TE

j = kfj +
kηj
βj
, (14b)

where kfi = (Di Lxi)/f
l
i + (Di Lyi)/f

e
i , k

η
i =

(Di yi)/(ηi C), k
f
j = (DjLxj)/f

l
j + (Dj Lyj)/f

e
j , and

kηj = (Djyj)/(ηj C). Hence, our optimization problem
becomes

min
r

max{(T L
i + TE

i), (T
L
j + TE

j)} ∀ i ∈ N1, j ∈ N2

(15a)

s.t.

K∑
i=1

yiβi +

M∑
j=K+1

yjβj ≤ 1. (15b)

Now, we take an auxiliary variable θ as

max
i∈N1,j∈N2

{
(T L
i + TE

i), (T
L
j + TE

j)
}
= θ , (16)

and from (14) and (16), we can write

kfi βi + kηi − βi θ ≤ 0, (17a)

kfj βj + kηj − βj θ ≤ 0 . (17b)

Then, the optimization problem becomes

min
r

θ (18a)

s.t. (15b), (17a), and (17b) . (18b)

C. Vector-matrix Formation
We denote v = [β1, β2, . . . , βK , βK+1, . . . , βM , θ, 1]

ᵀ.
Defining a unit vector as ûp = [01×(p−1), 1,01×(M+2−p)]

ᵀ,
the vector-matrix form of problem (18) is written as

min
v

ûᵀ
(M+1)v (19a)

s.t.

K∑
i=1

bᵀ
yu,iv +

M∑
j=K+1

bᵀ
yu,jv ≤ 1, (19b)

bᵀ
kf,iv + bᵀ

kη,iv + vᵀAβθ,iv ≤ 0, (19c)

bᵀ
kf,jv + bᵀ

kη,jv + vᵀAβθ,jv ≤ 0, (19d)

where

bkf,i = kfi ûi, bkη,i = kηi ûM+2, bk,i = bkf,i + bkη,i,

byu,i = yiûi, bkf,j = kfj ûj , bkη,j = kηj ûM+2,

bk,j = bkf,j + bkη,j , byu,j = yjûj ,

Aβθ,i = −
1

2


0(i−1)×(M+2)

ûᵀ
M+1

0(M−i)×(M+2)

ûᵀ
i

0(1)×(M+2)

 ,

Aβθ,j = −
1

2


0(j−1)×(M+2)

ûᵀ
M+1

0(M−j)×(M+2)

ûᵀ
j

0(1)×(M+2)

 .

Let sᵀ = [vᵀ 1]ᵀ, thus the objective function becomes

min
s

sᵀ Hs (20a)

s.t.

K∑
i=1

sᵀ Hβ,i s+

M∑
j=K+1

sᵀ Hβ,j s ≤ 1, (20b)

sᵀ Hβkθ,i s ≤ 0, (20c)
sᵀ Hβkθ,j s ≤ 0, (20d)

where

H =

[
0(M+2)×(M+2)

1
2 û(M+1)

1
2 û

ᵀ
(M+1) 0

]
,

Hβ,i =

[
0(M+2)×(M+2)

1
2byu,i

1
2b

ᵀ
yu,i 0

]
,

Hβ,j =

[
0(M+2)×(M+2)

1
2byu,j

1
2b

ᵀ
yu,j 0

]
,

Hβkθ,i =

Aβθ,i
1

2
bk,i

1

2
bᵀ
k,i 0

 , Hβkθ,j =

Aβθ,j
1

2
bk,j

1

2
bᵀ
k,j 0

 .

Further, applying the SDR to obtain the desired results, let
S = s sᵀ such that rank(S) = 1. Then, the SDP problem, by
relaxing problem (20), can be expressed as

min
S

Tr(HS) (21a)

s.t.

K∑
i=1

Tr(Hβ,i S) +

M∑
j=K+1

Tr(Hβ,j S) ≤ 1, (21b)

Tr(Hβkθ,i S) ≤ 0, (21c)
Tr(Hβkθ,j S) ≤ 0 . (21d)

We solve the above SDP problem (21) in a polynomial time,
denoting S as the optimal solution of the SDP problem (21).
Finally, we obtain the optimal values of βi and βj from S.

Total uplink bandwidth, C (MHz)

15 20 25 30 35

M
a
x
im

u
m

 d
e
la

y
 (

in
 s

e
c
o
n
d
)

1.7

1.8

1.9

2

2.1

2.2

 Local CPU

without edge server

← Standalone edge server, with RIS

(Edge+end-user) random offloading, with RIS

(Edge+end-user) optimal, without RIS

(Edge+end-user) optimal, with RIS

Fig. 2. Delay performance vs. total uplink bandwidth.

Edge server clock speed (× 10
9
 [cycles/second])

4 6 8 10 12

M
a
x
im

u
m

 d
e
la

y
 (

in
 s

e
c
o
n
d
)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

 Local CPU

without edge server

← Standalone edge

 server, with RIS

(Edge+end-user) random offloading, with RIS

(Edge+end-user) optimal, without RIS

(Edge+end-user) optimal, with RIS

Fig. 3. Delay performance with computing resource in edge server.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
RIS-assisted computation offloading policy with Monte Carlo
simulations. Unless specified, we set CPU clock speed of end-
user, i.e, f li = f lj = 500×106 [cycles/second] and edge server,
i.e., fE = 5×109 [cycles/second]. We assume that edge server
equally distributes its CPU clock speed, fE, to every end-users,
i.e., fei = fej = fE/M . We further consider that the size of a
single task is uniformly distributed over [0.1, 0.9] [MB] with
a task processing density, L = 1900 [cycles/byte]. Also, the
total available uplink bandwidth is C = 15 [MHz]. We assume
that M = 8 end-users, out of which (M −K) = 3 end-users
have poor wireless connection. Moreover, we set ηi = 3.5
[bps/Hz], ηj = 0.1 [bps/Hz] without RIS and ηj = 3 [bps/Hz]
with RIS. We further set N = 10 as in [20]. The simulation
results1 are averaged over at least 10,000 different runs.

1The source code is available at https://github.com/MithunHub/
GC2021Offloading.

https://github.com/MithunHub/GC2021Offloading
https://github.com/MithunHub/GC2021Offloading

Fig. 2 illustrates the maximum delay performance over the
network with different uplink bandwidth. When we consider
‘standalone edge server’, the entire data is offloaded to the
edge server. Thus, at lower uplink bandwidth, the worst
performance is observed due to high uploading delay. From
the figure, we can see that the maximum delay decreases
with the increase of uplink bandwidth. The main reason is the
uplink transmission delay decreases with the increase of uplink
bandwidth. Therefore, the maximum delay over the network
decreases. It is interesting to see that with RIS assistance, the
maximum value of delay further reduces. Note that in this
paper, we aim to minimize the maximum delay experienced
by any end-user in the networks. Therefore, when no RIS
support is available to the end-users with poor connection, the
delay of these end-users has the adverse effect in minimizing
the maximum value of delay in the network. Hence, reducing
the uplink transmission delay with RIS assistance results in
decreasing the maximum delay over the network.

Moreover, to show the performance with the computation
resources in the edge server, Fig. 3 presents the maximum
delay with increasing the CPU cycles/second of the edge
server. From the figure, we observe that increase in CPU
rate fE at the edge reduces the maximum delay. Moreover,
one can clearly see that the offloading approach with RIS
assistance exhibits better performance than the case without
RIS assistance. In addition, we observe that at very high CPU
cycles/second, the performance of standalone edge server and
optimal offloading with RIS assistance gets very close to each
others. Because, edge server’s CPU rate is so high that end-
users always prefer to offload the tasks under the setting of
uplink data rate.

V. CONCLUSIONS

In this paper, we studied computation offloading in a recon-
figurable intelligent surface-assisted edge computing system.
We employed the benefits of RIS to improve the uploading
transmission rate for end-users with poor connection. Our
proposed offloading scheme optimized the binary offloading
decision variable, the uploading bandwidth allocation, and
the CPU frequency allocated for the task data by the edge
server. We applied SDR to solve the above QCQP problem.
We note that with a better uplink quality, the poor user enjoys
more chances to use the computational resources of the edge
server, thereby improving the overall network performance
than without RIS assistance. Our future work includes studying
reliability and deadline constraints in task data offloading for
an RIS-assisted edge computing system.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 61901128 and Nan-
jing University of Information Science and Technology Start-
up Fund Grant 1521632101005. The corresponding author is
Mian Guo.

REFERENCES

[1] T. Paikeday, “AI as you like it: NVIDIA DGX-ready
partners make AI adoption easy,” 2020, accessed on: July 20
2020. [Online]. Available: https://blogs.nvidia.com/blog/2020/05/14/
dgx-ready-software-program-partners/

[2] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4132–4150, June
2019.

[3] J. Liu and Q. Zhang, “To improve service reliability for AI-powered
time-critical services using imperfect transmission in MEC: An experi-
mental study,” IEEE Internet of Things J., vol. 7, no. 10, pp. 9357–9371,
Oct. 2020.

[4] M. Mukherjee, M. Guo, J. Lloret, and Q. Zhang, “Leveraging intelligent
computation offloading with fog/edge computing for Tactile internet:
Advantages and limitations,” IEEE Netw., vol. 34, no. 5, pp. 322–329,
2020.

[5] D. E. Boubiche, A.-S. K. Pathan, J. Lloret, H. Zhou, S. Hong, S. O.
Amin, and M. A. Feki, “Advanced industrial wireless sensor networks
and intelligent IoT,” IEEE Commun. Mag., vol. 56, no. 2, pp. 14–15,
Feb. 2018.

[6] “Making boundless XR a commercial reality: Kicking off a trial to utilize
existing 5G release-15 features to make XR available at scale,” 2020,
accessed on: July 20 2020. [Online]. Available: https://www.qualcomm.
com/news/onq/2020/05/27/making-boundless-xr-commercial-reality

[7] “Edgeconnecx,” https://www.edgeconnex.com, accessed on: July 20
2020.

[8] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. S. Alouini, and
R. Zhang, “Wireless communications through reconfigurable intelligent
surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.

[9] T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and L. Hanzo,
“Latency minimization for intelligent reflecting surface aided mobile
edge computing,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 11, pp. 2666–2682, Nov. 2020.

[10] T. Bai, C. Pan, H. Ren, Y. Deng, M. Elkashlan, and A. Nallanathan,
“Resource allocation for intelligent reflecting surface aided wireless
powered mobile edge computing in OFDM systems,” IEEE Transactions
on Wireless Communications, 2021, to be published.

[11] Z. Chu, P. Xiao, M. Shojafar, D. Mi, J. Mao, and W. Hao, “Intelligent
reflecting surface assisted mobile edge computing for internet of things,”
IEEE Wireless Commun. Lett., vol. 10, no. 3, pp. 619–623, Mar. 2021.

[12] Y. Liu, J. Zhao, Z. Xiong, D. Niyato, C. Yuen, C. Pan, and
B. Huang, “Intelligent reflecting surface meets mobile edge comput-
ing: Enhancing wireless communications for computation offloading,”
arXiv:2001.07449, 2020.

[13] F. Zhou, C. You, and R. Zhang, “Delay-optimal scheduling for IRS-
aided mobile edge computing,” IEEE Wireless Commun. Lett., vol. 10,
no. 4, pp. 740–744, Apr. 2021.

[14] Y. Cao, T. Lv, Z. Lin, and W. Ni, “Delay-constrained joint power control,
user detection and passive beamforming in intelligent reflecting surface-
assisted uplink mmwave system,” IEEE Transactions on Cognitive
Communications and Networking, 2021.

[15] W. Liu, X. Zang, Y. Li, and B. Vucetic, “Over-the-air computation
systems: Optimization, analysis and scaling laws,” IEEE Trans. Wireless
Commun., vol. 19, no. 8, pp. 5488–5502, Aug. 2020.

[16] W. Fang, M. Fu, K. Wang, Y. Shi, and Y. Zhou, “Stochastic beamforming
for reconfigurable intelligent surface aided over-the-air computation,” in
Proc. IEEE GLOBECOM, Dec. 2020, pp. 1–6.

[17] Z. Wang, Y. Shi, Y. Zhou, H. Zhou, and N. Zhang, “Wireless-powered
over-the-air computation in intelligent reflecting surface-aided IoT net-
works,” IEEE Internet of Things J., vol. 8, no. 3, pp. 1585–1598, Feb.
2021.

[18] M. Mukherjee, V. Kumar, M. Guo, D. B. da Costa, Z. D. Ertugrul Basar,
and W. K. Wong, “The interplay of reconfigurable intelligent surfaces
and mobile edge computing in future wireless networks: A win-
win strategy to 6G,” arXiv:2106.11784, 2021. [Online]. Available:
https://arxiv.org/abs/2106.11784

[19] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[20] M.-H. Chen, M. Dong, and B. Liang, “Resource sharing of a com-
puting access point for multi-user mobile cloud offloading with delay
constraints,” IEEE Trans. on Mobile Comput., pp. 1–13, 2018.

https://blogs.nvidia.com/blog/2020/05/14/dgx-ready-software-program-partners/
https://blogs.nvidia.com/blog/2020/05/14/dgx-ready-software-program-partners/
https://www.qualcomm.com/news/onq/2020/05/27/making-boundless-xr-commercial-reality
https://www.qualcomm.com/news/onq/2020/05/27/making-boundless-xr-commercial-reality
https://www.edgeconnex.com
https://arxiv.org/abs/2106.11784
http://cvxr.com/cvx

	I Introduction
	I-A Motivation
	I-B Related Work
	I-C Our Contributions and Organization

	II System Model
	II-A Local Computing Delay
	II-B Offloading Delay for End-users without RIS Assistance
	II-C Offloading Delay for End-users with RIS Assistance

	III Problem Formulation
	III-A Vector-matrix Formation
	III-B QCQP Formulation
	III-C Vector-matrix Formation

	IV Simulation Results
	V Conclusions
	References

