
ar
X

iv
:2

10
9.

08
30

2v
1

 [
cs

.I
T

]
 1

7
Se

p
20

21

Rack-Aware MSR Codes with Multiple Erasure Tolerance

Jiaojiao Wang, Dabin Zheng∗, Shenghua Li

Abstract

The minimum storage rack-aware regenerating (MSRR) code is a variation of regenerating codes that

achieves the optimal repair bandwidth for a single node failure in the rack-aware model. The authors in [1]

and [25] provided explicit constructions of MSRR codes for all parameters to repair a single failed node.

This paper generalizes the results in [1] to the case of multiple node failures. We propose a class of MDS

array codes and scalar Reed-Solomon (RS) codes, and show that these codes have optimal repair bandwidth

and error resilient capability for multiple node failures in the rack-aware storage model. Besides, our codes

keep the same access level as the low-access constructions in [1] and [25].

Keywords: Distributed storage; Multiple erasure tolerance; MSRR codes; Universally error-resilient

repair

1 Introduction

Maximum distance separable (MDS) codes are widely used in modern large-scale distributed storage system

for which provide the maximum failure tolerance for a given amount of storage overhead. An important

metric of repair efficiency is the repair bandwidth, i.e., the amount of data downloaded from other nodes for

the purpose of the repair. Dimakis et al. in [3] have given a bound on the minimum number of symbols

required for repair of a single failed node, which is called the cut-set bound of the repair bandwidth. A repair

scheme that attains this bound is called optimal and such codes are said to be minimum storage regenerating

(MSR) codes [3]. Over the last decade, important progresses have been made in the study of MSR codes, for

example see [3,4,14,16,19,20,22,23] and reference therein. In addition, the basic repair problem of MDS codes

has been extended to the case that some of the helper nodes provide erroneous information [2, 12, 15, 22].

In a homogeneous distributed storage model, all nodes as well as communication between them are

treated equally. However, modern data centers often have hierarchical topologies by organizing nodes in racks,

where the cross-rack communication cost is much more expensive than the intra-rack communication cost.

This motives people to study the repair problem for hierarchical data centers and many progresses have been

made recently [1,5,7–10,13,17,18,21,24,25]. In this paper, we focus on the constructions and repair schemes

of MSR codes in the rack-aware storage model.

Let C be an (n, k, ℓ) array code over a finite field F , i.e., a collection of codewords c = (c0, c1, · · · , cn−1),

where each ci is a vector of length ℓ over F , or an element in the ℓ extension of F . These code’s coordinates

are also called nodes. The amount of sub-packets stored in each node, i.e., ℓ is said to be sub-packetization. A

code C is called MDS if any k coordinates of the codeword suffice to recover its remaining n− k coordinates.

Assume that k data blocks are encoded into a codeword of length n = un̄ and stored across n nodes. The

n nodes are organized equally into n̄ groups, also called racks, and every rack contains u nodes. The model

of u = 1 is the homogeneous case. To rule out the trivial case, we always assume that u ≤ k, otherwise, a

∗Corresponding author. This work was partially supported by the National Natural Science Foundation of China under Grant

Number 11971156.

Jiaojiao Wang, Dabin Zheng and Shenghua Li are with the Hubei Key Laboratory of Applied Mathematics, Faculty of

Mathematics and Statistics, Hubei University, Wuhan 430062, China (E-mail: wjiaojiao@stu.hubu.edu.cn, dzheng@hubu.edu.cn,

lish@hubu.edu.cn)

1

http://arxiv.org/abs/2109.08302v1

single node failure can be trivially repaired by u − 1 surviving nodes within the same rack, and also assume

that u ≤ n− k to ensure that code has repair ability if an entire rack fails. The rack which contains the failed

nodes is called the host rack.

The cut-set bound of repair bandwidth in a homogeneous distributed storage model has been generalized

to the case of rack-aware storage model as follows [1, 8]. Let k = k̄u + v(0 ≤ v < u), where u is the size of

rack. Let βu(h, d̄) denote the minimum number of symbols over F that one needs to download from the d̄,

k̄ ≤ d̄ ≤ n̄− 1 helper racks to recover h failed nodes in the host rack. It was shown in [1] that

βu(h, d̄) ≥
d̄hℓ

d̄− k̄ + 1
. (1)

A rack-aware repair scheme that achieves this bound is said to have optimal repair property and such codes are

called minimum storage rack-aware regenerating(MSRR) codes for repairing h failed nodes in the rack-aware

storage model.

In [22], Ye and Barg considered the error resilience capability in the repair process of multiple node

failures in homogeneous distributed storage models. We generalize this concept to the case in rack-aware

storage models. Let ē be a nonnegative integer with 0 ≤ ē ≤ ⌊ d̄−k̄
2 ⌋. Suppose that a subset of ē racks out

of d̄ helper racks provide erroneous information and define βu(h, d̄, ē) to be the minimum number of symbols

needed from the helper racks to repair the h failed nodes as long as the number of error racks in the helper

racks is no more than ē. For k̄ + 2ē ≤ d̄ ≤ n̄− 1, the bound in (1) can be generalized to the following,

βu(h, d̄, ē) ≥
d̄hℓ

d̄− 2ē− k̄ + 1
. (2)

An (n, k, ℓ) MDS code in rack-aware storage model is said to have universally error-resilient (UER) (h, d̄)-

optimal repair property if the equality in (2) holds.

Recently, Hou et al. [8] studied the parameters and constructions of MSRR codes, but their construc-

tions need some constraints on the parameters and the finite fields being large enough. The first explicit

constructions of MSRR codes for all admissible parameters that support recovery of a single node failure were

proposed by Chen et al. in [1]. Then Hou et al. [7] presented a coding framework that transformed an MSR

code to an MSRR code. However, an MSRR code from such construction exists only if the finite field is suffi-

ciently large. Zhou et al. [25] provided another class of MDS array codes for all parameters in the rack-aware

model with smaller sub-packetization and size of underlying finite field. As far as we know, it remains an

open problem to construct MSRR codes with error resilience capability for supporting recovery of multiple

node failures. In this paper, we propose a class of MDS array codes and RS codes in the rack-aware storage

model and corresponding repair schemes such that the codes have UER (h, d̄)-optimal repair property when

the number of failed nodes h ≤ u− v, where k = k̄u+ v(0 ≤ v < u). Moreover, we also provide repair schemes

of discussed codes for the case h > u−v, and our schemes have the asymptotical UER (h, d̄+1)-optimal repair

property. Comparisons between our MSRR array code and previous constructions are shown in Table 1.

Table 1: Comparisons with known MSRR codes, where s̄ = d̄− 2ē− k̄+1, k = k̄u+ v, h is the largest error tolerance.

sub-packet. ℓ d̄ access per rack |F | h UER

[1] s̄n̄ k̄ ≤ d̄ ≤ n̄− 1 uℓ
s̄ u|(|F | − 1),|F | ≥ n+ s̄− 1 1 -

[7] s̄⌈
n̄
s̄
⌉ d̄ = n̄− 1 ℓ

s̄ + (u− 1)ℓ |F | > kℓ
∑min{k,n̄}

i=1

(
n−n̄
k−i

)(
n̄
i

)
1 -

[25] s̄⌈
n̄

u−v
⌉ k̄ ≤ d̄ ≤ n̄− 1 uℓ

s̄ u|(|F | − 1),|F | > n 1 -

this paper s̄n̄ k̄ ≤ d̄ ≤ n̄− 1 uℓ
s̄ u|(|F | − 1),|F | > n u− v X

The rest of this paper is organized as follows. Section 2 proposes a class of MDS array codes and shows

that they have the UER (h, d̄)-optimal repair property when the number of failed nodes h ≤ u − v, and also

2

discusses the repair problem of the codes when h > u − v in the rack-aware storage system. In Section 3

we show that RS codes in [1] have the UER (h, d̄)-optimal repair property in the rack-aware storage system.

Section 4 concludes this paper.

2 MSRR codes with multiple erasure tolerance

Let F be a finite field of size |F | > n and u denote the number of nodes in each rack satisfying u|(|F | − 1).

Let n = un̄ and k = uk̄+ v for some v with 0 ≤ v < u. Let r = n− k and r̄ = n̄− k̄. Let d̄ denote the number

of helper racks and ē be the largest acceptable number of erroneous racks in the d̄ helper racks satisfying

(u, s̄) = 1, where s̄ = d̄ − 2ē − k̄ + 1. Let ξ be a primitive element of F and γ be an element of F with

multiplicative order u. Denote λi,0 = ξi and λi,j = 1 for i ∈ {0, 1, · · · , n̄− 1} and j ∈ {1, 2, · · · , s̄− 1}. In this

section, we propose a class of MDS array codes which are slightly modified codes in [22] and show that the

codes have the UER (h, d̄)-optimal repair property in rack-aware storage model for h ≤ u − v. The objective

array code is defined as follows.

C =

{

(C0, C1, · · · , Cn−1) :

n̄−1∑

i=0

u−1∑

g=0

At
i,gCiu+g = 0, t = 0, 1, · · · , r − 1

}

, (3)

here, Cj is a column vector of length ℓ = s̄n̄ over F , which denotes the j-th node and

Ai,g = γgAi, Ai =

ℓ−1∑

j=0

λi,jieje
T
j(i,ji⊕1), i = 0, 1, · · · , n̄− 1, g = 0, 1, · · · , u− 1, (4)

where {ej : j = 0, 1, · · · , ℓ − 1} is the standard basis of F ℓ over F , ⊕ denotes addition modulo s̄, ji is

the i-th term of the base s̄ expansion of j = (jn̄−1, · · · , j1, j0) and j(i, b) = (jn̄−1, · · · , ji+1, b, ji−1, · · · , j0),

b = 0, 1, · · · , s̄− 1.

By the similar discussion in Theorem VII.4 in [22] we have the following proposition.

Proposition 2.1 The array code C given in (3) and (4) satisfies the MDS property.

To show the optimal repair property of the code C, we need the following result.

Lemma 2.2 ([22]) For two integers n, ℓ > 0, let M0,M1, · · · ,Mn−1 be ℓ order square matrices. For any

i, j ∈ {0, 1, · · · , n− 1}, MiMj = MjMi and Mi −Mj is invertible, where i 6= j. Then

M =








Iℓ · · · Iℓ
M0 · · · Mn−1

...

Mn−1
0 · · · Mn−1

n−1








is invertible.

The following theorem is our main result in this section.

Theorem 2.3 If the number h of failed nodes located in the same rack satisfies 0 < h ≤ u− v, then the array

code C defined in (3) and (4) has the UER (h, d̄)-optimal repair property.

Proof. First we repair the linear combination of the nodes in the host rack from the remaining n̄− 1 surviving

racks. Denote Λi,ji,0 = 1 and Λi,ji,t = λi,jiλi,ji⊕1 · · ·λi,ji⊕(t−1) for t = 1, 2, · · · , r − 1. By direct calculations,

we have

At
i,g =





ℓ−1∑

j=0

λi,jiγ
geje

T
j(i,ji⊕1)





t

=

ℓ−1∑

j=0

Λi,ji,tγ
gteje

T
j(i,ji⊕t).

3

The (iu+ g)-th node Ciu+g can be rewritten as
∑ℓ−1

j=0 ciu+g,jej. By combining these with (3), we get

ℓ−1∑

j=0

n̄−1∑

i=0

u−1∑

g=0

γgtΛi,ji,tciu+g,j(i,ji⊕t)ej = 0, t = 0, 1, · · · , r − 1. (5)

Without loss of generality, suppose that the (n̄ − 1)-th rack is the host rack. The equality (5) is rewritten

coordinate wise as the following,

Λn̄−1,jn̄−1,t

u−1∑

g=0

γgtc(n̄−1)u+g,j(n̄−1,jn̄−1⊕t) = −

n̄−2∑

i=0

Λi,ji,t

u−1∑

g=0

γgtciu+g,j(i,ji⊕t), (6)

where t = 0, 1, · · · , r − 1 and j = 0, 1, · · · , ℓ − 1. Consider the parity-check equations in (6) for t ∈ {m,u +

m, · · · , (s̄− 1)u+m}, where m is a fixed number in {0, 1, · · · , u− v − 1}. Since γu = 1, from (6) we have

Λn̄−1,jn̄−1,wu+m

u−1∑

g=0

γgmc(n̄−1)u+g,j(n̄−1,jn̄−1⊕(wu+m)) = −

n̄−2∑

i=0

Λi,ji,wu+m

u−1∑

g=0

γgmciu+g,j(i,ji⊕(wu+m)), (7)

where w = 0, 1, · · · , s̄−1 and j = 0, 1, · · · , ℓ−1. So,
∑u−1

g=0 γ
gmc(n̄−1)u+g,j(n̄−1,jn̄−1⊕(wu+m)) can be determined

by {
∑u−1

g=0 γ
gmciu+g,j(i,ji⊕(wu+m)) : i = 0, 1, · · · , n̄− 2}. Since (u, s̄) = 1 and m < u, for any fixed ji and m,

we have that {ji ⊕ (wu +m) : w = 0, 1, · · · , s̄ − 1} = {0, 1, · · · , s̄ − 1}. Set ℓ′ = s̄n̄−1 and jn̄−1 = 0 in (7),

then we have that {
∑u−1

g=0 γ
gmc(n̄−1)u+g,j : j = 0, 1, · · · , ℓ − 1} can be derived from {

∑u−1
g=0 γ

gmciu+g,j : i =

0, 1, · · · , n̄− 2; j = 0, 1, · · · , ℓ′ − 1}, that is to say, the linear combination of nodes in the (n̄− 1)-th rack can

be determined by the vectors of length ℓ′ in the first n̄− 1 racks.

Then we prove that any d̄ (k̄ ≤ d̄ ≤ n̄ − 1) helper racks out of n̄ − 1 surviving racks can recover the

values
∑u−1

g=0 γ
gmc(n̄−1)u+g,j , j = 0, 1, · · · , ℓ − 1. To this end, set C

(ℓ′)
iu+g = (ciu+g,0, ciu+g,1, · · · , ciu+g,ℓ′−1)

T ,

where i = 0, 1, · · · , n̄− 2 and define

Cm =

(
u−1∑

g=0

γgmC(ℓ′)
g ,

u−1∑

g=0

γgmC
(ℓ′)
u+g, · · · ,

u−1∑

g=0

γgmC
(ℓ′)
(n̄−2)u+g

)

, m = 0, 1, · · · , u− v − 1. (8)

Assume that there are d̄ helper racks and at most ē out of d̄ helper racks with k̄+2ē ≤ d̄ ≤ n̄− 1 have errors.

Next, we show that Cm is an (n̄ − 1, d̄− 2e, ℓ′) MDS array code for any fixed m ∈ {0, 1, · · · , u − v − 1}, that

is to say, any d̄− 2ē columns can represent all columns in Cm.

Consider the parity-check equations of C in (3) for t ∈ {m,u+m, · · · , u(r̄ − s̄− 1) +m}, then

n̄−1∑

i=0

Auη+m
i

u−1∑

g=0

γgmCiu+g = 0, η = 0, 1, · · · , r̄ − s̄− 1. (9)

Since

Aus̄
i = (

ℓ−1∑

j=0

λi,jieje
T
j(i,ji⊕1))

us̄ =
ℓ−1∑

j=0

(Λi,ji,s̄)
ueje

T
j = ξiuIℓ,

from the parity-check equations of C in (3) for t ∈ {us̄+m,u(s̄+ 1) +m, · · · , u(r̄ − 1) +m}, we have

n̄−1∑

i=0

A
u(η+s̄)+m
i

u−1∑

g=0

γgmCiu+g =
n̄−1∑

i=0

ξiuAuη+m
i

u−1∑

g=0

γgmCiu+g = 0, η = 0, 1, · · · , r̄ − s̄− 1. (10)

Multiplying ξ(n̄−1)u on the both sides of (9) and then subtracting (10) we get

n̄−2∑

i=0

(ξ(n̄−1)u − ξiu)Auη+m
i

u−1∑

g=0

γgmCiu+g = 0. (11)

4

Substituting Ai in (4) into (11), we have

0 =

n̄−2∑

i=0

(

ξ(n̄−1)u − ξiu
)





ℓ−1∑

j=0

λi,jieje
T
j(i,ji⊕1)





uη+m
u−1∑

g=0

γgm





ℓ−1∑

j=0

ciu+g,jej





=

n̄−2∑

i=0

(

ξ(n̄−1)u − ξiu
) u−1∑

g=0

γgm





ℓ−1∑

j=0

Λi,ji,uη+mciu+g,j(i,ji⊕(uη+m))ej



 .

(12)

The equality (12) is rewritten coordinate wise as the following:

n̄−2∑

i=0

(ξ(n̄−1)u − ξiu)

u−1∑

g=0

γgmΛi,ji,uη+mciu+g,j(i,ji⊕(uη+m)) = 0, j = 0, 1, · · · , ℓ− 1. (13)

Let

Bi =

ℓ′−1∑

j=0

λi,jie
(ℓ′)
j (e

(ℓ′)
j(i,ji⊕1))

T , i = 0, 1, · · · , n̄− 2, (14)

where {e
(ℓ′)
j : j = 0, 1, · · · , ℓ′ − 1} is a set of standard basis column vectors in F ℓ′ . It is known that Bi is the

leading principle submatrix of Ai with order ℓ′. By direct verifications, from (13) we have

n̄−2∑

i=0

(

ξ(n̄−1)u − ξiu
)

Buη+m
i

u−1∑

g=0

γgmC
(ℓ′)
iu+g

=
n̄−2∑

i=0

(

ξ(n̄−1)u − ξiu
) u−1∑

g=0

γgm





ℓ′−1∑

j=0

λi,jie
(ℓ′)
j (e

(ℓ′)
j(i,ji⊕1))

T





uη+m
ℓ′−1∑

j=0

ciu+g,je
(ℓ′)
j

=
n̄−2∑

i=0

(ξ(n̄−1)u − ξiu)
u−1∑

g=0

γgm
ℓ′−1∑

j=0

Λi,ji,uη+mciu+g,j(i,ji⊕(uη+m))e
(ℓ′)
j

=0,

(15)

where η = 0, 1, · · · , r̄ − s̄− 1.

Choose d̄ − 2ē columns in Cm with index set H = {p0, p1, · · · , pd̄−2ē−1}. Let {q0, q1, · · · , qr̄−s̄−1} =

{0, 1, · · · , n̄− 2} \H . Then (15) can be rewritten as follows:

r̄−s̄−1∑

i=0

(ξ(n̄−1)u − ξqiu)Buη+m
qi

u−1∑

g=0

γgmC
(ℓ′)
qiu+g = −

d̄−2ē−1∑

j=0

(ξ(n̄−1)u − ξpju)Buη+m
pj

u−1∑

g=0

γgmC
(ℓ′)
pju+g.

These r̄ − s̄ equations are rewritten as the matrix equation form as follows:









Iℓ′ · · · Iℓ′

Bu
q0 · · · Bu

qr̄−s̄−1

...
...

B
(r̄−s̄−1)u
q0 · · · B

(r̄−s̄−1)u
qr̄−s̄−1









︸ ︷︷ ︸

B

×









(ξ(n̄−1)u − ξq0u)Bm
q0

. . .

. . .

(ξ(n̄−1)u − ξqr̄−s̄−1u)Bm
qr̄−s̄−1









︸ ︷︷ ︸

D

×










∑u−1
g=0 γ

gmC
(ℓ′)
q0u+g

...

...
∑u−1

g=0 γ
gmC

(ℓ′)
qr̄−s̄−1u+g










= −










∑d̄−2ē−1
j=0 (ξ(n̄−1)u − ξpju)Bm

pj

∑u−1
g=0 γ

gmC
(ℓ′)
pju+g

...

...
∑d̄−2ē−1

j=0 (ξ(n̄−1)u − ξpju)B
u(r̄−s̄−1)+m
pj

∑u−1
g=0 γ

gmC
(ℓ′)
pju+g










.

(16)

5

By the definition of Bi in (14), it is easy to verify that Bi and Bu
i − Bu

j are invertible, and Bu
i B

u
j = Bu

j B
u
i

for j 6= i. So, the matrix B is invertible by Lemma 2.2, and then the matrix B ×D is invertible. Therefore,

the columns in Cm with index set H can represent all columns in Cm, that is to say, Cm is an (n̄− 1, d̄− 2ē, ℓ′)

MDS array code.

Choosing any d̄ columns from Cm also constitutes a (d̄, d̄−2ē, ℓ′) MDS array code, which is a punctured

code of Cm. This code is viewed as a linear code over the ℓ′ extension of F . Then its minimum distance is

2ē + 1, and so can correct ē errors. Therefore, by downloading any d̄ nodes in Cm, we can recover the entire

codeword as long as the number of erroneous nodes among the d̄ helper nodes is not greater than ē, and further

recover the linear combination of nodes in the (n̄− 1)-th rack {
∑u−1

g=0 γ
gmc(n̄−1)u+g,j : j = 0, · · · , ℓ− 1} from

(7).

Finally, we recover the h specific failed nodes in the host rack. Assume that the index set of failed

nodes in the host rack (i.e., the (n̄ − 1)-th rack) is F = {g1, g2, · · · , gh} and T = {0, 1, · · · , u − 1} \ F . We

have that ∆m =
∑u−1

g=0 γ
gmc(n̄−1)u+g,j is known for j = 0, · · · , ℓ − 1 and m = 0, 1, · · · , u − v − 1. Taking

m = 0, 1, · · · , h− 1 we get








1 · · · 1

γg1 · · · γgh

...
...

γg1(h−1) · · · γgh(h−1)















c(n̄−1)u+g1,j

c(n̄−1)u+g2,j

...

c(n̄−1)u+gh,j








=









∆0 −
∑

g∈T c(n̄−1)u+g,j

∆1 −
∑

g∈T γgc(n̄−1)u+g,j

...

∆h−1 −
∑

g∈T γg(h−1)c(n̄−1)u+g,j









, j = 0, 1, · · · , ℓ− 1.

(17)

Since γgi 6= γgi′ for all i, i′ ∈ {0, 1, · · · , u − 1} with i 6= i′, from the linear system (17), we can recover the

failed nodes in the host rack with index set F .

To recover theses nodes we have downloaded d̄hℓ′ = d̄ℓh
s̄ symbols. This value is exactly the lower bound

in (2), and so the discussed code has the UER (h, d̄)-optimal repair property. �

Remark 2.4 In the repair process described above, to recover the h, 0 < h ≤ u− v failed nodes of the code C

defined in (3) and (4), we have accessed the symbols in the set {ciu+g : i ∈ R; g = 0, · · · , u−1; j = 0, · · · , ℓ′−1},

where R is the index set of d̄ helper racks. Then the total number of the accessed symbols is d̄uℓ
s̄ . So, this code

has the same low-access property as that of the codes constructed in [1] and [25].

The discussion above shows that the MDS array code C defined in (3) and (4) has optimal repair

property when the number of failed nodes in the host rack is no more than u− v. When the number of failed

nodes h is greater than u− v, the code C has asymptotical UER (h, d̄+ 1)-optimal repair property, i.e., when

the number of helper racks d̄+ 1 is large enough, the ratio between the amount of download symbols and the

optimal bound in (2) approaches 1.

Theorem 2.5 If the number h of failed nodes located in the same rack satisfies u− v < h ≤ u, then the repair

bandwidth of the array code C defined in (3) and (4) is less than (d̄+1)ℓh
s̄ and the code C has an error correction

capability.

Proof. The repair scheme consists of the following two main steps.

(1) Form = 0, 1, · · · , u−v−1, by a similar calculation in Theorem 2.3 we can recover
∑u−1

g=0 γ
gmc(n̄−1)u+g,j ,

j = 0, 1, · · · , ℓ− 1 from any d̄ out of n̄− 1 columns in Cm defined in (8) as long as the number of helper racks

where errors occur is no more than ē.

(2) For m = u− v, u− v + 1, · · · , h− 1, the values of η in (9) and (10) could be 0, 1, · · · , r̄ − s̄− 2. We

can get
∑u−1

g=0 γ
gmc(n̄−1)u+g,j , j = 0, 1, · · · , ℓ − 1 from any d̄ + 1 out of n̄ − 1 columns in Cm as long as the

number of helper racks where errors occur is no more than ē. Repeating the calculations in (11)-(16), we can

show that Cm defined in (8) for m ∈ {u− v, u− v + 1, · · · , h− 1} is also an (n̄− 1, d̄+ 1− 2ē, ℓ′) MDS array

code. So, we can get
∑u−1

g=0 γ
gmc(n̄−1)u+g,j , j = 0, 1, · · · , ℓ− 1 from any d̄+ 1 out of n̄− 1 columns in Cm. By

a similar argument to that in Theorem 2.3, we know that this code can correct at most ē errors among d̄+ 1

helper racks. Then, by the similar calculation in equation (17), we can recover the h failed nodes.

6

In the two steps above, we download d̄ℓ(u−v)
s̄ and (d̄+1)ℓ(h−u+v)

s̄ symbols from d̄ and d̄+ 1 helper racks,

respectively. So, to recover the h failed nodes we have altogether downloaded d̄ℓ(u−v)
s̄ + (d̄+1)ℓ(h−u+v)

s̄ =
d̄ℓh
s̄ + ℓ(h−u+v)

s̄ symbols. Note that v < u, then h − u + v < h. Therefore, d̄ℓh
s̄ + ℓ(h−u+v)

s̄ < (d̄+1)ℓh
s̄ . In this

case, the ratio of the amount of download symbols to the optimal repair bandwidth given in (2) is less than

1 + 1
d̄−2ē−k̄+1

. So, the repair bandwidth of the code approaches optimal level if the number of helper racks is

large enough when h > u− v. �

3 Rack-aware RS codes with multiple erasure tolerance

Reed-Solomon codes, the most practically used MDS codes, have been employed in many distributed storage

systems. Guruswami and Wootters first proposed the optimal repair scheme of RS codes for the homogeneous

distributed storage system [6]. Chen and Barg in [1] studied the repair procedure of RS codes having optimal

repair property for a single node failure in the rack-aware storage system. This section generalizes the repair

process of RS codes in [1] to the case of the multiple node failures. We propose a new repair scheme for the RS

codes defined in [1] which can optimally repair multiple failed nodes from arbitrary d̄ helper racks. Moreover,

the error correction capability and the low-access property of these RS codes are discussed.

Let q be a power of a prime and Fq be a finite field of q elements. Let u be the size of the rack with u|(q−1)

and n = n̄u. Let k = k̄u + v, 0 ≤ v < u. Let d̄ denote the number of helper racks and ē(0 ≤ ē ≤ ⌊ d̄−2k̄
2 ⌋) be

the largest acceptable number of erroneous racks in the d̄ helper racks. Let s̄ = d̄−2ē− k̄+1 and p0, · · · , pn̄−1

be n̄ distinct primes such that

pi ≡ 1 mod s̄ and pi > u, i = 0, 1, · · · , n̄− 1.

Let γ be an element in Fq with the multiplicative order u and λi an element of degree pi over Fq for i =

0, 1, · · · , n̄− 1. Let

Fi := Fq(λj : j ∈ {0, 1, · · · , n̄− 1} \ {i}), i = 0, 1, · · · , n̄− 1 and F := Fq(λ0, λ1, · · · , λn̄−1).

Let K be an extension of F of degree s̄ and α ∈ K be a generating element of K over F , i.e., K = F (α).

Thus, for any i ∈ {0, 1, · · · , n̄− 1} we have the chain of inclusions

Fq ⊂ Fi ⊂ F ⊂ K.

So, K is the ℓ-th degree extension of Fq, where ℓ = s̄
∏n̄−1

i=0 pi is called sub-packetization. Choosing the set of

evaluation points as Ω = {λ0γ
0, · · · , λ0γ

u−1, · · · , λn̄−1γ
0, · · · , λn̄−1γ

u−1}, we define the objective RS code as

follows:

C =
{(

f(λ0γ
0), · · · , f(λ0γ

u−1), · · · , f(λn̄−1γ
0), · · · , f(λn̄−1γ

u−1)
)
: f(x) ∈ K[x], deg(f) < k

}
. (18)

To describe the repair procedure for multiple node failures in rack-aware model, we first recall some

necessary preliminaries.

Lemma 3.1 ([20]) For i ∈ {0, 1, · · · , n̄− 1}, consider the Fi-linear subspace Si,

Si = SpanFi

{
s̄−1∑

m=0

αmλ
u(pi−1)
i , αjλ

u(j+ts̄)
i , j = 0, 1, · · · , s̄− 1, t = 0, 1, · · · ,

pi − 1

s̄
− 1

}

.

Then

dimFi
Si = pi, Si + Siλ

u
i + · · ·+ Siλ

u(s̄−1)
i = K,

where Siβ = {θβ, θ ∈ Si}, and the operation + is the Minkowski sum of sets, T1+T2 = {t1+t2 : t1 ∈ T1, t ∈ T2}.

7

Lemma 3.2 ([11]) Let F be a finite field and K an m-degree extension of F. Let {ξ1, ξ2, · · · , ξm} be a basis

of K over F, and {ξ̄1, ξ̄2, · · · , ξ̄m} its dual basis. Then for any β ∈ K, we have

β =

m∑

t=1

trK/F (ξtβ) ξ̄t.

Theorem 3.3 If the number h of failed nodes located in the same rack satisfies 0 < h ≤ u − v, then the RS

code C defined in (18) has the UER (h, d̄)-optimal repair property. The repair procedure accesses ℓ/s̄ symbols

on each of the nodes in the d̄ helper racks, and the repair scheme is independent of the choice of the subset of

d̄ helper racks.

Proof. The coordinates of every codeword in C are viewed as vectors over the field Fq, and they also represent

data on each node. The node size equals ℓ = s̄
∏n̄−1

i=0 pi, which is the extension degree of K over Fq.

Let C⊥ denote the dual code of C. It is known that C⊥ is a generalized RS code, which has the following

form:

C⊥ =
{(

v0,0f(λ0γ
0), · · · , v0,u−1f(λ0γ

u−1), · · · , vn̄−1,0f(λn̄−1γ
0), · · · , vn̄−1,u−1f(λn̄−1γ

u−1)
)
:

f(x) ∈ K[x], deg(f) < n− k
}

,
(19)

where vi,j are nonzero inK and can be represented by λi and γj for i ∈ {0, 1, · · · , n̄−1} and j ∈ {0, 1, · · · , u−1}.

Denote r = n − k. Take f(x) in (19) to be xt, where t = 0, 1, · · · , r − 1. For every codeword

(C0, C1, · · · , Cn−1) ∈ C, we have

n̄−1∑

i=0

u−1∑

g=0

vi,g(λiγ
g)tCiu+g = 0, t = 0, 1, · · · , r − 1. (20)

Assume that the i∗-th rack is the host rack. Let {e0, e1, · · · , epi∗−1} be a basis of the vector space Si∗ over

the field Fi∗ . From (20) we have

ej

n̄−1∑

i=0

u−1∑

g=0

vi,g(λiγ
g)tCiu+g = 0, t = 0, 1, · · · , r − 1, (21)

where j ∈ {0, 1, · · · , pi∗ − 1}. Consider the subset of the parity-check equations in (21) with indices t =

m,u+m, · · · , (r̄ − 1)u+m for some fixed m ∈ {0, 1, · · · , u− v − 1}, then

ejλ
uw+m
i∗

u−1∑

g=0

vi∗,gγ
gmCi∗u+g = −ej

∑

i6=i∗

λuw+m
i

u−1∑

g=0

vi,gγ
gmCiu+g , w = 0, 1, · · · , r̄ − 1. (22)

Let tri∗(·) = trK/Fi∗
(·) be the trace mapping from K to Fi∗ . Since λi ∈ Fi∗ for i 6= i∗ and γ ∈ Fq, applying

tri∗(·) to the both sides of (22), we have

tri∗

(

ejλ
uw+m
i∗

u−1∑

g=0

vi∗,gγ
gmCi∗u+g

)

= −
∑

i6=i∗

λuw+m
i

u−1∑

g=0

γgmtri∗ (ejvi,gCiu+g) , w = 0, 1, · · · , r̄ − 1, (23)

where j ∈ {0, 1, · · · , pi∗ − 1}. For a given m ∈ {0, 1, · · · , u − v − 1}, from (23) we can recover the set

{tri∗(ejλ
uw+m
i∗

∑u−1
g=0 vi∗,gγ

gmCi∗u+g) : w = 0, 1, · · · , r̄ − 1} from {
∑u−1

g=0 γ
gmtri∗(ejvi,gCiu+g) : i ∈ [0, n̄− 1] \

{i∗}}, where j ∈ {0, 1, · · · , pi∗ − 1}. Since s̄ = d̄− 2ē− k̄ + 1 ≤ r̄, we can recover the set

{

tri∗(ejλ
uw+m
i∗

u−1∑

g=0

vi∗,gγ
gmCi∗u+g) : w = 0, 1, · · · , s̄− 1, j = 0, 1, · · · , pi∗ − 1

}

(24)

8

from the set
{

u−1∑

g=0

γgmtri∗(ejvi,gCiu+g) : i ∈ {0, 1, · · · , n̄− 1} \ {i∗}, j = 0, 1, · · · , pi∗ − 1

}

. (25)

By Lemma 3.1, we know that {ejλ
uw+m
i∗ : j = 0, 1, · · · , pi∗ − 1;w = 0, · · · , s̄ − 1} is a basis of K over Fi∗ .

By choosing its dual basis, from Lemma 3.2 we can recover
∑u−1

g=0 vi∗,gγ
gmCi∗u+g from the set in (24). So,

obtaining the values in the set in (25) efficiently is the key to recovering the linear combination of the failed

nodes in the host rack, i.e.,
∑u−1

g=0 vi∗,gγ
gmCi∗u+g.

Next, we will discuss the process to repair the set in (25) with the minimum amount of download

symbols in the case of errors in helper racks. For all i ∈ {0, 1, · · · , n̄− 1} \ {i∗} and m ∈ {0, 1, · · · , u− v− 1},

we define u− v array codes as follows:

Cm = (Υm,0, · · · ,Υm,i∗−1,Υm,i∗+1, · · · ,Υm,n̄−1) , m = 0, 1, · · · , u− v − 1, (26)

where Υm,i = (
∑u−1

g=0 γ
gmtri∗(ejvi,gCiu+g), j = 0, 1, · · · , pi∗ − 1)⊥. By slight modifying the proof of the case

in homogeneous storage case in [2, Sec.III] we can show that Cm in (26) is an (n̄− 1, d̄− 2ē, pi∗) MDS array

code for any m ∈ {0, 1, · · · , u − v − 1}. So, for an integer d̄ with k̄ + 2ē ≤ d̄ ≤ n̄ − 1, any d̄ out of n̄ − 1

columns in Cm suffice to recover all columns of Cm as long as the number of errors in the d̄ columns is not

greater than ē. Hence, in such case,
∑u−1

g=0 vi∗,gγ
gmCi∗u+g can be recovered from d̄ columns in Cm for any

m ∈ {0, 1, · · · , u − v − 1}. By similar calculations to that in Theorem 2.3, we can recover the h failed nodes

in the host rack from known linear combinations
∑u−1

g=0 vi∗,gγ
gmCi∗u+g, m = 0, 1, · · · , u − v − 1. Moreover,

to repair h failed nodes in the same rack, we have downloaded d̄ℓh
s̄ symbols over Fq from the helper racks,

and this meets the cut-set bound in (2). So, the RS code in (18) has the optimal repair bandwidth and error

correction capability when the number of helper racks where the error occurred is no more than ē.

During the repair process described above, the amount of access symbols is d̄uℓ. In the following we

further discuss how to reduce this amount. Let p∗ =
∏n̄−1

i=0 pi/pi∗ and let {ε0, ε1, · · · , εp∗−1} be a basis of Fi∗

over Fq and {ε∗0, ε
∗
1, · · · , ε

∗
p∗−1} its dual basis. By Lemma 3.2,

u−1∑

g=0

γgmtri∗(ejvi,gCiu+g) =

p∗−1
∑

t=0

trFi∗/Fq

(

εt(

u−1∑

g=0

γgmtri∗(ejvi,gCiu+g))

)

ε∗t

=
u−1∑

g=0

γgm

p∗−1
∑

t=0

trK/Fq
(εtejvi,gCiu+g) ε

∗
t ,

(27)

where j = 0, 1, · · · , pi∗ − 1. It is easy to show that the vectors εtej, t = 0, 1, · · · , p∗ − 1, j = 0, 1, · · · , pi∗ − 1

are in K and linearly independent over Fq. We expand these vectors to a basis of K over Fq, and denote it

by {βi, i = 0, 1, · · · , ℓ − 1}, and its dual basis is represented as {β∗
i , i = 0, 1, · · · , ℓ − 1}. For any i 6= i∗ and

g ∈ {0, 1, · · · , u− 1}, the element vi,gCiu+g can be represented as follows:

vi,gCiu+g =

ℓ−1∑

b=0

ciu+g,bβ
∗
b , (28)

where ciu+g,b ∈ Fq. Substituting (28) into (27) we have

u−1∑

g=0

γgmtri∗(ejvi,gCiu+g) =
u−1∑

g=0

γgm

p∗−1
∑

t=0

trK/Fq

(

εtej

ℓ−1∑

b=0

ciu+g,bβ
∗
b

)

ε∗t

=
u−1∑

g=0

γgm

p∗−1
∑

t=0

ℓ−1∑

b=0

trK/Fq
(εtejβ

∗
b)ciu+g,bε

∗
t .

(29)

9

The equality (29) shows that
∑u−1

g=0 vi∗,gγ
gmCi∗u+g can be repaired by accessing the symbols ciu+g,b for which

trK/Fq
(εtejβ

∗
b) 6= 0 for t = 0, 1, · · · , p∗ − 1, j = 0, 1, · · · , pi∗ − 1 and b = 0, 1, · · · , ℓ− 1. Recall that all εtej are

in set {βi, i = 0, 1, · · · , ℓ− 1} and its dual basis is {β∗
b , b = 0, 1 · · · , ℓ− 1}. So, the amount of access symbols

is d̄up∗pi∗ = d̄uℓ/s̄. This amount of access symbols is the same as the low-access construction in [1] and [25].

�

When the number of failed nodes in host rack is more than u− v, the discussed code has asymptotical

UER (h, d̄ + 1)-optimal repair property. Combining the repair process in Theorem 2.5 and Theorem 3.3, we

have the following result.

Theorem 3.4 If the number h of failed nodes located in the same rack satisfies u − v < h ≤ u − 1, then

the repair bandwidth of the RS code C defined in (18) is less than (d̄+1)ℓh
s̄ . Moreover, this code has the error

correction capability and accesses ℓ/s̄ symbols on each of the nodes in d̄+1 helper racks in the process of repair.

4 Concluding remark

In this paper we proposed a class of MDS array codes and RS codes in the rack-aware storage system, and

showed that they have the UER (h, d̄)-optimal repair property when the number of failed nodes h ≤ u − v.

When u − v < h ≤ u, the discussed codes have asymptotical UER (h, d̄ + 1)-optimal repair property. It is

worthy of further designing MSRR codes and the corresponding repair scheme such that they have smaller

sub-packetization and optimal access property.

References

[1] Z. Chen and A. Barg, “Explicit constructions of MSR codes for clustered distributed storage: the

rack-aware storage model,” IEEE Trans. Inf. Theory, vol. 66, no. 2, pp. 886-899, 2020.

[2] Z. Chen, M. Ye and A. Barg, “Enabling optimal access and error correction for the repair of Reed-

Solomon codes,” IEEE Trans. Inf. Theory, vol. 66, no. 12, pp. 7439-7456, 2020.

[3] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright and K. Ramchandran, “Network coding for

distributed storage systems,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539-4551, 2010.

[4] S. Goparaju, A. Fazeli and A. Vardy, “Minimum storage regenerating codes for all parameters,” IEEE

Trans. Inf. Theory, vol. 63, no. 10, pp. 6318-6328, 2017.

[5] S. Gupta and V. Lalitha, “Rack-aware cooperative regenerating codes,” in Proc. Int. Symp. Inf. Theory

and Its Appl., pp. 264-268, 2020.

[6] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” IEEE Trans. Inf. Theory, vol. 63,

no. 9, pp. 5684-5698, 2017.

[7] H. Hou, P. Lee and Y. Han, “Minimum storage rack-aware regenerating codes with exact repair and

small sub-packetization,” IEEE Int. Symp. Inf. Theory (ISIT), pp. 554-559, 2020.

[8] H. Hou, P. Lee, K. Shum and Y. Hu, “Rack-aware regenerating codes for data centers,” IEEE Trans.

Inf. Theory, vol. 65, no. 8, pp. 4730-4745, 2019.

[9] Y. Hu, P. Lee and X. Zhang, “Double regenerating codes for hierarchical data centers,” in Proc. IEEE

Int. Symp. Inf. Theory (ISIT), pp. 245-249, 2016.

[10] L. Jin, G. Luo and C. Xing, “Optimal repairing schemes for Reed-Solomon codes with alphabet sizes

linear in lengths under the rack-aware model,” arXiv:1911.08016[cs. IT], 2019.

10

http://arxiv.org/abs/1911.08016

[11] R. Lidl and H. Niederreiter, Finite Fields. Cambridge, U.K.: Cambridge University. Press, 1984.

[12] S. Pawar, S. El Rouayheb and K. Ramchandran, “Securing dynamic distributed storage systems against

eavesdropping and adversarial attacks,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6734-6753, 2011.

[13] J. Pernas, C. Yuen, B. Gastón and J. Pujol, “Non-homogeneous two-rack model for distributed storage

systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1237-1241, 2013.

[14] K. V. Rashmi, N. B. Shah and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage

at the MSR and MBR points via a product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57,

no. 8, pp. 5227-5239, 2011.

[15] K. V. Rashmi, N. B. Shah, K. Ramchandran and P. Y. Kumar, “Regenerating codes for errors and

erasures in distributed storage,” in Proc. IEEE Int. Symp. Inf. Theory, pp. 1202-1206, 2012.

[16] N. Raviv, N. Silberstein and T. Etzion, “Constructions of high-rate minimum storage regenerating

codes over small fields,” IEEE Trans. Inf. Theory, vol. 63, no. 4, pp. 2015-2038, 2017.

[17] J.-Y. Sohn, B. Choi and J. Moon, “A class of MSR codes for clustered distributed storage,” in Proc.

IEEE Int. Symp. Inf. Theory (ISIT), pp. 2366-2370, 2018.

[18] J.-Y. Sohn, B. Choi, S. W. Yoon and J. Moon, “Capacity of clustered distributed storage,” IEEE

Trans. Inf. Theory, vol. 65, no. 1, pp. 81-107, 2018.

[19] I. Tamo, Z. Wang and J. Bruck, “Zigzag codes: MDS array codes with optimal rebuilding,” IEEE

Trans. Inf. Theory, vol. 59, no. 3, pp. 1597-1616, 2012.

[20] I. Tamo, M. Ye and A. Barg, “The repair problem for Reed-Solomon codes: optimal repair of single

and multiple erasures with almost optimal node size,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp.

2673-2695, 2018.

[21] M. A. Tebbi, T. H. Chan and C. W. Sung, “A code design framework for multi-rack distributed

storage,” in Proc. IEEE Inf. Theory Workshop(ITW), pp. 55-59, 2014.

[22] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array codes with optimal repair band-

width,” IEEE Trans. Inf. Theory, vol. 63, no. 4, pp. 2001-2014, 2017.

[23] M. Ye and A. Barg, “Explicit constructions of optimal-access MDS codes with nearly optimal sub-

packetization,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6307-6317, 2017.

[24] Z. Zhang and L. Zhou, “Rack-Aware regenerating codes with multiple erasure tolerance,”

arXiv:2106.03302[cs. IT], 2021.

[25] L. Zhou and Z. Zhang, “Explicit construction of minimum storage rack-aware regenerating codes for

all parameters,” arXiv:2103.15471 [cs. IT], 2021.

11

http://arxiv.org/abs/2106.03302
http://arxiv.org/abs/2103.15471

	1 Introduction
	2 MSRR codes with multiple erasure tolerance
	3 Rack-aware RS codes with multiple erasure tolerance
	4 Concluding remark

