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ABSTRACT This paper presents a convex-analytic framework to learn sparse graphs from data. While our
problem formulation is inspired by an extension of the graphical lasso using the so-called combinatorial
graph Laplacian framework, a key difference is the use of a nonconvex alternative to the `1 norm to
attain graphs with better interpretability. Specifically, we use the weakly-convex minimax concave penalty
(the difference between the `1 norm and the Huber function) which is known to yield sparse solutions
with lower estimation bias than `1 for regression problems. In our framework, the graph Laplacian is
replaced in the optimization by a linear transform of the vector corresponding to its upper triangular part.
Via a reformulation relying on Moreau’s decomposition, we show that overall convexity is guaranteed by
introducing a quadratic function to our cost function. The problem can be solved efficiently by the primal-
dual splitting method, of which the admissible conditions for provable convergence are presented. Numerical
examples show that the proposed method significantly outperforms the existing graph learning methods with
reasonable CPU time.

INDEX TERMS Graph signal processing, graph learning, graphical lasso, minimax concave penalty,
primal-dual splitting method, proximity operator

I. INTRODUCTION

How can we learn sparse graphs with enhanced interpretabil-
ity under the Gaussian Markov random field (GMRF) [1]?
This is the central question addressed in this article. A graph,
containing a set of vertices and edges, is a mathematical tool
to represent the dependencies among components (such as
nodes of a network or pixels of an image), through the selec-
tion of pairwise relations (edge weights) between each pair
of objects (vertices). In particular, the strength of the relation
can be expressed in terms of (nonnegative) graph weights.
In the present context, graph “sparseness” is an important
property because it tends to provide better interpretability,
i.e., relative to all possible connections between nodes, only
a few edges are non-zero and provide information about the
major relationships between objects.

The problem of learning graphs from data has been studied
widely in a variety of fields including signal processing,
machine learning, and statistics [2]–[12]. Graph learning has
been considered in multiple applications such as design of
functional brain network architectures [13], molecular biol-

ogy [14], and network anomaly detection [15]. We also refer
the reader to [16], [17] for comprehensive reviews of graph
learning. The graphical model approach [2]–[6] represents
dependencies with the data in graph form and has gained
significant popularity owing to two main reasons. First, the
graphical model is built upon a solid statistical foundation, so
that the edge weights have a physical meaning under certain
assumptions. For instance, if the observed data are derived
from a GMRF model, the weights are based on partial corre-
lation coefficients [18]. Second, it provides excellent versatil-
ity as it assumes no specific structure on the graph. A particu-
lar example of graph learning algorithm is the graphical lasso
[2], [7]–[9], [19], which employs `1 regularization on the
edge weights to obtain the sparse inverse covariance matrix
of a GMRF model [1]. This approach has been extended and
modified in [10] to learn several types of Laplacian matrices,
including a formulation where the inverse covariance matrix
has a combinatorial graph Laplacian (CGL) structure [10]. As
noted earlier, research on sparse graph learning is motivated
by the fact that sparsity enhances the interpretability of the

1

ar
X

iv
:2

10
9.

08
66

6v
1 

 [
ee

ss
.S

P]
  1

7 
Se

p 
20

21



T.Koyakumaru et al.: Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields

learned graphs [10], [20]. All those sparsity-seeking methods
exploit convex penalties (such as the `1 norm) mainly due to
their mathematical tractability.

To clarify the motivation of the present study, let us
turn our attention to sparse linear regression. A plethora of
nonconvex alternatives to the `1 regularization have been
proposed to reduce the estimation bias while maintaining the
benefit of variance reduction [12], [21]–[23]. Among them,
we focus on the minimax concave (MC) penalty [21], [24]
because:

(i) it saturates (i.e., it returns a constant value when the
variable being estimated exceeds a given threshold)
thereby reducing the estimation biases significantly;

(ii) it has been shown to bridge the gap between the `0 and
`1 norms in a parametric way [25];

(iii) it is a weakly convex function [26]; more specifically,
it is given by subtracting from the `1 norm its Moreau
envelope.

Property (iii) is of particular importance from an optimization
viewpoint because the overall convexity of the cost function
is ensured when the MC penalty is used with strongly convex
loss functions, and also because the decomposed form in
terms of a convex function and its Moreau envelope is com-
patible with the efficient operator splitting methods. The MC
penalty has been used in various sparse estimation problems,
e.g., feature selection with a sparse support vector machine
(SVM) [27] and gear fault diagnosis from noisy vibration
signals [28]. To the best of authors’ knowledge, the `p quasi-
norm for p ∈ (0, 1) is the only function, excluding the MC
penalty, that is known to possess property (ii) above, but it
lacks properties (i) and (iii). On the other hand, the smoothly
clipped absolute deviation (SCAD) penalty [12] is similar to
the MC penalty and it could be an alternative choice, since it
actually possesses property (i) as well as the weak-convexity
part of property (iii) although further investigations would
be needed to determine whether property (ii) and the other
part of property (iii) also hold for the SCAD penalty. While
nonconvex alternatives to the `1 penalty have been successful
in the context of sparse linear regression, their study for
graph learning has been limited, and most of the existing
graph learning methods use the `1 or `2 regularization. A few
exceptions include approaches using the log function [11]
or the `0 norm [29]. A use of the SCAD penalty was also
mentioned in [12], [30]. The recent works [30], [31] have
observed that an increase of the regularization parameter of
the `1 penalty in the CGL estimation framework ultimately
does not lead to a sparse solution and instead produces a
dense solution associated with a fully connected graph. Based
on this observation, in [30], [31], it has been shown that the
use of the MC penalty (as well as other nonconvex penalties)
yields better performance. However, these approaches are
based on a nonconvex formulation and thus there is no
guarantee that the generated sequence of graphs converges
to a global optimum. This motivates us to devise another
formulation which benefits from the weak convexity of the

MC penalty to guarantee overall convexity of the entire cost
so that the generated graphs converge to provably global
optimum.

The goal of this article is to present a novel graph learning
framework based on a convex formulation involving the non-
convex (but weakly convex) MC penalty to produce sparse
graphs, and specifically sparse CGL matrices. Since CGLs
are symmetric matrices, we remove this redundancy by rep-
resenting a CGL matrix using a linear transform of the vector
of graph weights corresponding to the upper-triangular part.1

Here, the upper-triangular part represents the undirected re-
lations among nodes and completely characterizes the CGL
matrix, so that our estimate is automatically guaranteed to
have a Laplacian structure without the need to impose any
constraints. This is in sharp contrast to the existing CGL
approaches, which typically require both a positive semi-
definite constraint and a linear constraint. Our formulation
involves the nonconvex MC penalty, instead of the `1 norm,
while essentially keeping the same terms (the “nonsmooth”
log-determinant term and the linear term) as the graphical
lasso formulation but with the linear operator mentioned
above. Note here that the negative log-determinant function
is differentiable but with non-Lipschitz-continuous gradient.
Due to the nonconvexity and the nonsmoothness, the prob-
lem cannot be solved directly using existing optimization
methods. To circumvent the difficulty, we invoke the clas-
sical Moreau’s decomposition and show that the Tikhonov
regularization convexifies the overall cost function, reformu-
lating the problem into a canonical form of the primal-dual
splitting method [32]. We present the admissible conditions
under which the convergence to the global optimal point is
guaranteed by the primal-dual splitting method. Numerical
examples show that the proposed method outperforms the
conventional CGL method (its `1-based counterpart) for three
types of graph. Compared to the state-of-the-art method, the
structured graph learning via Laplacian spectral constraints
(SGL) [11], the proposed method achieves comparable or
better performance, depending on the type of graph, with up
to 40 times shorter CPU time. In addition, experiments with
real data show that the method produces a sparser graph than
other existing methods.

New features of the present work relative to our prelimi-
nary work [33] include detailed proofs of the mathematical
results and refined experimental results as well as additional
simulation results using real data.

II. PRELIMINARIES
We present notation, and then show some mathematical tools
used in this work. We finally present the primal-dual splitting
method which is used to solve the proposed optimization
problem to be presented in Section III.

1Although the one-to-one linear operator for representing the CGL was
used in the structured graph learning via Laplacian spectral constraints
(SGL) method [11], the proposed method is more efficient (as shown in
Section IV) due to the proposed reformulation, which allows to use the
primal-dual splitting method [32] (as shown in Section III).
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A. NOTATION
The sets of real numbers and nonnegative real numbers
are denoted by R and R+, respectively. The transpose of
vector/matrix is denoted by (·)T . Given a vector x :=
[x1, x2, · · · , xn]T ∈ Rn, define the `1 and the `2 norms by
‖x‖1 :=

∑n
i=1 |xi| and ‖x‖2 :=

(∑n
i=1 x

2
i

) 1
2 , respectively.

Similarly, given a matrix X ∈ Rn×n with its (i, j) compo-
nent denoted by xi,j , define the `1 and the Frobenius norms

by ‖X‖1 :=
∑n
i,j=1 |xi,j | and ‖X‖F :=

(∑n
i,j=1 x

2
i,j

) 1
2

,
respectively. Given a pair of matrices A and B, define the
inner product 〈A,B〉 :=

∑n
i,j=1 ai,jbi,j . Let I and 1 denote

the identity matrix and the vector of ones, respectively, and
let diag(x) represent the diagonal matrix consisting of the
components of a vector x.

We consider undirected weighted graphs with nonnegative
edge weights. The graph G = (V, E ,W ) is composed of a set
of nodes V , edges E , and a symmetric weight matrix W ∈
Rn×n with wi,j > 0 if (i, j) ∈ E , and wi,j = 0 if (i, j) 6∈ E ,
where n = |V| is the number of nodes. Here, (i, i) 6∈ E for
any i by convention. CGL is defined by Θ = D −W ∈
Rn×n, where D := diag(W1) is the degree matrix. CGL
has zero row-sums with its minimum eigenvalue also zero
which is simple when the graph is connected.

B. MATHEMATICAL TOOLS
The conjugate of a function f(w) is denoted by f∗(y) =
supw∈RN 〈w,y〉 − f(w), y ∈ RN . The set of proper lower
semicontinuous convex functions from RN to (−∞,+∞]
is denoted by Γ0(RN ).2 The proximity operator of f ∈
Γ0(RN ) of index γ > 0 is defined as follows [34]:

proxγf (w) := argmin
y∈RN

(
f(y) +

1

2γ
‖w − y‖22

)
. (1)

Uniqueness and existence of the minimizer is guaranteed by
the strong convexity and coercivity of f + 1

2γ ‖w − ·‖22. The
indicator function with respect to a given set S is denoted by

ιS(w) :=

{
0, if w ∈ S,
+∞, otherwise.

(2)

It is clear by definition that proxιC (w) = PC(w) :=
argmin
y∈C

‖w − y‖2. The Moreau envelope of a function f ∈
Γ0(RN ) of index γ > 0 is defined as follows [34, Definition
12.20]:

γf(w) := min
y∈RN

(
f(y) +

1

2γ
‖w − y‖22

)
. (3)

Using the Moreau envelope γ‖ · ‖1 of ‖ · ‖1, which is the
widely known Huber function, the MC penalty [24] is defined
as

φMC(w) = ‖w‖1 −γ‖ · ‖1(w). (4)

The nonconvex function φMC here is known to induce a
sparser and less biased estimate with respect to the `1 penalty.

2A function f is proper if dom f := {w ∈ RN | f(w) < +∞
}
6= ∅,

and lower semicontinuous at w if f(w) ≤ lim infy→wf(y).

Algorithm 1 Primal-dual splitting method
Input: Initial estimate w0 ∈ X ,V0 ∈ Y , tolerance ε > 0,

proximity parameters τ > 0 and σ > 0, relaxation
parameters ρk > 0.
while ‖wk+1−wk‖22

‖wk‖22
> ε do

1. w̃k+1 := proxτG (wk − τ∇F (wk)− τL∗Vk)
2. Ṽk+1 := proxσH∗ (Vk + σL (2w̃k+1 −wk))

3. (wk+1,Vk+1) :=ρk

(
w̃k+1, Ṽk+1

)
+(1−ρk)(wk,Vk)

end while

C. PRIMAL-DUAL SPLITTING METHOD
Let X and Y be real Hilbert spaces: in the present case, X :=
RN and Y := Rn×n. The primal-dual splitting method [32]
solves convex optimization problems in the following form:

min
w∈X

[F (w) +G(w) +H(L(w))], (5)

where F : X → R is a differentiable convex function with
Lipschitz continuous gradient ∇F , G ∈ Γ0(X ) and H ∈
Γ0(Y) are proximable proper lower semicontinuous convex
functions, and L : X → Y is a bounded linear operator
with its adjoint operator denoted by L∗. Here, “proximable"
means that the proximity operator of the function can be
computed easily (in a closed form in the present case). The
primal dual splitting method is given in Algorithm 1.

III. PROPOSED ALGORITHMS
Due to its structure (i.e., symmetry and zero row-sums), the
CGL is completely defined by its upper (or lower) triangular
part excluding the main diagonal, or, in other words, by a
length-n(n−1)2 vector, where the CGL is of size n× n. Since
all the off-diagonal components of CGL need to be nonneg-
ative, our variable vector is constrained to the nonnegative

cone (the nonnegative orthant) C := R
n(n−1)

2
+ . Given this, we

define a specific linear operator L : C→ Rn×n that maps a
nonnegative vector of size n(n − 1)/2 to its corresponding
CGL. For n = 4, for instance, L is defined as follows:

L : [w1, w2, w3, w4, w5, w6]T 7→
w1+w2+w3 −w1 −w2 −w3

−w1 w1+w4+w5 −w4 −w5

−w2 −w4 w2+w4+w6 −w6

−w3 −w5 −w6 w3+w5+w6

 .
A. PROBLEM FORMULATION
The CGL formulation presented in [10] is a popular extension
of graphical lasso for imposing a Laplacian constraint. With
a slight modification using the linear operator L introduced
above, the CGL formulation is given by

P0 : min
w∈C

−logdet(L(w)+J)+〈S, L(w)〉+λ1‖w‖1, (6)

where J := 1
n11T ∈ Rn×n, S ∈ Rn×n stands for the

sample covariance obtained from data, and λ1 ≥ 0 is the
regularization parameter. Note here that L(w)+J is positive
definite if and only if the graph of L(w) is connected, i.e.,
L(w) ◦ I − L(w) is an irreducible matrix, where ◦ denotes
the Hadamard product.

3
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Replacing the regularization term of Problem P0 by the
MC penalty given in (4), the problem reads as follows:3

P1 : min
w∈C

−logdet(L(w) + J) + 〈S, L(w)〉

+λ1 [‖w‖1 −γ‖ · ‖1(w)] .︸ ︷︷ ︸
MC

(7)

We introduce the Tikhonov regularization term λ2

2 ‖w‖22,
λ2 ≥ 0, which also plays a role of convexification as shown
below. Introducing the indicator function ιC(w) to accom-
modate the constraint as well, Problem P1 is transformed into
the following unconstrained optimization problem:

P2 : min
w∈R

n(n−1)
2

−λ1 γ‖ · ‖1(w) +
λ2
2
‖w‖22︸ ︷︷ ︸

F (w)

+ ιC(w)+λ1‖w‖1+〈S, L(w)〉︸ ︷︷ ︸
G(w)

−logdet(L(w)+J)︸ ︷︷ ︸
H(L(w))

.

(8)

By using Moreau’s decomposition 1
2γ ‖ · ‖22 = γf + γ−1

f∗ ◦
γ−1 I [34, Theorem 14.3], the MC penalty term can be
rewritten as

−γ‖ · ‖1(w) = γ−1

(‖ · ‖∗1)(γ−1w)− 1

2γ
‖w‖22 (9)

= γιB∞(w)− 1

2γ
‖w‖22, (10)

where B∞ := lev≤γ‖ · ‖∞ := {x ∈ Rn | ‖x‖∞ ≤ γ} is the
`∞ ball of radius-γ [34, Example 13.32]. The usefulness of
this decomposition of the MC penalty term has been observed
also in [36]–[39]. Using (10), the function F of P2 can be
rewritten as

F (w) = λ1
γιB∞(w)− λ1

2γ
‖w‖22 +

λ2
2
‖w‖22, (11)

of which the convexity is ensured clearly by choosing λ1 and
λ2 such that λ2 ≥ γ−1λ1 (see Proposition 4 below). The
Tikhonov regularization term λ2

2 ‖w‖22 thus has a convexifi-
cation property, as mentioned above. On the other hand, the
functions G(w) and H ◦L(w) are convex, since the compo-
sition of a convex function with an arbitrary affine operator is
also a convex function. Hence, under the convexity condition
given above, Problem P2 takes the form of (5), and it can be
solved by the primal-dual splitting method.

B. OPTIMIZATION ALGORITHM

The proposed algorithm is derived by applying the primal-
dual spitting method to Problem P2.

3Although the formulation in P1 has been considered in the literature [30],
[31], it was also considered earlier in the authors’ previous works [33], [35]
as an intermediate step, and the present study is independent from [30], [31].

1) Derivation of w̃k+1

We define the soft thresholding operator for a length-n(n−1)2
positive vector δ := [δ1, δ2, · · · , δn(n−1)

2
]T by

[softδ(w)]i =

 wi − δi, if wi ≥ δi,
0, if |wi| < δi,
wi + δi, if wi ≤ −δi,

(12)

where [·]i is the ith component of the argument. The convex
projection onto the nonnegative cone C is given by

[PC(w)]i =

{
wi, if wi ≥ 0,
0, if wi < 0.

(13)

Applying Step 1 of Algorithm 1 to Problem P2 yields

w̃k+1 = proxτG
[
wk − τL∗(Vk)− τ∇F (wk)

]
(14)

= proxτG

[
wk − τL∗(Vk)− τ

(
γ−1λ1prox‖·‖1(wk)

− γ−1λ1wk + λ2wk
)]
. (15)

The operators L∗ and proxτG can be computed by using the
following propositions.
Proposition 1: Let M ∈ Rn×n be an arbitrary CGL matrix
with its (p, q) component denoted by mp,q . Then, for any
p, q ∈ {1, 2, · · · , n} such that (2n − p − 1)p/2 + q − n ∈
{1, 2, · · · , n(n− 1)/2}, it holds that

[L∗(M)](2n−p−1)p/2+q−n = mp,p +mq,q −mp,q −mq,p.

Proof: See Appendix A.
Proposition 2: The proximity operator of G(w) := ιc(w)+
λ1‖w‖1+〈S, L(w)〉 of index τ > 0 can be expressed by

proxτG(w) = PC(w − τ(λ11 + L∗(S))). (16)

Proof: See Appendix B.
By using Proposition 2 and prox‖·‖1 = soft1, (15) can be

rewritten as

w̃k+1 = PC [wk − τL∗(Vk)− τ(λ11 + L∗(S))

−τ(γ−1λ1soft1(wk)− γ−1λ1wk + λ2wk)]. (17)

2) Derivation of Ṽk+1

Substituting Moreau’s decomposition [34, Theorem 14.3]

proxσH∗(u) = u− σ proxσ−1H(σ−1u) (18)

with H := −logdet(·+J) into Step 2 of Algorithm 1 yields

Ṽk+1 =Vk + σL (2w̃k+1 −wk)

−σ proxσ−1(−logdet(·+J))
[
σ−1Vk+L (2w̃k+1−wk)

]
.

(19)

Here, the proximity operator proxσ−1(−logdet( · + J)) can be
written in a closed form, as shown in the following proposi-
tion.

4
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Algorithm 2 Proposed graph learning algorithm
Input: Initial estimate (w0,V0), tolerance ε > 0, proximity

parameters τ > 0, σ > 0, covariance matrix S, regu-
larization parameter λ1 ≥ 0, λ2 ≥ 0, minimax concave
parameter γ−1 > 0, relaxation parameters ρk > 0.

Output: Graph Laplacian Θ

while ‖wk+1−wk‖22
‖wk‖22

> ε do
1. Compute the vector w̃k+1 by (17)
2. Find the eigenvalues νi and the matrix U =
[u1 . . .un] containing all the corresponding (unit-norm)
eigenvectors of

(
J + σ−1Vk + L (2w̃k+1 −wk)

)
3. Compute the vector Ṽk+1 by (21)
4. (wk+1,Vk+1)=ρk

(
w̃k+1, Ṽk+1

)
+(1−ρk)(wk,Vk)

end while
return Θ = L(wk)

Proposition 3: For a positive semi-definite matrix W ∈
Rn×n, it holds that

proxσ−1(−logdet( · + J))(W )

= Q diag

(
µ1+

√
µ2
1+4σ−1

2
,· · ·, µn+

√
µ2
n+4σ−1

2

)
QT

− J , (20)

where µi is the ith eigenvalue of W + J , and Q :=
[q1q2 . . . qn] with the eigenvectors qi ofW + J .
Proof: See Appendix C.
An application of Proposition 3 to (19) yields

Ṽk+1 =Vk + σL (2w̃k+1 −wk) + σJ

−σ
[
Udiag

(
ν1+

√
ν21 +4σ−1

2
,· · ·, νn+

√
ν2n+4σ−1

2

)
UT

]
,

(21)

where νi is the eigenvalue of σ−1Vk+L (2w̃k+1 −wk), and
U := [u1u2 . . .un] with the eigenvectors ui of σ−1Vk +
L (2w̃k+1 −wk).
The proposed algorithm is given in Algorithm 2. Our formu-
lation based on the MC penalty is expected to yield a sparser
solution with better interpretability than the conventional
`1-based methods due to the efficient sparsity promoting
property of the MC penalty. In addition, our representation
of CGL using the linear operator reduces the number of
variables approximately by half, while also transforming the
positive semi-definite constraint of the graph Laplacian to the
nonnegativity constraint w ∈ C. However, our formulation
needs O(n3) complexity due to the need to execute matrix
multiplication and eigenvalue decomposition. This compu-
tational drawback can be mitigated by using the eigenvalue
decomposition method for symmetric matrices [40]. Note
that, in the particular case of γ := +∞, the proposed
algorithm gives an alternative way to solve the graphical
lasso problem for CGL.

C. CONVERGENCE CONDITIONS
Convergence is guaranteed under the following conditions.

Proposition 4: If λ2 ≥ γ−1λ1, the function F is convex. In
this case, Algorithm 1 converges to a global minimizer of P2

if the following conditions are jointly satisfied:

1)
1

τ
≥ 2σn+

λ2
2
,

2) 0 < ρk < 2− λ2
2

(
1

τ
− 2σn

)−1
.

Proof: See Appendix D.
From a theoretical side, a use of λ2 satisfying the convexity

condition shown in Proposition 4 ensures convergence to a
global minimizer. From a practical side, on the other hand,
a use of λ2 violating the convexity condition may yield
better performance, as will be seen in Section IV. How-
ever, we emphasize that improved performance comes with
no theoretical guarantees. A remarkable advantage of the
present framework is its flexibility due to the use of powerful
convex analytic solver, which allows to extend the presented
framework in many possible directions including dynamic
graph learning [41], [42].

IV. NUMERICAL EXAMPLES
We show the efficacy of the proposed method through some
experiments with synthetic and real data. We first show the
performances of the proposed method for different regular-
ization parameters. We then compare the performance of
the proposed method with CGL estimation [10] and SGL
estimation [11]. 4

A. EXPERIMENTS WITH SYNTHETIC DATA
Dataset generation: We consider three types of graph: (i)
grid graph G(

√
n,
√
n)

grid with nodes connected to their four near-
est neighbors (except the nodes at boundaries), (ii) random
modular graph (a.k.a. stochastic block model) G(n,0.01,0.3)M

with four modules where the nodes are connected across
the modules and within each module with probabilities 0.01
and 0.3, respectively, and (iii) Erdös-Rényi graph G(n,0,1)ER

with nodes connected to other nodes with probability 0.1.
The graph weights are randomly drawn from the uniform
distribution over the interval [0.1, 3.0], regarded as the
ground-truth graph Laplacian Θ in this experiment. From
each graph generated, data are generated from N (0,Θ†),
where (·)† denotes the Moore-Penrose pseudo inverse, and
the covariance matrix S is computed from data. For each
type of graph, we randomly generate 15 graphs with n = 100
nodes using the toolbox given in [43].
Performance measure: The relative error (RE) and F-score
(FS) are used as performance measures:

RE
(
Θ̂,Θ?

)
:=

∥∥∥Θ̂−Θ?

∥∥∥2
F

‖Θ?‖2F
, (22)

FS
(
Θ̂,Θ?

)
:=

2tp

2tp + fn + fp
, (23)

4We used the implementations of the SGL and CGL algorithms
in spectralGraphTopology (https://CRAN.R-project.org/package=
spectralGraphTopology).
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TABLE 1. Parameter settings for each graph.

parameter grid modular ER

λ1 0.005 0.01 0.01

nonconvex λ2 0 0 0
τ 1.0 1.0 1.0
σ 0.05 0.05 0.01
λ1 1.0×10−4 1.0×10−4 1.0×10−4

convex λ2 2.5×10−4 2.5×10−4 2.5×10−4

τ 1.0 1.0 1.0
σ 4.9×10−3 4.9×10−3 4.9×10−3

γ−1 2.25
ρk 1.0

Maximum iterations 5000
Tolerance error 1.0× 10−4

where tp, fp, and fn stand for true-positive, false-positive,
and false-negative, respectively. Here, RE indicates the dis-
crepancy between the ground-truth graph Laplacian Θ? ∈
Rn×n and its estimate Θ̂ ∈ Rn×n, while FS is a measure of
accuracy of binary classification (taking values in [0,1]), in-
dicating whether the sparse structures are extracted correctly.

1) Performance of the proposed method
We study the impacts of the parameters λ1 and γ−1 of the
MC penalty on the performance of the proposed method. We
also tested the case of λ2 := 0, which makes the entire
cost function nonconvex for any λ1 > 0, with the other
parameters tuned manually (see Table 1). To study the impact
of λ1, we fix γ−1 := 2.25 which gave a best performance in
the nonconvex case. Since τ is the algorithm parameter and it
only affects the convergence speed, we fix it to τ := 1.0.
The other parameters are then set to λ2 := γ−1λ1 and
σ ≈ (1/τ−λ2/2)/(2n) according to the convexity condition
(See Proposition 4). Figure 1 plots the RE and FS curves
across m/n in modular graph G(100,0.01,0.3)M for different
choices of λ1. To study the impact of γ−1, on the other
hand, we fix λ1 := 1.0 × 10−4 and choose the other
parameters in the same way as in Fig. 1. Figure 2 plots the
RE and FS curves for different choices of γ−1 under the
same conditions as in Fig. 1, with λ1=1.0× 10−4. In Figs. 1
and 2, the proposed method using the convexity condition
attains better performance than the nonconvex case when
m/n is small, while the nonconvex case is better when m/n
is large. To be more specific, whenm/n is small, using larger
λ1, or larger γ−1, yields better performance. Although the
regularization parameter λ2 for the Tikhonov regularization
needs to be sufficiently large to ensure the convexity of the
entire objective, using a λ2 that is too large tends to yield
a less sparse solution, which means degradation of graph
interpretability (cf. Section III-C).

2) Comparisons in estimation accuracy
Parameters: The best parameters are chosen manually, see
Table 1. The generated graphs depend only on λ1, λ2, and
γ−1, while being independent of the algorithm parameters
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FIGURE 1. Experimental results of each λ1 value under the convexity
condition in random modular graph G(100,0.01,0.3)

M estimation.
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FIGURE 2. Experimental results of each γ−1 value under the convexity
condition in random modular graph G(100,0.01,0.3)

M estimation.

τ , σ, and ρk in principle. It is very important to tune the
parameters λ1, λ2, and γ−1 carefully for better performance,
although the generated graph changes gradually as each of
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those parameters changes. As shown in Section IV-A1, for
the proposed method under the convexity condition, λ1 =
1.0 × 10−4 is used. We mention that a smaller value of λ1
tends to give a better result for RE and FS whenm/n is large.
Although the convergence is guaranteed under the condition
of λ2 described in Section III-C, λ2 := 0 (for which there
is no guarantee of convergence to the global minimizer) gave
the best performance in the current experiments. Regarding
the parameters for CGL and SGL, we follow the parameter
selection techniques proposed in [10] and [11], respectively.
Results: Figure 3 shows the ground truth and the learned
graph for m/n = 100 where m is the number of mea-
surements. One can see that the proposed method yields a
more accurate graph than the other methods; in particular,
the graph obtained by the proposed method is remarkably
sparse. Figures 4 – 6 show the performances in RE and FS
across m/n for the grid graph G(10,10)grid , the random modular
graph G(100,0.01,0.3)M , and the Erdös-Rényi graph G(100,0.1)ER ,
respectively. In Fig. 4, the proposed method (nonconvex)
significantly outperforms CGL due to the use of the MC
penalty, while the proposed method under the convexity
condition achieves approximately the same RE performance
as the nonconvex case with the degraded FS performance for
large m/n. The performance of SGL is close to that of the
proposed method in this case. The proposed method under
the convexity condition exhibits approximately the same per-
formance as the proposed method for λ2 = 0 (the nonconvex
case). In Fig. 5, on the other hand, the proposed algorithm
outperforms SGL considerably. The proposed method signif-
icantly outperforms CGL in FS for largem/n, although those
two methods exhibit comparable performances in RE (and in
FS as well for small m/n). In Fig. 6, the proposed method
outperforms the other methods in FS for a wide range of
m/n values, while the proposed method under the convexity
condition achieves approximately the same RE performance
as the nonconvex case with its FS performance close to
those of CGL and SGL for large m/n. We remark that the
difference between the proposed method and CGL is more
notable in Fig. 4 than in Figs. 5 and 6 because the graph
in Fig. 4 is approximately four times sparser than that of
Fig. 5 and twice sparser than that of Fig. 6. Thus, the sparsity
assumption is a better match to the actual data in for the graph
from Fig. 4. We finally remark that, for CGL and SGL, a
small regularization parameter was used because use of large
regularization parameters with the `1 norm leads to increased
errors, which degrade the quality (e.g., interpretability) of the
learned graphs. This is the reason why the graphs obtained by
CGL and SGL in Fig. 3 are not sufficiently sparse.

3) Comparisons in computation time

We investigate how the computation time with tolerance
error 1.0 × 10−4 changes with the size of the graph for
the modular graph G(n,0.01,0.3)modular . We set m/n = 5000 and
perform graph learning 15 times as in Section IV-A. The
computation time for n = 160, 240, 320, 400 is summarized

0 2.965

(a) Ground truth
0 2.9791

(b) Proposed

0 2.0488

(c) CGL
0 2.7024

(d) SGL

FIGURE 3. Visualization of estimate graphs, in which the edge colors
represent the edge weights.

0.5 0.75 1.5 5 10 30 100 250 500 1000
m/n

0.0

0.1

0.2

0.3

0.4

R
E

Proposed (nonconvex)

Proposed (convex)

CGL

SGL

(a) RE

0.5 0.75 1.5 5 10 30 100 250 500 1000
m/n

0.5

0.6

0.7

0.8

0.9

1.0

F
S

Proposed (nonconvex)

Proposed (convex)

CGL

SGL

(b) FS

FIGURE 4. Experimental results for grid graph G(10,10)
grid.

in Table 2. It can be seen that the proposed method is 5.38 –
43.4 times faster than SGL. Although the computation time
of the proposed method is higher due mainly to the eigen-
value decomposition of the larger sized matrix compared
to CGL, we emphasize that the performance improvements
are remarkable especially for the grid graph (See Fig. 4).
The significant advantage in CPU time is due to the fact
that the proposed method requires a few thousand iterations
for approximate convergence, while SGL requires over 105

iterations on average with per-iteration complexity of order
O(n3).
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FIGURE 5. Experimental results for random modular graph G(100,0.01,0.3)
M.

TABLE 2. A comparison of average CPU time (in seconds) for a modular
graph G(n,0.01,0.3)

modular with m/n = 5000.

n proposed method CGL SGL
160 111.2 14.95 6958
240 427.8 51.99 40565
320 1601 152.6 69555
400 4484 381.3 145613

B. EXPERIMENTS WITH REAL DATA
We test our method for the animal dataset [44], in which
each node represents each animal and the edges represent
how much the animals are related to each other. The dataset
contains binary values (i.e., it is a categorical dataset) which
represent the answers to some questions such as “has lungs?”
for instance. There are 102 such questions in total, answered
for 33 different animals. The covariance matrix is created
based on this data set, and the graph is learned in the same
way as in the previous experiment. The results are shown
in Fig. 7. It can be seen that the proposed method produces
a sparser graph than CGL and SGL while preserving the
dominant links.

V. CONCLUSION
We presented a graph learning method inserting the noncon-
vex MC penalty into the extension of the graphical lasso
formulation to produce sparse and accurate graphs. With the
linear-operator-based representation of CGL together with
the reformulation through the Moreau decomposition, an
efficient algorithm was derived with the primal-dual splitting
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FIGURE 6. Experimental results for Erdös-Rényi graph G(100,0.1)
ER.

method, for which an admissible choice of parameters was
presented to ensure the provable convergence. Numerical
examples showed that the proposed method significantly
outperformed CGL for the high-sparsity grid graphs, while
still achieving higher F-scores than CGL and SGL (the state-
of-the-art method) for the low-sparsity modular graphs. In
addition, the comparisons in CPU time showed that the
proposed method was dramatically faster than SGL.

APPENDIX A PROOF OF PROPOSITION 1
Letw := [w1,2, w1,3,· · ·, w1,n, w2,3, · · · , w2,n,· · ·, wn−1,n]T

∈ C. By definition of adjoint operator, it holds that
〈L(w),M〉=〈L∗(M),w〉, of which the left side can be
expanded asw1,2(m1,1+m2,2−m1,2−m2,1)+w1,3(m1,1+
m3,3 − m1,3 − m3,1) + · · · . It can therefore be seen that
[L∗(M)]1 = m1,1 +m2,2 −m1,2 −m2,1 and [L∗(M)]2 =
m1,1 +m3,3−m1,3−m3,1. In general, it can be verified that
[L∗(M)](2n−p−1)p/2+q−n = mp,p +mq,q −mp,q −mq,p.

APPENDIX B PROOF OF PROPOSITION 2
The assertion can be verified by combining the basic property
[34, Proposition 24.8]

proxφ+〈·,u〉(x) = proxφ(x− u) (B.1)

and the following fact [45, Proposition 1]:

proxιC+η‖·‖1(w) = PC(w − η1) (B.2)

for η > 0. Indeed, since G := ιC + λ1‖ · ‖1 + 〈S, L(·)〉 =
ιC + λ1‖ · ‖1 + 〈·, L∗(S)〉, we have τG = ιC + τλ1‖ · ‖1 +
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FIGURE 7. The relations of animals from animal dataset.

〈·, τL∗(S)〉. Applying (B.1) to φ := ιC + τλ1‖ · ‖1 and
u = τL∗(S), we obtain

proxτG(w) = proxιC+τλ1‖·‖1+〈·,τL∗(S)〉(w)

= proxιC+τλ1‖·‖1(w − τL∗(S))

= PC(w − τL∗(S)− τλ11). (B.3)

APPENDIX C PROOF OF PROPOSITION 3
The proximity operator of

f(W ) 7→
{− logdet(W ), ifW � 0,

+∞, otherwise,

is given by [34, Example 24.66]

prox−σ−1logdet(·)(W )

=
1

2
Qdiag

(
µ1+

√
µ2
1+4σ−1,· · ·, µn+

√
µ2
n+4σ−1

)
QT .

(C.1)

By (C.1) and the property [34, Proposition 24.8]:

proxf(·+J)(W ) = proxf (W + J)− J , (C.2)

we obtain the result.

APPENDIX D PROOF OF PROPOSITION 4

It is clear from (11) that F is convex when λ2 ≥ γ−1λ1. The
convergence condition of the primal dual splitting method is
given as follows [32]:

1) 1
τ ≥ σ‖L‖2 + β

2 ,

2) 0 < ρk < 2− β
2

(
1
τ − σ‖L‖2

)−1
,

where β is the Lipschitz constant of ∇F and ‖L‖ :=

supw 6=0
‖L(w)‖F
‖w‖2 is the operator norm. We show below the

Lipschitz constant of F and the operator norm of L. (Al-
though it is shown in [11] that ‖L‖ =

√
2n, we show the

proof for self-containedness.)

A. DERIVATION OF THE LIPSCHITZ CONSTANT OF ∇ F

The gradient of F is given by

∇F (w) = γ−1λ1prox‖·‖1(w) + (λ2 − γ−1λ1)w.

Hence, by the nonexpansiity of the proximity operator as well
as the triangular inequality of norm, we obtain

‖∇F (w)−∇F (w′)‖2
=
∥∥∥(γ−1λ1prox‖·‖1(w)+(λ2 − γ−1λ1)w

)
−
(
γ−1λ1prox‖·‖1(w′)+(λ2 − γ−1λ1)w′

)∥∥∥
2

(D.1)

≤ ‖γ−1λ1prox‖·‖1(w)− γ−1λ1prox‖·‖1(w′)‖2
+ ‖(λ2 − γ−1λ1)(w −w′)‖2 (D.2)

≤ γ−1λ1‖w −w′‖2 + (λ2 − γ−1λ1)‖w −w′‖2 (D.3)
≤ λ2‖w −w′‖2, (D.4)

from which∇F is λ2-Lipschitz contiuous.
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B. DERIVATION OF ‖L‖
By definition of Laplacian, we have [L(w)]i,i =
−∑j 6=i[L(w)]i,j , and hence it holds that

‖L‖2 = sup
w 6=0

‖L(w)‖2F
‖w‖22

= sup
w 6=0

n∑
p=1


−∑

q 6=p

[L(w)]p,q

2
+ 2

(∑
p<q

[L(w)]2p,q

)
∑
p<q

[L(w)]2p,q

= sup
w 6=0

n∑
p=1


−∑

q 6=p

[L(w)]p,q

2


∑
p<q

[L(w)]2p,q
+ 2. (D.5)

Using the Caucy-Schwartz inequality, we have

n∑
p=1


−∑

q 6=p

[L(w)]p,q

2
≤ n∑

p=1

(n− 1)
∑
q 6=p

[L(w)]2p,q


= 2(n− 1)

∑
p<q

[L(w)]2p,q,

(D.6)

where the inequality holds with equality when w = α1,
α ∈ R. By (D.5) and (D.6), we obtain ‖L‖2 = 2n, where
the upper bound is obtained when we consider the complete
graph with all weights equal to one; i.e., w = 1.
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