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Abstract

Deep learning approaches have shown promising results in solving routing problems. However,
there is still a substantial gap in solution quality between machine learning and operations
research algorithms. Recently, another line of research has been introduced that fuses the
strengths of machine learning and operational research algorithms. In particular, search
perturbation operators have been used to improve the solution. Nevertheless, using the
perturbation may not guarantee a quality solution. This paper presents "Learning to Guide
Local Search" (L2GLS), a learning-based approach for routing problems that uses a penalty
term and reinforcement learning to adaptively adjust search efforts. L2GLS combines local
search (LS) operators’ strengths with penalty terms to escape local optimals. Routing
problems have many practical applications, often presetting larger instances that are still
challenging for many existing algorithms introduced in the learning to optimise field. We
show that L2GLS achieves the new state-of-the-art results on larger TSP and CVRP over
other machine learning methods.

Keywords Capacitated Vehicle Routing - Travelling Salesman Problem - Deep Learning - Learning to
Optimise

1 Introduction

Routing problems are an important class of combinatorial optimisation problems (COPs), which have many
real-life applications, e.g., supply chain and warehouse management, aviation planning, healthcare scheduling,
and hardware design [I]. Among the routing problems, the Travelling Salesman Problem (TSP) and Vehicle
Routing Problem (VRP) are the two most prevalent ones. TSP is defined as finding a tour of all cities/locations
where each city is visited only once and has a minimum total distance travelled. The VRP is to find the
optimal set of routes for a fleet of vehicles. VRP has many variants; one example is Capacitated vehicle
routing problems (CVRP) that aims to find a set of routes with minimum cost to fulfil customers’ demands
without violating the vehicle capacity constraints.

Routing problems [2] can be solved efficiently with many optimisation methods, including Branch-and-
Bound [3], Local Search (LS) [4], Lagrangian Relaxation [5] and Tabu Search [6]. A highly specialised
algorithm was designed for TSP, namely, Concorde [7], which is widely used as an exact TSP solver for
large instances. Nevertheless, solving larger instances is difficult for Concorde because of the exponential
growth in execution time with increasing instance size. Another approach is manually designed heuristics
that can discover close-to-optimal results [§] [9]. For example for CVRP, LKH3 [g] is widely used and is a
penalty-function-based extension of the classical Lin-Kernighan heuristic [8]. These two-classic algorithms
[7][8] are able to provide a solution with an average cost of 7.77 for 100 cities TSP and 15.65 for 100 customers
CVRP but with a long-running time. For instance, for 100 nodes TSP instances, Concorde [10] needs on
average one hour to solve one instance, and for 100 nodes CVRP instances, LKH3 needs on average 13 hours
to solve an instance.
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As highlighted, the traditional solvers have many issues. Recently, Deep Learning (DL) is used to learn
heuristics for solving routing problems [I1] [12] [13] automatically. They typically develop DL and Reinforce-
ment Learning (RL) frameworks to predict a complete solution from scratch. Their frameworks have shown
their competency to obtain an approximate solution to solve RPs. Once the learning-based methods are
trained, the execution time is fast. However, current learning-based methods have shortcomings. First, these
learning-based methods are designed to act as a constructive heuristic, such as constructing a solution to the
TSP sequence one node at a time. However, this model might not be scalable when there are a larger number
of nodes (customers). Second, learning-based methods rely on gradient information to guide the search
(greedy search or beam search), which may not be available because the solution space is undifferentiable
or finding a differentiable surrogate is difficult. In addition, another issue is that most of the work in the
Learning to Optimise (L20) field evaluated their models on randomly generated and easy to solve TSP and
CVRP instances and focused on solving instances up to 100 nodes. Scaling to large and real-world instances
is still an open question. Solving larger problems is highly time-consuming for most of the current operation
research algorithms [8] [I4], and [I5]. Therefore, all approaches including exact, heuristics and learning-based,
have strengths and weaknesses. Naturally, one may want to combine the strengths of operation research and
learning-based algorithms to build a mechanism for solving large routing problems efficiently.

There have been some previous approaches based on operation research algorithms and learning-based
heuristics and tested on TSP [16] and CVRP [17] [18] [19]. Hottung et al. [I9] used destroy operators
to improve solutions, while L2I [I7] used perturbation to escape local minima and combined with search
operators [I7] to improve solutions. However, perturbation operators have some issues, such as they do
not guarantee an improvement in the quality of the returned solution [20] for all the problems. L2I [I7]
demonstrated that when the magnitude of perturbation is too large, the resulting solution generally becomes
much worse, and the algorithm will take many improvement steps to repair the deterioration.

To address this challenge, we design a method that can scale to large instances that are quite common in
real-world problems. In our work, instead of using perturbation operators to avoid local minimum, our method
augments the cost function to include a set of penalty terms [21] and passes the new modification to LS.
The goal is to escape the local minimum and guide the LS process to distribute search efforts. Furthermore,
previous works never investigated which combination of search operators was successful for various routing
problems in the L20 field. The current literature focuses on algorithm optimisation performance rather than
a thorough examination of various operators. Since selected operators have an impact on the algorithm’s
efficiency, we also need to analyse them thoroughly. Hence, we analysed many combinations of LS operators
and constructed a rich set of LS operators to improve the solution [22] [23] [24]. One of the important
observations is that successful heuristics for the route optimisation problems do not necessarily require new
operators [25]. We investigate multiple operators and their combinations for the case of LS here. We consider
a group of operators, namely 2-opt [4], relocate [24], three permutations [22] and location swap [26] (all
operators are described in Section . The idea behind our method is to find a better solution through
search operations by taking improvement progressively into account, learning using RL instead of handcrafted
heuristics.

Our proposed approach can improve the initial solution, progressively guiding the search process using penalty
terms among feasible solutions using LS operator, followed by a reinforcement-based manager to learn the set
of LS operators that are more effective for the RP. Our main contributions are as follows:

o We propose a scalable learning-based algorithm that solve large scale routing problems, achieving
new state-of-the-art results. Proposed model can generalise on the benchmark datasets, such as
TSPLIB [27] and for CVRP, mentioned in Uchoa et al. [28]. Our algorithm outperforms Concorde on
TSP in terms of computation time and solution quality for randomly generated instances, that has
gained attention in the last few years for L20 algorithms.

e We propose a framework, where LS operators place in action. LS uses a set of penalty terms when
stuck in local minima and searches the promising areas of the search space, i.e., instead of changing
the search direction, our method dynamically changing the objective.

o The recent line of research using LS operators shows the potential to solve routing problems using
RL. Nevertheless, they used search operators without investigating which combination of operators
are effective. We studied a set of LS operators and a learning approach that automatically finds an
effective set of operators and the order to apply for routing problems.
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2 Related Work

DL and RL have recently been proposed to solve COPs. Learning-based method for routing problems
can be categorised as constructive [29] [12] [13] [30] [11] [31] [32] [33] [34] and improvement heuris-
tics [I8] [19] [35] [17] [16] [36]. Constructive methods tend to predict the next node given a partially
constructed tour and build up to a solution node by node. Improvement heuristics improve a solution by
iteratively performing search based on LS heuristics to improve the solution [37], where a neural network
guides a LS algorithm that iteratively finds promising solutions.

A pioneering work in this area is Pointer Networks (PN) [29] based on attention mechanism and a supervised
learning approach to solve TSP. It relies on having an existing set of good solutions or a good solver to
generate training instances. One recent paper used a supervised learning approach to train a small-scale model,
which could be repetitively used to build heat maps for TSP instances of arbitrarily large instances based on
graph sampling, graph converting and heat maps merging techniques. Then the heat maps are fed into a
reinforcement learning approach to guide the search for high-quality solutions based on the Monte Carlo tree
search [38]. In [I3], a constructive neural method was proposed that uses a recurrent neural network (RNN)
decoder and an attention mechanism to build solutions for the CVRP and uses an actor-critic RL for training.
A graph attention network is used in the method called AM [I1] and generates solutions for different routing
problems trained via RL, including TSP and CVRP. They trained their model using policy gradient RL with
a baseline based on a deterministic greedy roll-out. ERRL [32] is another RL based approach that introduces
more exploration via stochastic policies. POMO [33] introduced an end-to-end approach for building a
heuristic solver based on policy optimisation with multiple optima. Bresson et al. [34] proposed adapting the
popular Transformer architecture to solve TSP. Training is carried out through RL (without TSP training
solutions) and decoding uses beam search. Other lines of research are Deep Policy Dynamic Programming that
aims to combine the strengths of learned neural heuristics with those of dynamic programming algorithms [39]
and the improvement methods [I8] [19] [35] and [I7]. Many improvement methods have been developed
recently [19] [I8] [16] [35] [I7]. LHI [16] learns which combinations of local operators to apply to solve RPs.
RL20OPT [35] proposed a deep RL approach to learn an LS heuristic based on 2-opt operators. Chen et
al. [I8] focuses on improving heuristics and proposes an RL based improvement approach that chooses a
region of a graph representation of the problem and then selects and applies established local heuristics.
L2I [I7] proposed a combination of LS as an improvement operator and ML algorithm. To escape the local
minimum, they further improved the solution by a perturbation operator in L2I [17].

LS methods can easily get stuck in local minimum [40]. In the OR field, various meta-heuristics have been
proposed to avoid local optima. They show promising results to solve RPs [41] [42]. However, meta-heuristics
still require expert knowledge. Our work is similar to L2I [I7], but differs in two important aspects; we use a
different set of improving LS operators and we do not use perturbation operators to avoid local minimum.
Hence, to produce promising results, we refine LS operators for routing problems and to tackle the local
minima problems, we propose to include a set of penalty terms [21] that will adaptively guide the LS operators.

3 Preliminaries

In this section we first describe notation used in our approach, and we provide a formal definition of TSP,
CVRP, and LS operators used in our approach.

3.1 Notations
3.2 TSP

Let there be N nodes, each representing a city, and a matrix D = [d; ;], which gives the distance between
two cities ¢ and j. The goal in TSP is to find a sequence of cities (tour) that visits each city exactly once and
the total inter-city distance is of minimum length. A tour can be represented as a permutation 7 on the N
cities if we interpret 7(¢) to be the next city visited after city ¢ in the tour, ¢ =1,----- ,N, and n(N) = 1.
The objective of TSP can be written as:

L(m) = dem (1)
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Table 1: Summary of Symbols.

Symbols | Definition

n Nodes

m Coordinates of nodes

™ Permutation/Solution

L(m) Objective function

T Local minimum

h(m) Augmented Objective function
M Maximum roll out steps until
1 Improvement steps

S State

A Action

G_i Demand for customer sites for CVRP
C_i Capacity of vehicles for CVRP

po(A]S) | Probability distribution

3.3 CVRP

In CVRP, there is a depot and a set of N customers. Each customer i,7 € 1;---; N, has a demand G; to be
satisfied. There is a vehicle that makes a number of trips from the depot and serves a number of customers
until the vehicle’s total demand exceeds the vehicle’s capacity C', from which the vehicle has to return to the
depot. Similar to the TSP problem, the distance between two customers ¢ and j is denoted by [d;;]. The
traveling cost [d;;] is the cost of a vehicle going from node i to j, with 4;j € V =0;1;---; N. Here, the depot
is denoted by node 0 for convenience. The goal is to schedule a number of trips that has the minimal total
trip distance to serve all customers and respecting the vehicle capacity constraints for each trip and can be

mathematically written as:
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Where K is the number of vehicles available (without loss of generality, it is assumed that K = N for the CVRP
we consider), constraints (1) and (2) specify that each customer is visited exactly once, while constraints (3)

and (4) specify the in and out degree of the depot, respectively. Constraints (5) and (6) implies the vehicle
capacity requirements.

3.4 Local Search Operators

LS improve feasible solutions through a search procedure, i.e., it starts with an initial feasible solution and
replaces a previous solution with a more optimal solution. Figure [I] gives an illustration of LS operators used
in our model. The details of operators applied on routing problems are as follows:
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Figure 1: An illustration of LS operators.

3.4.1 2-opt

Croes et el [4] first introduced the 2-optimisation (2-opt) method, which is a simple and commonly used
operator. The idea of 2-opt is to exchange the links between two pairs of subsequent nodes. Figure [lal depicts
an example of 2-opt.

3.4.2 Relocate

[24] is the process where a selected node (target) is moved from its current position in the tour to another
position (destination). Hence, the position of the selected node is relocated. Each relocation of a node
produces one outcome. Relocate operator is presented in Figure(1b)).

3.4.3 Swap

[26] Node Swap is another simple optimisation heuristics: Node swap operator exchanges two locations.
Node Swap move is a special case of two subsequent 2-opt moves: the first including both cities and the
second without them. It involves removing four links and adding four new links. Therefore it is a specific
type of 4-opt move. Swap operator is illustrated in Figure

3.4.4 Three permutations

[22] idea is that three nodes can generate six different orders. Therefore given an existing sequence of three
nodes, can create five new solutions. Figure shows that changing the original order of three nodes can
result in a better solution.
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Figure 2: An illustration of a problem instance after applying a set of operators for two routes. Current
solution changes to a new solution with dashed lines replaced by red line for the problem CVRP respectively.

4 Learning to Guide Local Search (L2GLS)

This section introduces our “Learning to Guide Local Search” (L2GLS) algorithm. Figure [3|illustrates an
overview of our approach. Our algorithm starts with a feasible solution and continuously improves the
solution using LS operators. L2GLS exploits problem and search-related information to escape local minimas
by augmenting the objective function of the problem with a set of penalty terms. The penalty terms are
adaptively adjusted and reflects the degree that a solution feature causes a solution to be sub-optimal and
candidate for further local improvement. This avoids ad-hoc perturbations to escape local minimal. We found
this strategy is able to converge to good solutions faster.

Our method follows threshold-based rules to decide whether we should continuously improve the current
solution using LS operators or apply the penalty term. If our RL-based manager decides that the current
solution could still be improved, it chooses one LS operator to improve it. When no objective value reduction
is made for a pre-determined I number of applied actions (which are operators applied), we consider that the
LS has reached a local optimal and the RL-based manager chooses to use penalty term to escape this local
optimal. If after M times of reaching a local optimal and applying the penalty terms still result in no cost
reduction across these M runs, then the algorithm and search terminates and the best solution of these runs
is returned. Having described our overall method, we are now ready to present the details of our RL-based
manager.

4.1 Reinforcement Learning based Manager

The main component of L2GLS is a RL based manager that guides the search by adaptively selecting which
LS operators to use in each iteration and their parameters (e.g, which nodes to apply the operator). It will
also detect if there has not been improvement in the solution for a few iterations to determine when we reach
a local optima. Then uses the penalty term with adaptive weights to escape the local optima. We will detail
these components in the following.

The RL-based manager is a deterministic model, which is defined by the tuple (S, A, T, R, P), where S is
the states, A is the actions, T is the deterministic transaction function (7: S x A — S), R is the reward
function (R: S x A — R) and = is the policy (7 : S — A). We define each of this and relate them to the
optimisation problem.

4.1.1 States

Each state represents the problem instance and a solution, and made up of problem-specific and solution-specific
features. Problem-specific features include the node location, and demand of each node for CVRP, and they
are considered problem-specific because they are associated with the problem and invariant across solutions.
Solution-specific features are based on the given solution. For each node, we compute its neighbouring nodes
that are visited before and afterwards along with their relevant distances. State also includes recently taken
actions and the effects of the actions. We follow the L2I [I7] approach for the state. Next, we describe
the features. First, we introduce the description of all the features for TSP, where the location of node i is
represented by (mg,n;), for a 2D location, but this can be generalised to more than 2 dimensional spaces.
Previously visited location of node i is denoted by (m;-,n;-) and the location visited after i is (m;+, n;+).
The neighbouring nodes distance from i~ to i is (d;- ;), distance from 4 to i* is (d; ;+), and distance from i~
toiT is (d;- ;+). The state also includes the action taken previously and the effects caused by taking the step,
i.e., the actions taken h steps before, denoted as a;—_p, and their effects is denoted by e;_;. For example,



A PREPRINT - SEPTEMBER 20, 2021

at—n, 1 < h < H, is the action taken h steps before current step t, and its effect e; 5 is +1 if the action led
to a reduction of total distance, -1 otherwise. All the features for CVRP are the same as TSP, except along
with the customer location (m;,n;), we have additional tuple dimensions of the demand of each customer 4,
denoted by G, and the free capacity of the route containing customer i denoted as Cj.

4.1.2 Actions

L2GLS actions involve selection of appropriate LS operators and their operands to apply to current solution
to improve it. Each action is a tuple (o0, ¢), where o € O are the set of LS operators and ¢ € ® is the
parameters associated with the operators, e.g., remove two edges and reconnect their endpoints in the 2-opt
operator (note that ¢ will be different for each operator). For a given problem, the same operator with
different parameters may perform differently. Consequently, each operator with different parameters act as
separate actions and we let the RL model learn how to use them best. Please refer to the Supplementary
material to see a description of how the LS operators work.

4.1.3 Transition Function and Policy Networks

The transition function is deterministic, i.e., given current state and an action, it will always transit to only
one next state. However in terms of learning a policy to guide the actions, the state and action spaces are very
large, and it is not feasible to be able to see every possible combination of these to train the policy. Hence we
adopt a policy gradient approach to do so, i.e., use a neural network to learn and represent the policy. In a
policy gradient approach, a neural network, also known as a policy network, represents the policy, i.e., the
mapping function from input states to output actions. This network is defined by a set of hyper-parameters
f and outputs a probability distribution of actions given an input state. Given a state .S, our model defines a
probability distribution Pg(A|S), from which we can sample actions to obtain a solution tour 7. In order to
train our policy network, we define the loss of the policy as £(0]S) = E,p,(.|s)[L(7|S)] Ya € A (where . is
over all actions), which is the expectation of solution (m) given the probability distribution of py(.|S) from
which we can obtain actions given state. We optimise £ by gradient descent, using the REINFORCE [43]
gradient estimator with baseline b(S):

VL(0|S) = Exnpy(19)[(L(7]S) = b(5))) Velog Po (| 5)] (2)

We sample solutions and compare it with baseline b(S). We use baseline b(.S) to reduce gradient variance
(adjusting the probability proportion to result we get compare to the baseline) and speed the learning process.
We use ADAM [44] as optimiser. Problem-specific and solution-specific states are transformed into an
embedding. The embeddings are then fed to the attention network (see Supplementary for the overview of
the policy network). In the policy network, we first fed the problem-specific states to the attention network
as an embedding, then the output of the attention network is concatenated with a sequence of recent actions
and their effects (solution specific states). Lastly, the output of the attention network is fed into a network of
two fully connected layers, producing action probabilities.

4.1.4 Rewards

We experiment with two reward functions that were also used in [I7]. The first reward is if an selected action
(operator and parameters) results in a reduction of the objective value of the current solution, the reward is
+1; otherwise, -1. The second reward is defined over a larger range of values. During the first improvement
iteration, the objective value attained for the solution is taken as a baseline. For each subsequent iteration,
the reward for an operator is equal to the difference between the objective values achieved after applying the
operator and the baseline. Similar to [I7], we found there is generally a diminishing improvement in latter
iterations hence we give the same reward for all operators applied in one iteration.

4.2 Penalty Term

The penalty term aims to identify solution features that contribute significantly towards the overall cost of a
solution and encourage their replacement in the tour. It does this by adding penalty terms to these features.

The penalty term uses two types of information: one is the cost of each feature to the solution and the set of
features currently in the solution. This information is transformed into constraints on features which then
are incorporated in the cost function using the adjusted penalty terms. Constraints on features are made
possible by augmenting the cost function L(7) of the problem to include a set of penalty terms.
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The high-cost features are being penalised. For example, in the TSP, the features are the travel costs between
pairs of cities, and generally high intercity distances in a tour are not desirable, though we can not exclude
them from the beginning because they may be needed to connect remote cities in the tour.

When the search is stuck in a local minimum, our RL manager modifies the parameters on the penalty
term [21] to encourage/discourage certain solution features and subsequently calls on LS to improving the
solution using the augmented objective function, defined as follows:

h(m) = L(x) + A+ Y _pi- Li(x) (3)

where F' is the number of features for the problem instance, p; is the penalty parameter corresponding to

feature f; and A is a regularisation parameter for the penalty terms. An indicator function I;(7) indicates

whether the solution feature i is part of the solution 7 (hence we only penalise and consider features that are

part of the current solution).

1, solution 7 has feature ¢

I; = ’ 4
(™) {0, otherwise (4)

The penalty parameter p; gives the degree up to which the solution feature f; is constrained. The regularisation
parameter A\ represents the relative importance of penalties with respect to the solution cost and has great
significance because it controls the influence of the information on the search process. L2GLS iteratively
uses LS to improve the solution and increments some of the parameter parameters py,- - -, pr, each time LS
converges to a local minimum. To determine which penalty parameter to increment, the following utility
function is computed for each feature:

d;
5
14+ p; 5)

where d; is the cost (e.g., intercity travel distance for TSP) of the feature f;. When at a local minimum
(denoted as 7r,) recall we seek to penalise those solution features that contribute most towards the current
solution. The feature(s) that have the maximal utility have their penalty parameters incremented to penalise
them (see Equation [3)), which is used by our RL based manager to guide LS operators. But we also do
not wish to continually penalise the same features (ones with the largest d;). Hence the utility function is
proportional to feature cost d;, but weighted by the inverse of (1 + p;), which gets larger as we penalise a
feature more, and subsequently reduces the utility function as that feature is penalised more. This allows
other features to be considered over time to be penalised and increases the searching.

U(rr, fi) = Li(me) -

Initially, all the penalty parameters are set to 0 (i.e., no features are constrained), and when LS is searching,
a call is made to LS to find a local minimum of the augmented cost function using Equation [3] After each
local minimum, the algorithm takes a modified action (with LS operators) on the augmented cost function
and uses LS starting from the previously found local minimum. Information is inserted in the augmented
cost function by selecting which penalty parameters to increment (e.g., sources of information are the cost of
features (edges between two nodes cost) and the local minimum itself). That is how our algorithm offers
guidance to the LS.

5 Evaluation Setup

For the two problems we are focusing on in this paper, TSP and CVRP, we follow the evaluation setups of
AM [11] and L2T [I7], which are two state-of-the-art approaches for these problems. All reported metrics,
such as the final travelling cost and the running time, are always computed as the average over 1000 randomly
generated instances/samples.

5.1 Problem Specific Setup

For both problems, we generate the training instances where the coordinates of each node are sampled in a
uniformly random way from the unit square [0; 1] x [0; 1]. For TSP, we generated instances with N = 20;
50; 100 nodes and consider these as a small sized TSP problem. Most of the previous work evaluated their
models with these sizes, so we seek to first show the performance of L2GLS on small problems. For a large
problem, we generated instances with N = 200; 500; 1000 nodes.

For CVRP, we solve the problems with a setup as described in L2I [I7]. The location (m;;n;) of each
customer, as well as of the depot, is uniformly sampled from a unit square (specifically, m;;n; are uniformly
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distributed in the interval [0;1], respectively), and the travelling cost between two locations d;;; is simply
the corresponding distance. The demand G; of each customer is uniformly sampled from the discrete set
{1,---,9}. We consider instances with N = 20; 50; 100 nodes as a small problem, where the capacity of a
vehicle is 20, 30, 40 for N = 20; 50; 100, respectively. Similar to TSP, a large problems consists of N = 200;
500; 1000 nodes. We keep the capacity of the vehicle 50 for all sizes of the large problems.

5.2 Policy Network Settings

Our method is directly comparable to L2I [I7], hence to train the model we use the same parameters setting
for fair comparison. We use ADAM with a learning rate of 0.001. Unless otherwise stated, we randomly
initiate a feasible solution for a problem instance and a given policy and then iteratively update the solution
following the policy M = 40000 times. After I = 6 consecutive improvement steps, we use the penalty term.
In After a maximum number of rollout steps, the algorithm stops and among all the 40000 visited solutions,
we choose the best as the final solution for a given problem instance. We selected the values of A\ as constant
(in the equation , because with the constant value 0.3 was recorded best performance during training.
Performance metrics used in the paper includes total travelling cost/distance and the computational running
time, which are computed as the average over 1000 random instances. For encouraging exploration, we use a
greedy [45] approach, where the RL manager will choose a random improvement action with a probability of
0.05 following [17]. Lastly, L2GLS was implemented in Python, on a workstation with an Intel Xeon 2.4 GHz
CPU with 56 cores.
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Figure 3: Overview of the Learning to Guide LS Algorithms. L2GLS hierarchy framework. 1: Given a
problem instance, our algorithm first generates a feasible solution. 2: RL-based manager selects a search
operator. 3: Update the solution 4: After I improvement steps if no reduce in travelling length means LS
stuck in a local minimum. 5: The RL-based manager again take control to take decision. 6: RL-based
chooses to include a set of penalty terms. 7: LS is called again to minimise the cost function. 8: After a
certain number of steps (M steps), the model choose the best solutions.

6 Experiments and Analysis

The evaluation procedure used in this study involves:
e We evaluated our method using the large instance to show the method’s scalability. Few papers
considered the large scale instances for TSP and CVRP;

e The model is evaluated using various small scale random instances, as previous neural network-based
approaches typically focus on randomly generated small scale data.

e Computational running time analysis for small and large scale instances.

o To demonstrates generalisation ability, we compare the quality of solutions of our method with the
benchmark TSP instances from the TSPLIB library [27], where we tested ‘thirty-nine’ Euclidean
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Table 2: Experiment results on small TSP. Average tour length, gap percentage (lower is better, bold is
best). Results with * are reported from other papers. (#*) means the value reported for the problem size
outperformed all the methods, including the optimal one for TSP. (—) means Bresson et al. [34] method
never tested on TSP20 instance.

Method TSP20 TSP50 TSP100
Solver TourLs Gap TourLs Gap TourL Gap
Concorde [7] 3.84 0.00% | 5.70 0.00% | 7.77 0.00%
Heuristics

LKH3 [3] 3.84 0.00% | 5.70 0.00% | 7.77 0.00%
Constructive (SL)

GCN* [46] 3.86 0.52% | 5.87 2.98% | 8.41 8.23%
NETSP-Net [31] 3.85 0.26% | 5.85 2.63% | 8.31 6.94%
Fu et al.* [38] 3.83 ok 5.69 Hok 7.76 %
Constructive RL)

AM [11] 3.87 0.78% | 5.80 1.75% | 8.15 4.89%
ERRL [32] 3.83 0.78% | 5.73 1.75% | 7.85 4.89%
POMOI33] 3.83 Hok 5.73 1.75% | 7.84 7.07%
Bresson et al.* [34] - - 5.69 HE 7.81 7.07%
Improvement

LHI*[16] 3.83 ** 5.74 0.71% 8.01 3.08%
L21. [17] 3.84 0.00 5.72 0.7% 7.90 1.67%
RL20OPT . *[35] 3.84 0.00 5.72 0.7% 7.91 1.80%
L2GLS(Ours) 3.72 ** 5.65 *x 7.69 FE

instances. For the first time, in the L20 field, we evaluated our model up to 1002 benchmark
instances, achieving close to the optimal solution. Moreover, we also compare the solution quality
of our method using various scenarios of CVRP benchmark instances from [28]. Demonstrate the
model generalisation using various training and testing sizes of instances for TSP and CVRP. Due to
space limitations, we presented these results in a supplementary document.

e We illustrate the impact of L2GLS variants and evaluated on randomly generated instances for TSP
and CVRP. Moreover, we compare L2GLS performance with and without using penalty terms on
TSPLIB [27].

Table 3: Experiment results on small CVRP. Average tour length and gap percentage (lower is better, best in
bold). Results with * are reported from AM ([I1I]) and Chen et al. [I8]. (**) means the value reported for
the problem size outperformed all the methods, including the optimal one for CVRP.

Method CVRP20 CVRP50 CVRP100
Solver TourL  Gap(%) | TowrL  Gap(%) | TourL  Gap(%)
LKH3 [3] 6.14 0.00 10.39 0.00% 15.67 0.00
Heuristics

Or-tools* 6.43 4.73 11.43 10.00 17.16 9.50
Constructive

AM [11] 6.67 8.63 11.00 5.87 16.99 8.42
Nazari et al. [I3] | 7.07 15.14 11.95 15.01 17.89 14.16
POMOI33] 6.35 3.42 10.74 3.36 16.15 3.06
ERRL [32] 6.34 3.25 10.77 3.65 16.35 4.02
Improvement

Chen et al. [18] 6.16 0.3 10.51 1.15 16.10 2.72
LIH. [16] 6.16 0.26 10.72 0.35 16.30 1.60
L2I [17] 6.12 Hok 10.35 *ok 15.57 ok
L2GLS (Ours) 5.85 *x 10.30 ** 14.67 *x

Table 4: Experiment results of average tour length on large TSP and CVRP (lower is better, best in bold).

(a) TSP (b) CVRP
Method TSP200 | TSP500 | TSP1000 Mothod | CVRP200 | CVRP500 | CVRP1000
Solver TourL TourL TourL
R — Solver TourLs TourL TourL
Concorde [7] | 10.15 16.542 23.130
: Lol [T | 284 64.68 128.49
L21 [I7] 10.95 17.68 26.13 L2GLS | 24.69 60.67 124.29
L2GLS 10.10 16.12 22.37

6.1 Performance analysis: Small scale TSP and CVRP instances

In this section, we report the performance of our method on various sizes of small scale instances for TSP
and CVRP.
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Figure 4: Average computation time for smaller TSP and CVRP.

6.1.1 TSP

Table [2] reports the performance of L2GLS and baseline methods. We have five different baseline approaches
in Table [2} solver Concorde [7], heuristics [8], learning methods using constructive heuristics, supervised
and RL approaches; and improvement heuristics namely LHI [I6], RL20PT [35] and L2I [I7]. There are
several ML models in the literature, but they all produce poor performance compare to our approach, thus
being omitted here. Our approach outperformed all recent learning method, presented in Table [2] Note that
the L2GLS method produces state-of-the-art results for TSP and to the best of our knowledge is the first
learning-based framework that outperforms Concorde [I0] for the random dataset.

6.1.2 CVRP

Table [3] reported the performance of L2GLS methods for CVRP, there we compare our method against
the current RL algorithms [I3] [I1] [17] [16] [32]. In particular, the average tour length achieved by L2GLS
is substantially shorter than LKH3 [8]. L2GLS also outperforms all the neural network-based approaches,
including recent works by Chen et al. [I8] and L2I [I7]. Our algorithm generates state-of-the-art results for
TSP and CVRP for small problems.

6.2 Scalability Analysis: Large Scale TSP and CVRP instances

In this section, we compared the L2GLS performance to a most recent state of the art learning-based approach
L21 [17] for large sized problems, as we discussed previously, most state of the art works have not evaluated
on due to their lack of scalability. Tables [4a] and [AD] reports the results of large TSP and CVRP instances
respectively. Our method significantly outperforms L2I [I7] for all the TSP and CVRP instances, even for a
large number of nodes N=1000. For CVRP1000, we averaged over 200 instances instead of 1000 instances
due to time constraint.

6.3 Computational Running Time Analysis

Comparing the algorithms’ efficiency in terms of execution time is difficult due to varying hardware and
implementations among different approaches. So for fair comparison, we performed experiment on the same
hardware we used for our work. We compare the inference time with a recant improvement based approach
L2I [I7] using their publicly available code B For TSP Figures illustrate that L2GLS is efficient
compared to Concorde [I0]. For example, to solve TSP100, Concorde [10] needs approximately 60 minutes,
whereas L2GLS required only 11 mins to solve (Figure. Given 1000 random instances. L2GLS significantly
reduces the running time for all instances compare to Concorde [10] L2I [I7] for all problem sizes of TSP
without sacrificing finding optimal tours, as shown in Figure [4a] For CVRP, the running time for LKH3
is rapidly increases when the problem size is large (Figure |4b]). For example, to solve CVRP100, LKH3
needs 780 minutes, whereas L2GLS requires only 17 minutes, as shown in Figure [db] L2GLS allows notable
reduction in the run time with good quality solution compare to L2T [17].

"https://github.com /rlopt /12
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Figure 5: Average computation time for larger TSP and CVRP.

We also run experiments with larger instances with sizes up to 1000 nodes where results are summarised
in Figure The Figure [5a] shows that L2GLS saves more running time compared to Concorde [7]. For
example, in terms of TSP1000 problems, Concorde [10] needs on average 796 minutes to solve a problem.
However, L2GLS only need 47 minutes to solve the same problems, as shown in Figure Compared with
L2 [17], L2GLS uses less average running time and tour length.

In the case of CVRP, It is evident from Figure [4D] that the running time of LKH3 grows with an increase
in number of nodes, i.g., for CVRP100 size, LKH3 takes 780 minutes. Therefore, we fairly compared the
running times with the L2I [I7] methods to show the efficiency of our method for CVRP200, CVRP500 and
CVRP1000. The results are presented in Figure Specifically, in terms of running time, our method not
only is more efficient when compared to LKH3, but also outperformed L2I [I7], as illustrated in Figure
and [

It is worth noting that for smaller and larger randomly generated instances, L2GLS can generate solutions
faster than the state of the art algorithms, i.e., Concorde for TSP and LKH3 for CVRP (4|and .

6.4 Generalisation - L2GLS method

In this section, we will show how our method can generalise well to benchmark libraries. Specifically we
utilise TSPLIB instances [27] which are generally used to compare TSP algorithms and data proposed by
Uchoa et al. [28] for CVRP. In addition, we evaluate our method’s generalisation performance on different
problem sizes of TSP and CVRP, where we trained and tested on different size of benchmark datasets.

6.4.1 Benchmark (TSPLIB)

L2GLS model was trained on randomly generated 50 nodes of instances. Our aim in these experiments are
to know to what extent the learned algorithm generalises to benchmark instances. The distribution of the
instance, such as node locations, is completely different from those we used in the training instance. We
compare our method with S2VDQN [47], AM [I1], LHI [16] and L2I [I7], the results are shown in Table
which demonstrates that L2GLS outperformed all the learning-based approaches most of the instances.
Moreover, the heuristic solver OR-Tools generates inferior solutions compared to L2GLS [27]. We tested
L2GLS methods on the 39 TSP instances up to size 1002 instance from TSPLIB [27] in Table For all the
scenarios, L2GLS obtain a small gap compare to Concorde [7] and outperformed all the neural network-based
approaches. All the recent works only evaluated their methods up to 299 nodes, but to show the capability of
our approach, we tested another three instances, namely Lin318, Pr439 and Pr1002. As shows in Table [5] our
algorithm outperforms the prior ML based approaches in terms of solution quality. For three large instances
we compare our method with L2I [I7]. Our L2GLS optimality gap is 2.74% 3.77% and 1.19%, whereas
L2I [17] gap is 5.04% 5.50% and 5.76% for Lin318, Pr439 and Pr1002 problem instances respectively. Table
also shows L2GLS outperformed Concorde [7] for some instances (denoted as # in Table , such as pr107,
prl44 and ul59. However, we emphasise that the aim is not to outperform Concord but to show L2GLS
performs well.
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Table 5: TSPLIB results: Instances are sorted by increasing size, with the number at the end of an instance’s
name indicating its size. Values reported are the cost of the tour found by each method (lower is better, best
in bold). Gap (%) is the gap to the solution obtained by Concorde [7]. The results marked * reported from
S2VDQN [47] and marked { reported from LHI [I6]. #* means (column: Gap%) our model performed better
than solver, no gap reported.

Problems L2I Or-tools S2VDQN* AMTt LHIf L2GLS
TourL, Gap(%) | TourL Gap(%) | TourL Gap(%) | TourL Gap(%) | TourL Gap(%) | TourL Gap(%)
Eil51 430 0.93 436 2.34 439 3.05 435 2.11 438 2.81 428 0.46
Berlin52 7,694 2.01 7,945 5.34 7,542 0.00 7,668 1.67 8,020 6.33 7,544 0.026
St70 683 1.85 683 1.18 696 3.11 690 2.22 706 4.59 679 0.29
Eil76 551 2.41 561 4.27 564 4.83 563 4.64 575 6.87 546 1.48
Pr76 108,871 0.65 111,104 2.72 108,446 0.26 111,250 2.85 109,668 1.39 108,159 0.00
rat99 1,257 3.79 1,232 1.73 1,280 5.69 1,319 8.91 1,419 17.17 1,221 0.82
KroA100 22,036 3.54 21,448 0.78 21,897 2.88 38,200 79.49 25,196 18.39 21,650 1.72
KroB100 22,452 1.40 23,006 3.90 22,692 2.48 35,511 60.38 26,563 19.97 22,191 0.22
KroC100 21,258 2.45 21,583 4.01 21,074 1.56 30,642 47.67 25,343 22.14 20,820 0.34
KroD100 22,102 3.79 21,636 1.60 22,102 3.79 32,211 51.26 24,771 16.32 21,514 1.03
KroE100 22,875 3.65 22,598 2.40 22,913 3.82 27,164 23.09 26,903 21.90 22,152 4.02
rd100 8,132 2.80 8,189 3.52 8,159 3.14 8,152 3.05 7,915 0.06 7944 0.42
eill01 654 3.97 664 5.56 659 4.76 667 6.04 658 4.61 642 2.06
Lin105 14,700 2.23 14,824 3.09 15,023 4.47 51,325 256.94 18,194 26.53 14,406 0.18
prl07 44,807 1.13 45,072 1.73 45,113 1.82 205,519 363.89 53,056 19.75 44,301 FF
prl24 59,935 1.53 62,519 5.91 61,623 4.39 167,494 183.74 66,010 11.82 59,030 0.00
bier127 120,699 2.04 122,733 3.76 121,576 2.78 207,600 75.51 142,707 20.64 119,281 0.84
Ch130 6,318 3.40 6,470 5.89 6,270 2.61 6,316 3.37 7,120 16.53 6.178 1.11
prl36 98,728 2.02 102,213 5.62 99,474 2.79 102,877 6.36 105,618 9.14 98680 0.50
prl44 59,895 2.31 59,286 1.27 59,436 1.53 183,583 213.61 71,006 21.30 58,535 K
Ch150 6,779 3.84 7,232 10.78 6,985 7.00 6,877 5.34 7,916 21.26 6,606 1.19
KroA150 27,307 2.95 27,592 4.02 27,888 5.14 42,335 59.61 31,244 17.79 27,248 2.72
KroB150 26,563 19.97 23,006 3.90 27,209 22.88 35,511 60.38 26,563 19.97 22,381 1.08
prl52 75,196 1.05 75,834 2.92 75,283 2.17 103,110 39.93 85,616 16.19 74,204 0.70
ulds9 43,220 2.70 45,778 8.78 45433 7.96 115,372 174.17 51,327 21.97 42,075 **
rat195 2,403 3.44 2,389 2.89 2,581 11.10 3,661 57.59 2,913 25.39 2,368 1.93
d198 16,349 3.60 15,963 1.15 16,453 4.26 68,104 331.58 17,962 13.82 16,244 2.94
KroA200 30,617 4.25 29,741 1.27 30,965 5.43 58,643 99.68 35,958 22.43 29,736 1.25
KroB200 30,925 5.05 30,516 3.66 31,692 7.66 50,867 72.79 36,412 23.69 30,154 2.43
ts225 129,638 2.36 128,564 1.51 136,302 7.62 141,628 11.83 158,748 25.35 126,645 0.001
Tsp225 3,995 2.01 4,046 3.31 4,154 6.07 24,816 533.7 4,701 20.04 3,940 0.16
pr226 87,160 8.44 82,968 3.23 81,873 1.87 101,992 26.90 97,348 21.12 81,756 1.72
gil262 2,534 6.56 2,519 5.92 2,537 6.68 2,693 13.24 2,963 24.60 2,451 3.06
pr264 56,191 14.36 51,954 5.73 52,364 6.57 338,506 588.93 65,946 34.21 50,528 0.00
A280 2,751 6.66 2713 5.19 2,867 11.16 11,810 357.92 2,989 15.89 2,672 3.60
Pr299 53,753 11.54 49,447 2.60 51,895 4.95 513,673 938.83 59,786 20.90 52,827 7.68
Lin318 44,151 5.04 - 45,375 7.96 - - - - 43,184 2.74
Pra39 113,124 5.50 - - - - - - - - 111,269 3.77
Pr1002 273,970 5.76 - - - - - - - - 262,150 1.19

6.4.2 Practical Instances (CVRP)

This section evaluated L2GLS methods with the CVRP benchmarks [28], where each instance is characterised
by the following attributes: number of customers, depot positioning, and customer positioning. The details of
each attribute are described in the supplementary. This data distribution is commonly used in the OR field.
We have evaluated L2GLS on various scenarios of CVRP benchmark instances. We utilised three sizes of the
CVRP dataset with some additional scenarios following the data generation proposed in [28]. We further
combined the customer and depot positioning and reported nine scenarios, namely random, central and
eccentric depot positioning, combined with random, clustered and random-clustered customer positioning.
Table [6] shows the impact of depot positioning while using different customer position. This experiment which
demonstrates that L2GLS works over different data distribution ( on nine different data distributions).

6.5 Ablations

To evaluate the value of a different set of LS operators, we run four variants of L2GLS, i.e., L2GLS, L2GLS2,
L2GLS3 and L2GLS without penalty terms. L2GLS consists of (20pt + relocate + swap + threepermutation)
with penalty term that our main method, L2GLS2 consists of (20pt + relocate + swap), L2GLS3 consists
of (20pt 4+ swap + threepermutation), and L2GLS without penalty terms consists of operators (2opt +
relocate + swap + threepermutation) without the penalty term.
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Table 6: CVRP instances analysis using nine different scenarios, namely random, central and eccentric depot
positioning combine with random, clustered and random-clustered customer positioning. Values reported are
the cost of the tour found.

Problems => CVRP20 | CVRP50 CVRP100
Depot Position Customer Position
Random Random 5.86 10.37 15.60
Random Clustered 4.82 8.46 13.45
Random Random-Clustered 5.86 10.31 16.59
Central Random 5.07 8.79 13.59
Central Clustered 3.74 6.43 9.96
Central Random-Clustered 5.07 8.25 12.4
Eccentric Random 7.42 13.53 20.89
Eccentric Clustered 6.05 10.86 17.46
Eccentric Random-Clustered 7.35 13.14 19.55

Table 7: Comparison of our different methods (combination of LS operators), L2GLS, L2GLS2,L.2GLS3,
L2GLS without penalty term.

(a) TSP results. (b) CVRP results.
TourLs TourL TourL TourL TourLs TourL
TSP TSP20 | TSP50 | TSP100 CVRP CVRP20 | CVRP50 | CVRP100
L2GLS 3.72 5.67 7.69 L2GLS 5.85 10.30 14.67
L2GLS2 3.80 5.72 7.80 L2GLS2 6.12 10.5 0 16.54
L2GLS3 3.80 5.74 7.80 L2GLS3 6.17 11.00 17.70
L2GLS without penalty | 3.72 5.69 7.72 L2GLS without penalty | 5.86 10.37 15.60

The goal of this experiment is to analyse the impact of a different set of LS operators. As we mentioned earlier
we implemented and experimented with a set of LS operators and concluded with the L2GLS method, which
is a combination of 2-opt, relocate, swap, and three permutations with penalty terms that is computationally
efficient and able to produce state-of-the-art results for TSP.

6.5.1 Evaluation of the four variants of L2GLS on Random TSP and CVRP instances

Tables [7al and [7b| illustrate the performance of a different set of search operators to solve random TSP and
CVRP problem instances. Each variant used the same neural network architecture, to evaluate the effect of
the search operators on the solving results. It can be observed that using a different variant of operators
impacts the solution quality. The best TSP and CVRP results are obtained by L2GLS among all the variants.
From Tables [7al and it can be seen that L2GLS3, by not using relocate, generates significantly worsen
results for TSP and CVRP.

6.5.2 Evaluation of two variants of L2GLS on TSPLIB instances

Among the four variants, L2GLS and L2GLS without the penalty term performed close to the optimal
solution Concorde [7] shown in Tables [7a] and [7b| for random instances. Therefore, we selected benchmark
from our Table [5] and evaluated our model without penalty term to check how our model performed. From
Table [§] it is clear that using penalty term with LS operators significantly improves over only using LS
operators to solve the problems.

We demonstrated that our method outperformed recent approaches. The potential for better performance is
the choice of heuristics used as LS operators. As many LS operators are effective and efficient for solving COP,
therefore, in [25] states that well-implemented LS creation can compete with the best heuristics. Misztal et
al., [20] studied that swap belongs to a group of the LS algorithm characterised by the good quality of the
returned solution. In [22] they concluded the 2-opt is the best individual operator, besides the mixed variant
of operators found the optimum solution for many cases. In this work, we investigate different operators,
which is a mixed variant of operators (2opt + relocate + swap + threepermutation). Moreover, we have
introduced penalty terms, which contributes to significantly improved results for RPs. When searching stuck
in local minima, we use penalty terms to improve the solution further; therefore, our result shows that these
combined operators yield better solutions for most instances from TSPLIB [27].

14



A PREPRINT - SEPTEMBER 20, 2021

Table 8: Compared two L2GLS variants: L2GLS and L2GLS without penalty term, results are reported for
TSPLIB. #* means (column: Gap%) our model performed better than solver, no gap reported. Bold means
better.

Problems Concorde L2GLS without Penalty L2GLS
TourL Gap(%) | TourL Gap(%) TourL Gap(%)

St70 675 0.00 679 0.59 677 0.29
Pr76 108,159 0.00 108,570 0.37 108,159 0.00
rat99 1,211 0.00 1,223 0.99 1,221 0.82
KroA100 21,282 0.00 21,866 2.74 21,650 1.72
rd100 7,910 0.00 8,010 1.26 7944 0.42
Lin105 14,379 0.00 14,565 1.29 14,406 0.18
prio? 14,303 0.00 14,527 0.50 44,301 **
Ch130 6,110 0.00 6,192 1.39 6,178 1.11
pridd 58,537 0.00 58,781  0.44 58,535 %
KroA150 26,524 0.00 27,408 3.33 27,248 2.72
ulb9 42,080 0.00 42,645 1.35 42,075 kK
d198 15,780 0.00 16,341 3.55 16,244 2.94
ts225 126,643 0.00 129,248 2.05 126,645 0.001
Tsp225 3,916 0.00 3,940 2.83 3,940 0.16
Pr299 48,191 0.00 52,827 9.62 51,895 7.68

Table 9: Trained with TSP50. Average tour length, gap percentage (lower is better, best in bold).

TourLs TourLs TourLs
TSP TSP20 TSP50 TSP100
Concorde | 3.84 5.70 777
L2GLS 3.72 5.69 7.72
CVRP CVRP20 | CVRP50 CVRP100
LKH3 [§] 6.14 10.39 15.67
L2GLS 5.86 10.52 15.9

6.6 Various test and training

One of the aims of the proposed methods was to ensure its generalisation on different problem sizes of
TSP and CVRP. We trained the model with TSP50, used to solve TSP20, TSP50, TSP100, and CVRP20,
CVRP50, CVRP100 presents the result in Tabld9] We trained the same model with TSP50, used to solve
TSP20, TSP50, TSP100, CVRP20, CVRP50, CVRP100, and present the result in TabldI0] We show that
L2GLS can generalise to different problem distributions even when trained on different sizes and problems.

7 Conclusion

We proposed L2GLS for solving RPs, which starts with an initial solution and improves the solution with LS
operators selected by an RL-based manager or with penalty terms to guide the LS further to improve the
solution. We also analysed distinct choices of LS operators and selected the best choice of operators from this
analysis. The current need is to find an effective combination of LS operators that can generate optimum
solutions that adapt and generalise to different problems, which our reinforcement-based manager achieved.
Among the four design choices discussed in Section [6.5] we selected L2GLS because we achieve better solution
quality applied L2GLS on TSP and relative better for CVRP. Many learning algorithms can solve small,
randomly generated problems. However, many applications in the real world are related to larger instances;
there is also variability in data distribution. Most of the state of the art algorithms have challenges to solve
these practical problems. Therefore, we proposed a method to choose effective LS operators and let RL-based
managers learn all the problems to predict various other RPs. L2GLS achieved new state-of-the-art results for
TSP instances. Moreover, it outperforms not only for small scale problems but can generalise well benchmark
and large-scale datasets. For CVRP, it outperforms LKH3, OR-tools [48] and recent DL-based baselines.

Future research can explore expanding our solution framework to solve other variants of combinatorial
problems. Moreover, advanced search operators can be utilised for other combinatorial problems.
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Figure 6: Overview of policy network. The first box is the state embedding part of policy network. Embedding
part contains problem features and solution features, an attention network, and a sequence of actions and
their effects.

.1 Policy Network

In our policy network problem and solution-specific input features are transformed into an embedding, which
is fed into an attention network. The output of the attention network is concatenated with a sequence of
recent actions and their effects. In the end, the output of the attention network is fed into two fully connected
layers. Figure [6] shows our overall policy network.

.2 Instance attributes: CVRP

Instance attributes, depot positioning Three different positions for the depot are considered: Central (C) —
depot in the centre of the grid, Eccentric (E) — depot in the corner of the grid, point and Random (R) —
depot in a random point of the grid. Customer positioning Three alternatives for customer positioning are
considered: following the R, C and RC instance classes of the Solomon set for the VRPTW [49]. Random (R)
— all customers are positioned at random points of the grid. Clustered (C) — A number N of customers that
will act as cluster seeds are picked from a uniform discrete distribution. Next, the N nodes are randomly
positioned in the grid following [28]. Random-clustered (RC)— Some customers are clustered using Cluster
positioning; the remaining customers are randomly positioned.
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