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A Direct Construction of GCP and Binary CCC of
Length Non-Power of Two

Praveen Kumar, Sudhan Majhi, Subhabrata Paul

Abstract—Golay complementary pairs (GCPs) and complete
complementary codes (CCCs) have found a wide range of
practical applications in coding, signal processing and wireless
communication due to their ideal correlation properties. In fact,
binary CCCs have special advantages in spread spectrum com-
munication due to their simple modulo-2 arithmetic operation,
modulation and correlation simplicity, but they are limited in
length. In this paper, we present a direct construction of GCPs,
mutually orthogonal complementary sets (MOCSs) and binary
CCCs of non-power of two lengths to widen their application
in the recent field. First, a generalised Boolean function (GBF)
based truncation technique has been used to construct GCPs
of non-power of two lengths. Then Complementary sets (CSs)
and MOCSs of lengths of the form 2m−1 + 2m−3 (m ≥ 5) and
2m−1 + 2m−2 + 2m−4 (m ≥ 6) are generated by GBFs. Finally,
binary CCCs with desired lengths are constructed using the union
of MOCSs. The row and column sequence peak to mean envelope
power ratio (PMEPR) has been investigated and compared with
existing work. The column sequence PMEPR of resultant CCCs
can be effectively upper bounded by 2.

Index Terms—Complementary set (CS), complete complemen-
tary set (CCC), generalised Boolean function (GBF), Golay
complementary pair (GCP), mutually orthogonal complementary
set (MOCS)

I. INTRODUCTION

THE Golay complementary pairs (GCPs) were first in-
troduced by Golay [1]. The aperiodic auto-correlation

sum (AACS) of a GCP diminishes to zero for all time
shifts except at zero. The sequences in a GCP are known
as Golay sequences. The idea of GCP is further extended
to the complementary set (CS) by Tseng and Liu [2]. A
CS is a set of M(≥ 2) sequences of length N with the
property that their AACS sum is zero for all non-zero time
shifts. Tseng and Liu also proposed the concept of (K,M,N )-
mutually orthogonal complementary set (MOCS), which is a
collection of K CSs each of having M sequences of length N,
such that any two distinct CSs are orthogonal to each other,
and follows the property K ≤ M [3]. For a special case,
when the set size of MOCS achieves its upper bound, i.e.,
K = M , it is known as a set of complete complementary code
(CCC) and is denoted by (K,K,N )-CCC [4]. Due to the ideal
correlation properties and optimal set size, CCCs have found
their application in next-generation multi-carrier code division
multiple access (MC-CDMA) [5]–[9]. Apart from this, CCCs
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are utilized in optimal channel estimation in multiple-input
and multiple-output (MIMO) frequency-selective fading chan-
nels [10], MIMO radar [11], [12], cell search in orthogonal
frequency division multiplexing (OFDM) systems [13], and
data hiding [14]. In spread spectrum communication, the
binary CCC is preferred compared to non-binary CCC due
to its simple modulo-2 arithmetic operation, modulation and
correlation simplicity.

Due to modulo-2 arithmetic operation, binary sequences are
easy to implement electronically. The modulo-2 arithmetic is
isomorphic with the use of {±1} which simplifies both the
modulation and correlation processes. However, it is difficult
in many cases to get flexible lengths for binary sequences. It
has been proved in [15] that binary GCPs exist for only even
length. Binary Z-complementary pairs (ZCPs) were introduced
by Fan et al. in [16] and they also proved that ZCPs exists for
all possible lengths. Several constructions of binary ZCPs of
different lengths are proposed in [17], [18]. Construction of
binary CSs of non-power of two lengths can be found in [19].

In the year 1999, Davis and Jedwab have proposed a direct
construction of 2h-ary (h ∈ N) GCPs of length 2m (m ∈ N)
using generalised Boolean functions (GBFs) [20]. Paterson
extended the idea of 2h-ary GCPs to q-ary (for even q)
GCPs [21]. The construction of GCPs of length 2α10β26γ

(α, β, γ ∈ N) is provided by using repeated application of
Turyn’s construction [22]. In [21], Paterson has also proposed
a GBFs based construction of CSs of length 2m. In the recent
development GBFs based construction of CSs with more flexi-
ble lengths have been proposed in [23]–[27]. CSs with flexible
lengths are of interest to OFDM systems where numbers of
subcarriers are varied, i.e., non-power of two adopted by
the LTE system. A direct and generalised construction of
polyphase CSs is proposed in [28] and it has low peak to
mean envelope power ratio (PMEPR).

In [29], Rathinakumar and Chaturvedi proposed a direct
construction of CCCs of length 2m by extending the Paterson’s
idea of CSs generation. A number of direct constructions
of CCCs with lengths 2m are presented in [8], [30]–[32].
Several GBFs based constructions of Z-complementary code
sets (ZCCSs) of non-power of two lengths are proposed in the
literature [33]–[38], to extend the number of users in ZCCS
based MC-CDMA system compared to that of CCC based
MC-CDMA system. Apart from the GBFs based construction,
MOCSs with non-power of two lengths can be constructed by
using different systematic methods, which include reversals,
negations, interleaving, concatenations etc. [2], [39]. In the
same way, Das et al. presented the construction of MOCSs and
binary CCCs of different lengths by using paraunitary (PU)
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matrices [40]–[42]. PU matrix based construction of ZCCSs
has been proposed in [43]. However, the sequence or code
generated through these indirect methods may not be friendly
for hardware generation due to their large space and time
requirements. In [44], [45] direct construction of MOCSs with
non-power of two lengths have been proposed, where the set
size is upper bounded by half of the number of constituent
sequences in a CS, i.e., K ≤ M/2. In addition, the authors
presented an open problem of direct construction of CCCs with
non-power of two lengths in [44]. Recently, Sarkar et al. has
proposed the construction of CCCs of lengths pm1

1 pm2
2 · · · p

mk
k

(where pi’s are prime and mi’s are positive integers), using
multivariable functions (MVFs) [46]. This direct construction
can generate q-ary CCCs of all possible lengths. However, in
the case of q = 2, only binary CCC of length in the form 2m

(m ∈ Z) can be constructed [46]. So, the direct construction
of GCPs and binary CCCs of non-power of two lengths is still
an open problem.

By motivation of the open problem in [44], [46], in this
paper, direct construction of GCPs, MOCSs and binary CCCs
of length 2m−1 + 2m−3 (m ≥ 5) and 2m−1 + 2m−2 + 2m−4

(m ≥ 6) have been proposed. Using the idea of graphs
corresponding to the quadratic part of GBFs, GCPs of non-
power of two lengths are constructed. For obtaining a GCP, the
graph of the quadratic part of f has the property that deleting
some vertices and all of their corresponding edges of the graph
results in a path. In order to obtain sequences of non-power of
two lengths, GBF based truncation technique is used. The idea
has been further extended to generate CSs of non-power of two
lengths. Using deleted vertices of the quadratic part of GBF,
we rearrange the GBFs corresponding to the CS, and different
GBF arrangements result in MOCSs of lengths non-power of
two. Finally, binary CCC of non-power of two lengths has
been constructed using the union of two MOCSs.

The remaining paper is organized as follows. Basic nota-
tions and definitions are provided in Section II. In sections III,
IV and V the constructions of GCPs, MOCSs and binary CCCs
of length non-power of two are given respectively. Section VI
describes how to build additional non-power two-length GCPs,
MOCSs, and CCCs. Section VII provides the row and column
sequence PMEPR of the proposed CCCs. Finally, concluding
remarks are provided in Section VIII.

II. NOTATIONS AND DEFINITIONS

In this section, the preliminaries, notations, and immediate
results required for our proposed construction are discussed.

Definition 1: Let d = (d0, d1, . . . , dN−1) and e =
(e0, e1, . . . , eN−1) be two length N complex-valued se-
quences then the aperiodic cross-correlation function (ACCF)
between d and e at a shift s (s ∈ Z) can be defined as

C (d, e) (s) =


∑N−1−s
k=0 dk · e∗k+s, 0 ≤ s ≤ N − 1,∑N−1−s
k=0 dk+s · e∗k, −N + 1 ≤ s ≤ −1,

0, |s| ≥ N,
(1)

where ()∗ is the complex conjugate operator. When d and e
are equal, it is known as aperiodic auto-correlation function
(AACF) of e and is denoted by A(e)(s).

We can also define the ACCF and AACF of Zq valued
sequences by defining a one-one correspondence between
Zq valued sequence e=(e0, e1, . . . , eN−1) and the complex-
valued sequence e′=(e′0, e

′
1, . . . , e

′
N−1), where e′i = ωei and

ω = exp
(
2π
√
−1/q

)
is qth root of unity. So if d and e are

Zq valued sequences then we define their ACCF C(d, e)(s)
and AACF A(e)(s) respectively as ACCF and AACF of the
corresponding complex-value sequence d′ and e′.

Definition 2: A set of M sequences e0, e1, . . . , eM−1, each
of length N , is said to be a CS if

A
(
e0
)

(s) +A
(
e1
)

(s) + · · ·+A
(
eM−1

)
(s)

=

{
MN, s = 0,

0, otherwise .

For M = 2, it is known as a GCP.
Definition 3: Consider a set E =

{
E0, E1, · · · , EK−1

}
,

where each set Ep consists of M sequences, i.e., Ep ={
ep0, e

p
1, · · · , e

p
M−1

}
, and length of each sequence epl is N ,

where 0 ≤ p ≤ K−1 and 0 ≤ l ≤M −1. The set E is called
an MOCS, denoted by (K,M,N)-MOCS, if the ACCF of Ep

and Ep
′

satisfies

C
(
Ep, Ep

′
)

(s) =

M−1∑
n=0

C
(
epn, e

p′

n

)
(s)

=

{
MN, s = 0, p = p′,

0, otherwise ,

(2)

where 0 ≤ p, p′ ≤ K − 1; K,M and N are known as the
set size, flock size and sequence length respectively. For a
(K,M,N)-MOCS, the set size is always smaller than the flock
size, i.e., K ≤ M . For the special case when K = M , the
MOCS is called a CCC of order K and length N , and is
denoted by (K,K,N)-CCC.

A. Generalised Boolean function

A GBF f in m binary variables y0, y1, . . . , ym−1 is
a function from {0, 1}m to Zq , where q ≥ 2 is an
even integer. A monomial of degree r is defined as the
product of any r variables among y0, y1, . . . , ym−1. So
there are

∑m
r=0

(
m
r

)
= 2m monomials, namely 1, y0, y1,

. . . , ym−1, y0y1, y0y2, . . . , ym−2ym−1, . . . , y0y1 · · · ym−1.
With the linear combination of these 2m monomials and by
taking coefficient from Zq , a GBF can be expressed uniquely.
In the expression of a GBF of order r, there exist at least one
highest-degree monomial of order r with non-zero coefficient.
Corresponding to a GBF f of m variables y0, y1, . . . , ym−1,
length 2m Zq-valued vector is expressed as

f = (f0, f1, . . . , f2m−1) , (3)

where fi = f(i0, i1, . . . , im−1) and (i0, i1, . . . , im−1) is the
binary vector representation of i. A complex-valued vector f ′

is associated with every f by f ′i = ωfi . When it is clear from
the context, only f is used to refer to both. Corresponding to
a GBF f with m variables the sequence f is of length 2m.

We can restrict the domain of GBF to get sequences of
length non-power of two. Let us define a set A which is a
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subset of {0, 1}m. So, depending upon the domain A we can
get different length sequences corresponding to GBF f . By am
we mean the binary vector representation of positive integer
a in m components.

Example 1: Let f : A → Z2 be defined as f(y0, y1, y2) =
y0y1 + y2, where A = {03,13, . . . ,53}, then the sequence
corresponding to f is (1, 1, 1,−1,−1,−1), which is of length
6. Similarly, if we define A = {33,43, . . . ,73}, then we get
the sequence (−1,−1,−1,−1, 1), which is of length 5.

B. Graph of Quadratic form of GBF

Let Q : {0, 1}m → Zq be a GBF of order 2 defined by

Q (y0, y1, . . . , ym−1) =
∑

0≤i<j<k

qijyiyj , (4)

where k ≤ m and qij ∈ Zq . We associate a labeled graph
G(Q) corresponding to the GBF Q, on k vertices by repre-
senting the vertices of G(Q) by 0, 1, . . . ,m − 1 and joining
two vertices i and j by an edge labeled qij if and only if
qij 6= 0. In the case, q = 2, qij can only take values either
0 or 1, so every edge is labelled 1 and by convention, edge
labels are omitted in this case . From any given graph G(Q)
of this type, the quadratic form Q can be easily and uniquely
recovered. A graph G(Q) is called a path on k vertices if
the number of edges is exactly one less than the number of
vertices, and each edge is labelled q/2. For k = 1, this is
a trivial path and for k ≥ 2, this type of path is known as
the Hamiltonian path. For 2 ≤ k < m, a path on k vertices
corresponds to a quadratic form of the type

q

2
·
k−1∑
α=1

yπ(α−1)yπ(α), (5)

where π is a permutation of the set {0, 1, . . . , k − 1}.

C. Restricted Boolean function

Let f : A ⊆ {0, 1}m → Zq be a GBF in variables
y0, y1, . . . , ym−1 and y =

(
yp0yp1 · · · ypk−1

)
where 0 ≤ p0 <

p1 < · · · < pk−1 < m . Let c = (c0c1 · · · ck−1) be a binary
word of length k, i.e., ci ∈ {0, 1}. Then the vector f |y=c

is defined to be the complex-valued vector with component
i =

∑m−1
j=0 ij2

j equal to ωf(i0,i1,...,im−1) if ijα = cα for each
0 ≤ α < k, and equal to 0 otherwise. As a convention, if y
and c are null (i.e., of length 0), then f |y=c represents the
complex-valued vector associated with f .

Lemma 1 ( [29]): Let f, g : A ⊆ {0, 1}m → Zq be GBFs
in variables y0, y1, . . . , ym−1. Let y =

(
yp0yp1 · · · ypk−1

)
where 0 ≤ p0 < p1 < · · · < pk−1 < m and c =
(c0c1 · · · ck−1) be a binary word of length k. Further let us
denote z =

(
zi0zi1 · · · zil−1

)
where 0 ≤ i1 < i2 < · · · <

il−1 < m be a set of indices not in {p0, p1, . . . , pk−1}.
Then for a binary vector n = (n0n1 · · ·nk−1), the following
equality holds

C
(
f |y=c , g|y=n

)
(s) =

∑
c1,c2

C
(
f |yz=cc1

, g|yz=nc2

)
(s).

(6)

Lemma 2 ( [21]): Let f : A ⊆ {0, 1}m → Zq be a GBF
in variables y0, y1, · · · , ym−1. Let y and c are as defined in
Lemma 1, then AACF is given by

A(f)(s) =
∑
c

A
(
f |y=c

)
(s)+

∑
c1 6=c2

C
(
f |y=c1

, f |y=c2

)
(s).

(7)

III. PROPOSED CONSTRUCTION OF GCPS

In this section, we provide a GBFs based construction of
GCPs for non-power of two lengths. Unless otherwise stated,
this section and subsequent sections assume m ≥ 5.

Suppose Q : {0, 1}m−4 → Zq is the quadratic form in
variables z0, z1, . . . , zm−5, i.e.,

Q (z0, z1, . . . , zm−5) =
∑

0≤i<j<m−4

qijzizj . (8)

For any c, ci ∈ Zq , we define a GBF

f1 = Q+

m−5∑
i=0

cizi + c. (9)

Using the notation z̄i = 1 − zi and f1 defined in (9), the
proposed GBF f : A→ Zq is defined as

f =f1 +
q

2
z̄m−1 (z̄m−4 (zm−3 + zm−2) + zm−2zm−3)

+
q

2
zβ1

(z̄m−1 (zm−2z̄m−3z̄m−4 + zm−2zm−3)

+zm−1z̄m−2z̄m−3) ,

(10)

where A =
{
0m,1m, . . . (2

m−1 + 2m−3 − 1)m
}

.
We will first prove a special case when the quadratic part

of f given in (10) is zero.
Lemma 3: Let the quadratic part Q of f |z=c be identically

equal to zero and G (Q|z=c) has a single vertex labeled β,
where z = (zp0 , zp1 , . . . , zpm−6

) and c = (c0c1 · · · cm−6) be
a (m− 5) length binary vector. Then(

f |z=c,
(
f +

q

2
zβ + c′

)
|z=c

)
, (11)

forms a GCP of length 2m−1+2m−3, with exactly 20 non-zero
elements.

Proof: Since f1|z=c is a function containing only one
variable zβ , so f1|z=c gives exactly 2 non-zero elements in
the sequence. The binary variables zm−4, zm−3, zm−2 and
zm−1 remain unaffected by z = c, and since the length of
the sequence is 10× 2m−4, so the function f |z=c takes non-
zero values in exactly 20 components numbered k2m−4 +∑
j 6=β cj2

j , 0 ≤ k ≤ 9 and 2β + k2m−4 +
∑
j 6=β cj2

j ,
0 ≤ k ≤ 9. These non-zero terms are placed in increasing
order as follows{

ωγ , ωδ, ωγ , ωδ,−ωγ ,−ωδ, ωγ , ωδ,−ωγ , ωδ

, ωγ , ωδ,−ωγ , ωδ,−ωγ , ωδ, ωγ ,−ωδ, ωγ ,−ωδ
}
,

where γ and δ are the values taken by the function f1|z=c at∑
j 6=β cj2

j and 2β +
∑
j 6=β cj2

j respectively.
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The function
(
f1 + q

2zβ + c′
)
|z=c takes values γ + c′ and

δ + q
2 + c′ at positions

∑
j 6=β cj2

j and 2β +
∑
j 6=β cj2

j

respectively. So the 20 non-zero components of the function(
f + q

2zβ + c′
)
|z=c at positions mentioned above are placed

in increasing order as follows{
ωγ+c

′
,−ωδ+c

′
, ωγ+c

′
,−ωδ+c

′
,−ωγ+c

′
, ωδ+c

′
, ωγ+c

′

,−ωδ+c
′
,−ωγ+c

′
,−ωδ+c

′
, ωγ+c

′
,−ωδ+c

′
,−ωγ+c

′

,−ωδ+c
′
,−ωγ+c

′
,−ωδ+c

′
, ωγ+c

′
, ωδ+c

′
, ωγ+c

′
, ωδ+c

′
}
.

The non-zero value of the AACF of the vectors corresponding
to f |z=c and

(
f + q

2zβ + c′
)
|z=c occurs only at shifts s =

k2m−4 + 2β , 0 ≤ k ≤ 9 and s = k2m−4 − 2β , 1 ≤ k ≤ 9.
For s = k2m−4 + 2β and 0 ≤ k ≤ 9, the AACF of the above
two functions are expressed as

A (f |z=c) (s) = tkω
γ
(
ωδ
)∗

= tkω
γ−δ, (12)

and

A
((
f +

q

2
zβ + c′

)
|z=c

)
(s) = tkω

γ+c′
(
−ωδ+c

′
)∗

= −tkω
γ−δ,

(13)

where tk is some constant.
Similarly for s = k2m−4 − 2β and 1 ≤ k ≤ 9, the above

can be written as

A (f |z=c) (s) = t′kω
δ (ωγ)

∗
= t′kω

δ−γ , (14)

and

A
((
f +

q

2
zβ + c′

)
|z=c

)
(s) = t′k(−ωδ+c

′
)
(
−ωγ+c

′
)∗

= −t′kω
δ−γ ,

(15)
where t′k is some constant. So the AACS is zero for all s 6= 0,
and hence the result follows.
Some notations are defined below for proving the general case
of construction of GCPs of non-power of two length. Let 0 ≤
p0 < p1 < · · · < pk−1 < m − 4, be a list of k indices,
where 0 ≤ k ≤ m − 5 and z = (zp0 , zp1 , . . . , zpk−1

). Let
the remaining m − 4 − k indices between 0 to m − 5 be
0 ≤ i0 < i1 < · · · < im−k−5 < m−4. Let c = (c0c1 · · · ck−1)
be a k length binary vector.

Theorem 1: Let us consider the restricted function f |z=c

that is obtained by restricting the variables zpα , 0 ≤ α ≤ k ≤
m − 5, of GBF f in (10) with the property that G (Q|z=c)
is a path. Let β1 and β2 be the two end vertices of the path
G (Q|z=c) when 0 ≤ k < m − 5. In case of k = m − 5,
G (Q|z=c) has only a single vertex labeled β = β1 = β2.
Then for any c′ ∈ Zq , the complex-valued vectors f |z=c and(
f + q

2zβ2 + c′
)
|z=c forms a GCP of length 2m−1 + 2m−3.

Proof: We prove the result using induction on k, where
the statement of the theorem is taken as an inductive hypothe-
sis. The case when k = m−5, follows directly from Lemma 3.
Now, let the theorem be true when z contains k+ 1 variables,
and we consider the case for k variables, where 0 ≤ k < m−5.
When G (Q|z=c) is a path, the non-zero components of
function f are determined by the values of function f |z=c

in variables
(
zi0 , zi1 , . . . , zim−k−5

, zm−4, zm−3, zm−2, zm−1
)
.

So for some permutation π of {0, 1, . . . ,m − k − 5} and
c0, c1, . . . , cm−k−5, c ∈ Zq , we get the function

f |z=c

(
zi0 , zi1 , . . . , zim−k−5

, zm−4, zm−3, zm−2, zm−1
)

=
q

2

m−k−6∑
α=0

ziπ(α)
ziπ(α+1)

+

m−k−5∑
α=0

cαziπ(α)
+ c

+
q

2
ziπ(m−k−5)

(z̄m−1(zm−2z̄m−3z̄m−4+zm−2zm−3)+zm−1

z̄m−2z̄m−3)+
q

2
z̄m−1 (z̄m−4 (zm−3+zm−2)+zm−2zm−3) .

(16)
The higher order terms in (16) is utilized frequently, so for
simplicity, it is denoted by R as follows

R=
q

2
ziπ(m−k−5)

(z̄m−1(zm−2z̄m−3z̄m−4+zm−2zm−3)+zm−1

z̄m−2z̄m−3)+
q

2
z̄m−1 (z̄m−4 (zm−3+zm−2)+zm−2zm−3) .

(17)
Now, the aim is to prove that the sequences f |z=c and(
f + q

2ziπ(0)
+ c′

)
|z=c, where c′ ∈ Zq is arbitrary, forms a

GCP of length 2m−1 + 2m−3. If s 6= 0 is chosen arbitrarily,
then the sum of AACF of the sequences is given by

A (f |z=c) (s) +A
((
f +

q

2
ziπ(0)

+ c
)
|z=c

)
(s)

=A(g1)(s) +A(g2)(s) + C(g1, g2)(s) + C(g2, g1)(s)

+A(g3)(s) +A(g4)(s) + C(g3, g4)(s) + C(g4, g3)(s),
(18)

where g1 =f |zziπ(0)
=c0, g3 =

(
f + q

2ziπ(0)
+ c′

)
|zziπ(0)

=c0,
g2 = f |zziπ(0)

=c1, g4 =
(
f + q

2ziπ(0)
+ c′

)
|zziπ(0)

=c1.
The non-zero components of the vector g1 are derived from
a function h1 by substituting ziπ(0)

= 0 in the function f |z=c

in (16). For 0 ≤ k ≤ m− 7, the function h1 is given by

h1|z=c

(
ziπ(0)

,ziπ(1)
,. . . ,ziπ(m−k−5)

,zm−4,zm−3,zm−2,zm−1
)

=
q

2

m−k−6∑
α=1

ziπ(α)
ziπ(α+1)

+

m−k−5∑
α=1

cαziπ(α)
+ c+R.

(19)
While for k = m− 6, it is given by

h1
(
ziπ(0)

, ziπ(1)
, . . . , ziπ(m−k−5)

, zm−4, zm−3, zm−2, zm−1
)

= c1ziπ(1)
+ c+R,

(20)
Similarly, by substituting ziπ(0)

= 1 in the function f |z=c,
function h2 is obtained which yields the non-zero components
of the vector g2. The function h2 is given by

h2
(
ziπ(0)

, ziπ(1)
, . . . , ziπ(m−k−5)

, zm−4, zm−3, zm−2, zm−1
)

= h1 + ziπ(1)
+ c0.

(21)
To easily calculate the AACF of g2, we consider the vector
g′2 as

g′2 =
(
f +

q

2
ziπ(1)

+ c0

)
|zziπ(0)

=c0 . (22)

Substituting z = c and ziπ(0)
= 0 in (22) the function h1 +

q
2ziπ(1)

+c0 is obtained which is identical to h2. In component
i, the value of the vector g2 is the same as the value of the
vector g′2 in the position i−2

ziπ(0) (i.e., in non-zero positions,
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g2 is simply a shift of g′2). Therefore, the vectors g2 and g′2
have identical AACFs. Now, consider the pair

g1 = f |zziπ(0)
=c0, (23)

and
g′2 =

(
f +

q

2
ziπ(1)

+ c0

)
|zziπ(0)

=c0. (24)

From the above, it is observed that g1 corresponds to a GBF
h1 such that the graph of the quadratic part of h1 is a path on
m− k− 5 vertices. Additionally, either iπ(1) is an end vertex
of this path, or k = m − 6 and it is the single vertex in the
graph. By the inductive hypothesis, g1 and g′2 forms a GCP,
hence for s 6= 0, the sum of AACF of g1 and g′2 is

A(g1)(s) +A(g′2)(s) = 0. (25)

Since, A(g2)(s) = A(g′2)(s) for every s, the sum of AACF
g1 and g2 is expressed as

A(g1)(s) +A(g2)(s) = 0. (26)

From the definitions, we have g3 = ωc
′
g1 and g4 = −ωc′g2. It

follows that A(g3)(s) = A(g1)(s) and A(g4)(s) = A(g2)(s),
so from (26), the sum of AACF g3 and g4 is

A(g3)(s) +A(g4)(s) = 0. (27)

Also, the ACCF between g3 and g4 is defined as

C(g3, g4)(s) = C(ωc
′
g1,−ωc

′
g2)(s)

= −C(g1, g2)(s).
(28)

So the sum of ACCFs of g1, g2 and g3, g4 is

C(g1, g2)(s) + C(g3, g4)(s)

= C(g2, g1)(s) + C(g4, g3)(s) = 0.
(29)

So, from (26)-(29), the sum in (18) is zero. Since s 6=
0 has been chosen arbitrary, it follows that f |z=c and(
f + q

2zβ2
+ c′

)
|z=c forms a GCP of length 2m−1 + 2m−3.

Example 2: For m = 8 and q = 2, consider the 5th order
GBF f : {08,18, . . . ,1598} → Z2 defined as

f =z0z1 + z1z2 + z2z3 + z3z0 + z0z2 + z1z3 + z0 + z1

+ z2 + z3 + z̄7 (z̄4 (z5 + z6) + z6z5) + z2 (z̄7 (z6z̄5z̄4

+z6z5) + z7z̄6z̄5) .
(30)

The graph G(Q) (quadratic part of f ) is given in Fig. 1.

Fig. 1: The graph of quadratic part Q of f

By substituting z0z3 = 00 ( deleting vertices z0, z3), we get
G (Q|z0z3=00) is a path. So by Theorem 1, f |z0z3=00 and
(f + z1 + 1) |z0z3=00 forms a GCP of length 160, which is
not the form of 2m.

IV. PROPOSED CONSTRUCTION OF MOCSS

In this section, we have proposed a direct construction of
2k CSs of length 2m−1 + 2m−3, with the property that any
two CSs are mutually orthogonal to each other.

Let Q and f be defined in (8) and (10) respectively (q = 2).
For 0 ≤ t < 2k, 0 ≤ k ≤ m− 5, the ordered set St (with the
natural order induced by the binary vector (aa0a1 · · · ak−1))
is defined as

St =

{
f +

k−1∑
α=0

aαzpα +

k−1∑
α=0

nαzpα + azβ2 : a, aα ∈ {0, 1}

}
,

(31)
where t =

∑k−1
α=0 nα2α.

“1” represents a vector all of whose component is one and ⊕
denotes addition modulo 2.

Theorem 2: Suppose that G(Q) contains a set of k ≤ m−5
distinct vertices labeled p0, p1, . . . , pk−1 with the property that
deleting those k vertices and all their edges results in a path.
Let β1 and β2 be the two end vertices of the path. In case of
single vertex let β1 = β2 = β. Then for any 0 ≤ t < 2k, the
set St is a CS. Also for the case t′ 6= t, the sets St′ and St
are MOCSs.

Proof: Since each St for 1 ≤ t < 2k is a permutation of
S0, so proving S0 is a complementary set is sufficient to show
that for any 0 ≤ t < 2k, the set St is a CS.
Let z =

(
zp0zp1 . . . zpk−1

)
and a = (a0a1 . . . ak−1). So

a · z =
∑k−1
α=0 aαzpα . Now from Lemma 2, for s 6= 0, sum

of AACF can be expressed as∑
a,a

A (f + a · z + azβ2
) (s) = L1 + L2, (32)

where

L1 =
∑
a,a

∑
c

A ((f + a · z + azβ2) |z=c) (s), (33)

and

L2 =
∑

c1 6=c2

∑
a

∑
a

C ((f + a · z + azβ2
) |z=c1

,

(f + a · z + azβ2) |z=c2) (s).

(34)

The graph of the function (Q+ a · z) |z=c is a path for any
choice of c and a. So from Theorem 1, for every c and a
the vectors (f + a · z) |z=c and (f + a · z + zβ2

) |z=c forms
a GCP of length 2m−1 + 2m−3. Hence the term L1 in (33) is
zero. For fixed values of c1, c2 and a, consider the inner sum
of L2 is expressed as∑
a

C ((f + a · z + azβ2
) |z=c1

, (f + a · z + azβ2
) |z=c2) (s).

(35)
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Now, the vector z contains all the terms of a · z. So for the
fixed values of c1, c2 and a we have,

(f +a · z + azβ2
) |z=cj

=

{
ej = (f + azβ2) |z=cj

, when a · cj = 0 (mod 2),

−ej, when a · cj = 1 (mod 2).
(36)

Therefore for the fixed values of c1, c2 and a, from (35) and
(36) ACCF values are obtained as

C ((f + a · z + azβ2
) |z=c1

, (f + a · z + azβ2
) |z=c2) (s)

=


C(e1, e2), when a · c1 = a · c2 = 0 (mod 2),

C(−e1,−e2), when a · c1 = a · c2 = 1 (mod 2),

C(e1,−e2), when a·c1=0 (mod 2),a·c2 =1 (mod 2),

C(−e1, e2), when a·c1=1 (mod 2),a·c2=0 (mod 2).
(37)

Since, C(e1, e2) = C(−e1,−e2) and C(e1,−e2) =
C(−e1, e2), the above can be re-expressed as

C ((f + a · z + azβ2
) |z=c1

, (f + a · z + azβ2
) |z=c2) (s)

=

{
C(e1, e2), when a · c1 = a · c2 (mod 2),

C(e1,−e2), when a · c1 6= a · c2 (mod 2).
(38)∑

a

C ((f + a · z + azβ2) |z=c1 , (f + a · z + azβ2) |z=c2) (s)

=
∑

a·c1=a·c2 (mod 2)

C(e1, e2)(s)−
∑

a·c1 6=a·c2 (mod 2)

C(e1, e2)(s).

(39)
Due to the fact that c1 6= c2, c1 + c2 6= 0 (mod 2), and so
the linear functional a · (c1 + c2) (mod 2) takes each value
0 and 1 precisely 2k−1 times, i.e., an equal number of times.
So, from (39) the inner sum of L2 is zero and so is L2. Hence
it is proved that St is a CS of size 2k.
Now, let n = (n0n1 · · ·nk−1), t =

∑k−1
α=0 nα2α and t′ =∑k−1

α=0 n
′
α2α. It needs to proven that for t 6= t′, St and St′ are

mutually orthogonal. From Lemma 1, the sum of ACCF can
be written as∑

a,a

C (f + (a + n) · z + azβ2
,

f + (a + n′) · z + azβ2
) (s) = M1 +M2,

(40)

where

M1 =
∑
a,a

∑
c1 6=c2

C ((f + (a + n) · z + azβ2) |z=c1 ,

(f + (a + n′) · z + azβ2
) |z=c2

) (s),

(41)

and

M2 =
∑
a,a

∑
c

C ((f + (a + n) · z + azβ2) |z=c,

(f + (a + n′) · z + azβ2
) |z=c) (s).

(42)

For the fixed c1, c2 and a, we consider the following sum of
M1 ∑

a

C ((f + (a + n) · z + azβ2
) |z=c1

,

(f + (a + n′) · z + azβ2
) |z=c2

) (s)

=
∑
a

C ((f + (a + n) · c1 + azβ2
) |z=c1

,

(f + (a + n′) · c2 + azβ2) |z=c2) (s)

=
∑
a

(−1)a·(c1⊕c2)C ((f + n · z + azβ2
) |z=c1

,

(f + n′ · z + azβ2
) |z=c2

) (s)

=C ((f + n · z + azβ2
) |z=c1

,

(f + n′ · z + azβ2
) |z=c2

) (s)
∑
a

(−1)a·(c1⊕c2).

(43)
Since c1 6= c2, so the function a · (c1 ⊕ c2) in (43) takes
values 0 and 1 equal number of times and hence (43) vanishes
for all s.

Now for the fixed a and c consider the following sum of
M2 ∑

a

C ((f + (a + n) · z + azβ2
) |z=c,

(f + (a + n′) · z + azβ2
) |z=c) (s)

=
∑
a

C ((f + (a + n) · c + azβ2
) |z=c,

(f + (a + n′) · c + azβ2
) |z=c) (s)

=
∑
a

C ((f + (n + n′) · c + azβ2) |z=c,

(f + azβ2
) |z=c) (s)

= (−1)(n⊕n
′)·c
∑
a

C ((f + azβ2
) |z=c, (f + azβ2

) |z=c) (s)

= (−1)(n⊕n
′)·cA (f |z=c) (s) +A ((f + zβ2) |z=c) (s). (44)

From Theorem 1, the above sum in (44) is zero for all s 6= 0.
For s = 0, AACF is given by

A (f |z=c) (s) = A ((f + zβ2
) |z=c) (s) = 2m−k−4, (45)

for c ∈ Zk2 , substituting this back in (44), we get the sum of
ACCF as∑

a

C ((f + (n + n′) · c + azβ2
) |z=c,

(f + azβ2
) |z=c) (0) = (−1)(n⊕n

′)·c · 2m−k−3.
(46)

Here t 6= t′ is considered, which implies n 6= n′, and hence
n⊕ n′ 6= 0. So the linear functional (n⊕ n′) · c (regarded as
a function of c) is not equivalent to the zero function. As a
result, it is balanced, i.e., the values 0 and 1 are taken equal
number of times by the function as c varies. Hence the sum∑

c

(−1)(n⊕n
′)·c · 2m−k+1 = 0. (47)

Remark 1: [23, Th. 4] generates CSs of length 2m−1+2m−3

and set size 4 for ν = m− 3, which is covered by Theorem 2
of our proposed construction by taking k = 2.

Remark 2: By taking ν = m−3, [24, Th. 4] and t = m−3,
[27, Th. 3] generates CSs of length 2m−1 +2m−3 and set size
2k+1. The proposed construction of CSs in Theorem 2 covers
these special cases of [23], [27] .



7

TABLE I: Comparison of the proposed MOCS construction
with [44], [45]

Ref. Parameters Based on Length(N) Constraint

[44] (2k
′
, 2k+1, N) GBF of order 2 2m−1 + 2t

m, k, t ∈ Z+, m ≥ 2, k ≤ m,
0 ≤ k′ ≤ t ≤ m− 1, k′ ≤ k − 1

[45] (2k, 2k+1, N) GBF of order 2 2m + 2t m, k, t ∈ Z+, 0 ≤ t < k ≤ m

Theorem 2 (2k+1, 2k+1, N) GBF of order > 2
2m−1 + 2m−3 m, k ∈ Z+,m ≥ 5
2m−1 + 2m−2 + 2m−4 m, k ∈ Z+,m ≥ 6

TABLE I compares the proposed constructions of MOCSs with
the existing direct constructions of [44], [45].

Example 3: Let us consider the same GBF as given in
Example 2, and the deleted vertices are also same, i.e., z0, z3.
Then the set,

S0 = {f, f + z1, f + z0, f + z0 + z1, f + z3

, f + z3 + z1, f + z3 + z0, f + z3 + z1 + z0} ,
(48)

is a CS of size 8 and sequence length 160, which is not of the
form of 2m. Similarly the sets St for 0 ≤ t < 4, which are
the permutations of the set S0, are also CS of size 8, with the
property that any two different CSs are mutually orthogonal
to each other.

V. PROPOSED CONSTRUCTION OF CCCS

In this section first we construct a mate of the MOCSs pro-
posed in section IV. Then binary CCCs of length 2m−1+2m−3

are constructed by union of these two MOCSs through GBFs.
For a given GBF f in (10), GBF f̄ : B → Z2 is defined as

f̄(z0, z1, . . . , zm−1) = f(z̄0, z̄1, . . . , z̄m−1), (49)

where B = {0, 1}m \
{
0m,1m, . . . , (2

m−2 + 2m−3 − 1)m
}

.
Lemma 4: Let us assume a set of k ≤ m−5 distinct vertices

labelled with the property that deleting that set of vertices and
all the edges transform G(Q) into a path. Let β1 and β2 be
the two end vertices of this path. In case of k = m − 5, the
single vertex of the graph is denoted by β1 = β2 = β. Then
for each 0 ≤ t < 2k, the ordered set S̄t given by

{
f̄ +

k−1∑
α=0

aαz̄pα +

k−1∑
α=0

nαz̄pα + āzβ2
: a, aα ∈ {0, 1}

}
,

(50)
is a CS of size 2k+1, where f̄ is defined in (49). Further, for
t′ 6= t, S̄t′ and S̄t are MOCSs, where the natural order is
induced from the binary vector (aa0a1 · · · ak−1).
The next theorem gives CCCs of length 2m−1 + 2m−3.

Theorem 3: Let the sets St and S̄t be defined in Theorem
2 and Lemma 4 respectively, then

{
St : 0 ≤ t < 2k

}
∪
{
S̄t : 0 ≤ t < 2k

}
, (51)

forms a
(
2k+1, 2k+1, 2m−1 + 2m−3

)
-CCC.

Proof: It will be shown that CSs St1 and S̄t2 are mutually
orthogonal to each other. The sum of ACCF of these CSs can
be expressed as∑

a

C
(
f + (a + n) · z + zβ2

, f̄ + (a + n′) · z̄
)

(s)

+ C (f + (a + n) · z) ,
(
f̄ + (a + n′) · z̄ + zβ2

)
(s)

=
∑
a

∑
c1,c2

C ((f + (a + n) · z + zβ2
) |z=c1 ,(

f̄ + (a + n′) · z̄
)
|z=c2

)
(s)

+ C ((f + (a + n) · z) |z=c1 ,(
f̄ + (a + n′) · z̄ + zβ2

)
|z=c2

)
(s) = M(say)

(52)
For a given c1 and c2, consider the following sum of the first
term in (52)∑

a

C ((f + (a + n) · z + zβ2
) |z=c1 ,(

f̄ + (a + n′) · z̄
)
|z=c2

)
(s)

=
∑
a

C ((f + (a + n) · z + zβ2
) |z=c1 ,(

f̄ + (a + n′) · (1− z)
)
|z=c2

)
(s)

= C
(
(f + zβ2

) |z=c1 , (f̄ |z=c2

)
(s)

·
∑
a

(
(−1)n·c1⊕n′·c2 · (−1)(a⊕n

′)·1 · (−1)a·(c1⊕c2)
)

= C
(
(f + zβ2

) |z=c1 , (f̄ |z=c2

)
(s)

· (−1)n·c1⊕n′·c2⊕n′·1
∑
a

(−1)a·(c1⊕c2⊕1).

(53)
The above sum in (53) vanishes whenever (c1 ⊕ c2) 6= 1. So,
the first correlation term in (52) is zero whenever c1 and c2
are equal. Thus, summing (53) over all c1 6= c2, the above
term further can be simplified as∑

c1 6=c2
c1+c2=1

C
(
(f + zβ2) |z=c1 , (f̄ |z=c2

)
(s)

· (−1)n·c1⊕n′·c2⊕n′·12k

=
∑
c

C
(
(f + zβ2

) |z=c, (f̄ |z=(c⊕1)
)

(s)

· (−1)n
′·12k · (−1)n·c⊕n

′·(1⊕c)

=
∑
c

C
(
(f + zβ2

) |z=c, (f̄ |z=(c⊕1)
)

(s)2k · (−1)(n⊕n
′)·c.

(54)
From Lemma 1, the inner sum of (54) can be further simplified
as

C
(
(f + zβ2

) |z=c, f̄ |z=(c⊕1)
)

(s)

= C
(

(f + zβ2) |zzβ2=c0, f̄ |zzβ2=(c⊕1)0

)
(s)

+ C
(

(f + zβ2) |zzβ2=c0, f̄ |zzβ2=(c⊕1)1

)
(s)

+ C
(

(f + zβ2
) |zzβ2=c1, f̄ |zzβ2=(c⊕1)0

)
(s)

+ C
(

(f + zβ2
) |zzβ2=c1, f̄ |zzβ2=(c⊕1)1

)
(s)
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=C
(
f |zzβ2=c0, f̄ |zzβ2=(c⊕1)0

)
(s)

+ C
(
f |zzβ2=c0, f̄ |zzβ2=(c⊕1)1

)
(s)

− C
(
f |zzβ2=c1, f̄ |zzβ2=(c⊕1)0

)
(s)

− C
(
f |zzβ2=c1, f̄ |zzβ2=(c⊕1)1

)
(s).

(55)

Similarly, the second term of the correlation in (52) becomes∑
d

C ((f + (d + n) · z) |z=c1 ,(
f̄ + (a + n′) · z̄ + zβ2

)
|z=c2

)
(s)

=
∑
c

C
(
f |z=c,

(
f̄ + zβ2

)
|z=(c⊕1)

)
(s) · 2k · (−1)(n⊕n

′)·c.

(56)
The inner sum of (56) can be simplified as

C
(
f |z=c,

(
f̄ + zβ2

)
|z=(c⊕1)

)
(s)

=C
(
f |zzβ2=c0, f̄ |zzβ2=(c⊕1)0

)
(s)

− C
(
f |zzβ2=c0, f̄ |zzβ2=(c⊕1)1

)
(s)

+ C
(
f |zzβ2=c1, f̄ |zzβ2=(c⊕1)0

)
(s)

− C
(
f |zzβ2=c1, f̄ |zzβ2=(c⊕1)1

)
(s).

(57)

So from (54), (55), (56) and (57) we get the value of M in
(52) as

M = 2
∑
c

(
C
(
f |zzβ2=c0, f̄ |zzβ2=(c⊕1)0

)
(s)

−C
(
f |zzβ2=c1, f̄ |zzβ2=(c⊕1)1

)
(s)
)
· 2k · (−1)(n⊕b

′)·c.

(58)
Since G(Q|z=c) is a path, so for some permutation π of
{0, 1, . . . ,m − k − 5} and cα, c ∈ Zq the function f |z=c

obtained by substituting z = c in f should be of the form

f |z=c =

m−k−6∑
α=0

zπ(α)zπ(α+1) +

m−k−5∑
α=0

cαzπ(α) + c

+zπ(m−k−5) (z̄m−1(zm−2z̄m−3z̄m−4+zm−2zm−3)+zm−1

z̄m−2z̄m−3) + z̄m−1 (z̄m−4 (zm−3 + zm−2) + zm−2zm−3) .
(59)

Let h1 and h2 be the function obtained from f by substituting
z = c, zβ2

= 0 and z = c, zβ2
= 1 respectively. Further

without loss of generality let β2 = π(0). Then both the
function can be expressed as

h1 =

m−k−6∑
α=1

zπ(α)zπ(α+1) +

m−k−5∑
α=0

π(α) 6=0

cαzπ(α) + c+R, (60)

and h2 = h1 + zπ(1) + c0. (61)

The functions h1 and h2 give non-zero components of the
complex vectors e1 = f |zzβ2=c0 and e2 = f |zzβ2=c1 respec-
tively. Similarly, h̄2 and h̄1 give the non-zero components
of the vector f̄ |zzβ2=(c⊕1)0 and f̄ |zzβ2=(c⊕1)1 respectively.
For any complex-valued sequences e1 and e2 the following
identity holds

C (e1, ē2) (s) = C (e2, ē1) (s). (62)

Using the above identity, we get,

C
(
f |zzβ2=c0, f̄ |zzβ2=(c⊕1)0

)
(s)

= C
(
f |zzβ2=c1, f̄ |zzβ2=(c⊕1)1

)
(s),

(63)

which shows that M in (58) is zero, and hence the result
follows from (52).

Example 4: Let us consider the set St for 0 ≤ t < 4 as
defined in Example 3. Now for the same GBF defined in
Example 2, using Lemma 4 construct a MOCS S̄t (0 ≤ t < 4)
of length 160 as{
f̄ + a0z̄0 + a1z̄3 + n0z̄0 + n1z̄3 + āz1 : a, a0, a1 ∈ {0, 1}

}
,

(64)
where t = n020 + n121. Then from Theorem 3

{St : 0 ≤ t < 4} ∪
{
S̄t : 0 ≤ t < 4

}
, (65)

is a (8, 8, 160)-CCC.
In TABLE II, the proposed construction of CCC is compared

with the existing construction CCC on different parameters.

VI. CONSTRUCTION OF SEQUENCES OF LENGTH
2m−1 + 2m−2 + 2m−4 .

In this section, we have extended our proposed construction
to provide GCPs, MOCSs and binary CCCs of length 2m−1 +
2m−2 + 2m−4.

Consider an integer m ≥ 6, for any c, ci ∈ Zq , we define a
function

f1(z0, z1, . . . , zm−6) = Q+

m−6∑
i=0

cizi + c, (66)

where Q is the quadratic part in variables z0, z1, . . . , zm−6.
Now, we define the GBF f : A→ Zq as

f = f1 +
q

2
zβ1

(z̄m−1z̄m−2 + z̄m−1zm−2 (z̄m−3+zm−3z̄m−4zm−5))

+
q

2
(z̄m−1z̄m−2 (z̄m−3zm−4zm−5 + zm−3z̄m−4z̄m−5)

+z̄m−1zm−2 (z̄m−3z̄m−5+zm−3z̄m−4+zm−4 (z̄m−3zm−5

+zm−5z̄m−5)) + zm−1z̄m−2 (z̄m−4z̄m−5 + zm−3zm−4

+z̄m−3zm−4zm−5 + zm−1zm−2z̄m−3z̄m−4)) ,
(67)

where A =
{
0m,1m, . . . (2

m−1 + 2m−2 + 2m−4 − 1)m
}

.
Also we define the GBF f̄ : B → Z2 as

f̄(z0, z1, . . . , zm−1) = f(z̄0, z̄1, . . . , z̄m−1), (68)

where B = {0, 1}m \
{
0m,1m, . . . , (2

m−3 + 2m−4 − 1)m
}

and z̄i = 1 − zi. Now, by replacing the GBF f used in the
above Theorems, by the function f defined in (67), we can
generate GCP, CS and CCC of length 2m−1 + 2m−2 + 2m−4

(m ≥ 6), from Theorem 1, Theorem 2, Theorem 3, respec-
tively.

Remark 3: The direct construction of MOCSs of length
2m−1+2m−3 are available in [44] (for t = 2m−3), but MOCSs
of lengths 2m−1 + 2m−2 + 2m−4 (m ≥ 6) has never been
reported in the literature.



9

TABLE II: Comparison of the proposed CCC construction with [8], [29]–[32], [46]

Ref. Parameters Phase Based on Length(N) Constraints
[8] (2k+1, 2k+1, N) q ≥ 2, q is even GBF of order > 2 2m m, k ∈ Z+, m > 1
[29] (2k+1, 2k+1, N) q ≥ 2, q is even GBF of order 2 2m m, k ∈ Z+, m > 1
[30] (2k, 2k, N) q ≥ 2, q is even GBF of order > 2 2m k,m ∈ Z+, m ≥ 1, k ≤ m
[31] (2k+1, 2k+1, N) q ≥ 2, q is even GBF of order 2 2m m, k ∈ Z+,m > 1, 1 ≤ k ≤ m− 1
[32] (2k, 2k, N) q ≥ 2, q is even GBF of order 2 2m m, k ∈ Z+, m ≥ 3, 1 ≤ k ≤ m

[46]
(M,M,N)

M = p1p2 . . . pk
q = lcm(p1, p2, . . . , pk, r) MVF of order 2 pm1

1 pm2
2 · · · p

mk
k r,mi ∈ Z+, pi is prime, 1 ≤ i ≤ k,

Theorem 3 (2k+1, 2k+1, N) 2 GBF of order > 2
2m−1 + 2m−3 m, k ∈ Z+,m ≥ 5
2m−1 + 2m−2 + 2m−4 m, k ∈ Z+, m ≥ 6

Example 5: For m = 8 and q = 2, let us consider the GBF
f : {08,18, . . . ,2088} → Z2 defined as

f =z0z1 + z0z2 + z1z2 + z1 (z̄7z̄6 + z̄7z6 (z̄5 + z5z̄4z3))

+ (z̄7z̄6 (z̄5z4z3 + z5z̄4z̄3) + z̄7z6 (z̄5z̄3 + z5z̄4 + z4 (z̄5z3

+z3z̄3)) + z7z̄6 (z̄4z̄3 + z5z4 + z̄5z4z3 + z7z6z̄5z̄4)) .
(69)

In this example, after deleting vertex z2, f forms a path, so
the sets

S0 = {f + a0z2 + az0 : a, a0,∈ {0, 1}} , (70)

and S1 = {f + a0z2 + az0 + z2 : a, a0 ∈ {0, 1}} , (71)

are MOCSs of length 208. Similarly the sets

S̄0 =
{
f̄ + a0z̄2 + āz0 : a, a0,∈ {0, 1}

}
, (72)

and S̄1 =
{
f̄ + a0z̄2 + āz0 + z̄2 : a, a0,∈ {0, 1}

}
, (73)

are MOCSs of length 208 and hence their union i.e., the set
{S0, S1, S̄0, S̄1} forms a (4, 4, 208)-CCC.

VII. PMEPR OF MOCSS AND CCCS

In this section, the row and column sequence PMEPR of the
sequences generated by Theorem 2, Theorem 3 and MOCSs
and CCCs constructed in the section VIare investigated. The
PMEPR of the CCC-MC-CDMA system is determined by the
column sequences of the complementary matrices when each
complementary code is arranged as a matrix [8]. Thus, in this
section, the column sequence PMEPR of constructed MOCSs
and CCCs is effectively bound by 2.

Since the row sequences of St forms a CS of size 2k,
its PMEPR is upper bounded by 2k. The column sequence
PMEPR of the CCC generated from Theorem 3 can be
bounded above by 2 by adding a suitable constant. For GBFs
f, g and constants c, c1 and c2, it can be easily verified that
A(f + c) = A(f) and C (f + c1, g + c2) = C(f, g)ωc1−c2 .
For a permutation π′ of {0, 1, . . . , k−1}, the set (matrix) St of
(31) is redefined by adding the constant

∑k−1
α=0 aπ′(α)aπ′(α+1){

f +

k−1∑
α=0

aαzpα +

k−1∑
α=0

nαzpα + azβ2
+

k−2∑
α=0

aπ′(α)aπ′(α+1) : a, aα ∈ {0, 1}

}
,

(74)

where t =
∑k−1
α=0 nα2α. Adding the same constant to the

set S̄t and noting that AACS remains unchanged and ACCS

changes by a constant, so the new set is still a CCC with
same parameters. It can be observed from (74) that the ith
column of St can be obtained by fixing z = (i0, i1, . . . , im−1),
0 ≤ z < 2m−1 + 2m−3. So ith column of the matrix St is
dependent on a function φ defined as

φ(a) =

k−1∑
α=0

aπ′(α)aπ′(α+1) +

k−1∑
α=0

aαipα + azβ2
+ C, (75)

where C is a constant (independent of a). Since any column se-
quence of the matrix St is obtained by a GBF, whose graph is a
path consisting of k vertices. Hence, from [20] the ith column
of St is a Golay sequence, and so its PMEPR is upper bounded
by 2. Similarly it can be verified that the column sequence
PMEPR of S̄t is also upper bounded by 2. So the maximum
column sequence PMEPR of

(
2k+1, 2k+1, 2m−1 + 2m−3

)
-

CCC, can be suitably upper bounded by 2. The same is true
for
(
2k+1, 2k+1, 2m−1 + 2m−2 + 2m−4

)
-CCC.

Remark 4: There exist PU matrix based construction of
CCCs of length non-power of two [40]–[42], but their col-
umn sequence PMEPR are high compared to the proposed
construction.

VIII. CONCLUSION

In this paper, we have proposed a direct and generalized
construction of GCP and binary CCC of non-power of two
lengths by using higher-order GBFs. The resultant CCCs can
be obtained directly from GBFs without using other tedious
sequence operations. The non-power of two length binary
CCCs directly constructed using GBFs finds many applications
in wireless communication due to its simple modulo-2 arith-
metic operation, modulation and good correlation properties.
Column sequence PMEPR of the proposed CCC can be
effectively reduced to be upper bounded by 2. The construction
of MOCSs of non-power of two lengths is also provided in
this paper. The proposed work solved the open problem cited
in [44], [46]. The work is compared with existing literature.
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