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Abstract

In entropy coding, universal coding of integers (UCI) is a binary universal prefix code, such that the

ratio of the expected codeword length to max{1, H(P )} is less than or equal to a constant expansion

factor KC for any probability distribution P , where H(P ) is the Shannon entropy of P . K∗

C
is the

infimum of the set of expansion factors. The optimal UCI is defined as a class of UCI possessing the

smallest K∗

C
. Based on prior research, the range of K∗

C
for the optimal UCI is 2 ≤ K∗

C
≤ 2.75. Currently,

the code constructions achieve KC = 2.75 for UCI and KC = 3.5 for asymptotically optimal UCI. In

this paper, we propose a class of UCI, termed ι code, to achieve KC = 2.5. This further narrows the

range of K∗

C
to 2 ≤ K∗

C
≤ 2.5. Next, a family of asymptotically optimal UCIs is presented, where their

expansion factor infinitely approaches 2.5. Finally, a more precise range of K∗

C
for the classic UCIs is

discussed.

I. INTRODUCTION

In entropy coding, when the probability distribution of sources is unknown and difficult to

measure, some entropy coding, such as arithmetic coding [1, 2] and Huffman coding [3], cannot

be applied to compress the source. In this case, universal source coding [4] is a common way to

encode the data, and LZ series algorithms [5–7] is one of the well-known algorithms of universal

source coding. However, there is no universal source coding for infinite alphabet and discrete

memoryless sources [8]. Universal coding of integers (UCI) is a universal code for infinite

alphabet and discrete memoryless sources. UCIs have been applied in widespread applications,
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such as unbounded search problems [9, 10], inverted file index [11], inductive inference [12]

and biological sequencing data compression [13, 14].

Prefix coding is a class of variable-length code that no codeword is a prefix of any other

codeword. Binary coding means that the coding alphabet is {0, 1}. Elias [15] defined UCI

as a binary universal prefix code, such that the ratio of the expected codeword length to

max{1, H(P )} is less than or equal to a constant expansion factor KC for any probability

distribution P , where H(P ) is the Shannon entropy of P . Many UCIs have been proposed and

most of they can be divided into the following two categories [16, 17] (For example, group

strategy [18] is the exception).

1) message length strategy: This strategy is to encode a positive integer n into two parts. The

suffix part of length L represents n, and the prefix part standing for L (The prefix part

can be further subdivided). The coding of this strategy was proposed in [15, 19–23].

2) flag strategy: This strategy is to select a special sequence, called flag, to determine the

end of a codeword. The flag is not allowed to appear within a codeword. The coding of

this strategy was proposed in [17, 24–27].

Recently, Yan and Lin [23] first studied the range of KC . First, the authors defined optimal

UCI, which is a class of UCI with the smallest K∗
C , inf{KC}. It is showed that the optimal

UCI is in the range 2 ≤ K∗
C ≤ 2.75, where K∗

C = 2.75 is achieved by η code [23]. In particular,

for the asymptotically optimal UCI, the smallest expansion factor is KC = 3.5, which is achieved

by θ code [23] and Elias ω code [15].

In this paper, we further narrow the range of K∗
C of the optimal UCI. The contributions of

this paper are listed below.

1) A class of UCI, but not asymptotically optimal, with KC = 2.5 is presented. This reduces

the upper bound of K∗
C from 2.75 to 2.5.

2) A family of asymptotically optimal UCIs is proposed, where KC infinitely approaches 2.5.

3) The range of K∗
C for some classic UCIs is discussed (see Table IV).

In the rest of this paper, Section II introduces some background knowledge. Section III presents

the main theorem of this paper. Section IV proposes a class of UCI to achieve KC = 2.5. A

family of asymptotically optimal UCIs is proposed in Section V. Section VI gives a more precise

range of K∗
C for the classic UCIs. Section VII concludes this work.
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II. PRELIMINARIES

A. The definitions of UCI and asymptotically optimal UCI

Elias [15] treated the coding problem as follows. Let C be a given binary prefix coding

of the positive integers N , {1, 2, · · · , m, · · · }. Let LC(·) denote the length function of C

(i.e., LC(m) = |C(m)|, for all m ∈ N ). Let P denote any probability distribution of N (i.e.,
∑∞

n=1 P (n) = 1, and P (m) ≥ 0, for all m ∈ N ). In UCI, the source meets the probability

distribution

P (m) ≥ P (m+ 1), (1)

for all m ∈ N . Let EP (LC) =
∑∞

n=1 LC(n)P (n) be the expected codeword length for C, and let

H(P ) = −
∑∞

n=1 P (n) log2 P (n) denote the entropy of P . Elias [15] defined C to be universal

if there is a constant KC such that

EP (LC)

max{1, H(P )}
≤ KC, (2)

for all P with finite entropy, where KC is the expansion factor. Furthermore, C is called

asymptotically optimal if C is universal and a function RC(·) exists such that

lim
H(P )→+∞

RC(H(P )) = 1, (3)

and
EP (LC)

max{1, H(P )}
≤ RC(H(P )), (4)

for all P with finite entropy.

B. Some classic UCIs

In this subsection, we briefly introduce five classic UCIs, termed γ code, δ code, ω code, η

code, and θ code. For the specific structure of classic UCIs, please refer to [15, 23]. First, the

codeword lengths and the range of K∗
C of these UCIs are listed in Table I. And the five classic

UCIs all satisfy LC(1) = 1. Next, the following theorem can be used to judge whether a UCI is

asymptotically optimal.

Theorem 1. [15, 24] Given a UCI C, the function LC(·) satisfies LC(m) ≥ c+b⌊log2m⌋ for all

m ∈ N , where b is a constant greater than 1 and c is a constant. Then, C is not asymptotically

optimal.
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TABLE I: The codeword lengths and ranges of K∗
C of some classic UCIs

Code The codeword lengths for 2 ≤ m ∈ N The range of K∗
C Asymptotically optimal

γ code Lγ(m) = 1 + 2⌊log2 m⌋ K∗
γ = 3 No

δ code Lδ(m) = 1 + ⌊log2 m⌋+ 2⌊log2(1 + ⌊log2 m⌋)⌋ 2.5 ≤ K∗
δ ≤ 4 Yes

ω code Lω(m) = 1 +
∑s

n=1(λ
n(m) + 1) 1 2.1 < K∗

ω ≤ 3.5 Yes

η code Lη(m) = 3 + ⌊log2(m− 1)⌋ + ⌊ ⌊log
2
(m−1)⌋

2
⌋ 2.5 ≤ K∗

η ≤ 2.75 No

θ code Lθ(m) = 3 + ⌊log2 m⌋+ ⌊log2⌊log2 m⌋⌋+ ⌊ ⌊log
2
⌊log

2
m⌋⌋

2
⌋ 2.5 ≤ K∗

θ ≤ 3.5 Yes

1 λ(m) , ⌊log2 m⌋, λn is the n-fold compositions of function λ, and s = s(m) ∈ N is a uniquely integer satisfying

λs(m) = 1.

III. THE MAIN THEOREM

In this section, we present the main theorem of this paper. First, a related lemma is provided,

then the theorem is given.

Lemma 1. Given an any probability distribution P = (P (1), P (2), · · · , P (m), · · · ), then

(1) H(P ) ≥ − log2 P (1);

(2) If H(P ) < 1, then P (1) > 1
2
.

Proof. (1)

H(P ) =
∞∑

n=1

P (n) log2
1

P (n)

≥
∞∑

n=1

P (n) log2
1

P (1)

= − log2 P (1).

(5)

(2) When H(P ) < 1, then

− log2 P (1) ≤ H(P ) < 1 ⇒ P (1) >
1

2
. (6)

Theorem 2. Given a prefix code C, the function LC(·) satisfies LC(1) = 1 and LC(m) ≤

b+ 1 + b⌊log2m⌋ for all 2 ≤ m ∈ N , where the constant b is in the range 1 ≤ b ≤ 9
4
. Then,

EP (LC)

max{1, H(P )}
≤ b+ 1; (7)

that is, C is a UCI and K∗
C ≤ b+ 1.
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Proof. Due to

mP (m) ≤
m∑

n=1

P (n) ≤
∞∑

n=1

P (n) = 1, (8)

we have m ≤ 1
P (m)

for all m ∈ N . Thus, we obtain

∞∑

n=2

P (n) log2 n ≤
∞∑

n=2

P (n) log2
1

P (n)

= H(P ) + P (1) log2 P (1).

(9)

The expected codeword length is

EP (LC) ≤ P (1) +

∞∑

n=2

P (n)(b+ 1 + b⌊log2 n⌋)

= b+ 1− bP (1) + b

∞∑

n=2

P (n)⌊log2 n⌋

≤ b+ 1− bP (1) + b

∞∑

n=2

P (n) log2 n

≤ b+ 1− bP (1) + bH(P ) + bP (1) log2 P (1).

(10)

We consider three cases below.

1) Case H(P ) < 1: In this case, we obtain P (1) > 1
2

from Lemma 1. Further, we have

EP (LC)

max{1, H(P )}
≤ b+ 1− bP (1) + bH(P ) + bP (1) log2 P (1)

≤ 2b+ 1− bP (1) + bP (1) log2 P (1).

(11)

Let g1(x) , 2b+1−bx+bx log2 x. We only need to prove that g1(x) ≤ b+1 over interval

[1
2
, 1]. We know that the curve of g1 is U-shaped over interval [1

2
, 1] by its derivative. Thus,

we have g1(x) ≤ max{g1(
1
2
), g1(1)} = b+ 1 over interval [1

2
, 1].

2) Case H(P ) ≥ 1 and P (1) ≥ 0.5: In this case, we have

EP (LC)

max{1, H(P )}
≤

b+ 1− bP (1) + bH(P ) + bP (1) log2 P (1)

H(P )

= b+
b+ 1− bP (1) + bP (1) log2 P (1)

H(P )

≤ 2b+ 1− bP (1) + bP (1) log2 P (1)

(a)

≤ b+ 1.

(12)

where (a) is due to g1(x) ≤ b+ 1 over interval [1
2
, 1].
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3) Case H(P ) ≥ 1 and P (1) < 0.5: In this case, we obtain

EP (LC)

max{1, H(P )}
≤ b+

b+ 1− bP (1) + bP (1) log2 P (1)

H(P )

(a)

≤ b+
b+ 1− bP (1) + bP (1) log2 P (1)

− log2 P (1)
.

(13)

where (a) is due to Lemma 1. Let

g2(x) ,
b+ 1− bx+ bx log2 x

− log2 x

= ln 2 ·
bx− b− 1

ln x
− bx.

(14)

We need to prove that g2(x) ≤ 1 over interval (0, 1
2
). We first prove that g′2(x) > 0 over

interval (0, 1
2
). Due to

g′2(x) = ln 2 ·
b ln x− b+ b+1

x

(ln x)2
− b, (15)

then g′2(x) > 0 over interval (0, 1
2
) is equivalent to f(x) > 1

ln 2
over interval (0, 1

2
), where

f(x) ,
ln x− 1 + b+1

bx

(ln x)2
. (16)

Finally, we obtain

f ′(x) =
− ln x

x2(ln x)4
h(x)

,
− ln x

x2(ln x)4

(
x ln x+

b+ 1

b
ln x− 2x+

2b+ 2

b

)
,

h′(x) = ln x+
b+ 1

bx
− 1,

h′′(x) =
1

x2

(
x−

b+ 1

b

)
.

(17)

Due to h′′(x) < 0 over interval (0, 1
2
), we have

h′(x) > h′(
1

2
)

= ln
1

2
+

2b+ 2

b
− 1

> − ln 2− 1 + 2

> 0,

(18)

over interval (0, 1
2
). Thus, h(x) strictly increases over interval (0, 1

2
). Due to

h(0.19) = 0.19 ln 0.19 +
b+ 1

b
(2 + ln 0.19)− 2× 0.19

≤ 0.19 ln 0.19 + 2× (2 + ln 0.19)− 0.38

< 0

(19)
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and

h(0.24) = 0.24 ln 0.24 +
b+ 1

b
(2 + ln 0.24)− 2× 0.24

≥ 0.24 ln 0.24 +
13

9
× (2 + ln 0.24)− 0.48

> 0,

(20)

there exists x0 ∈ (0.19, 0.24) such that h(x0) = 0. Further, we have h(x) < 0 and f ′(x) < 0

over interval (0, x0), h(x) > 0 and f ′(x) > 0 over interval (x0,
1
2
). And hence, f(x) strictly

decreases over interval (0, x0) and f(x) strictly increases over interval (x0,
1
2
). Thus, we

obtain

f(x) ≥ f(x0)

=
1

ln x0
−

1

(ln x0)2
+

b+ 1

b
·

1

x0(ln x0)2

>
1

ln 0.24
−

1

(ln 0.24)2
+

13

9
×

1

0.19(ln 0.19)2

>
1

ln 2

(21)

over interval (0, 1
2
). Since g′2(x) > 0 over interval (0, 1

2
), we obtain

g2(x) < g2(
1

2
)

= ln 2 ·
b
2
− b− 1

− ln 2
−

b

2

= 1,

(22)

for all x ∈ (0, 1
2
).

The proof is completed.

Remark 1. In Theorem 2, the feasible range 1 ≤ b ≤ 9
4

is not tight. The upper bound of b is

taken to be 9
4

for the convenience of proving that f(x) > 1
ln 2

over interval (0, 1
2
).

When b = 1 in Theorem 2, the theoretical lower bound of K∗
C of the optimal UCI in [23] can

be obtained. In fact, there is no such prefix code when 1 ≤ b < 1.5.

Theorem 3. There is no prefix code C such that LC(1) = 1 and LC(m) ≤ b+1+ b⌊log2m⌋ for

all 2 ≤ m ∈ N , where b is a constant less than 3
2
.

Proof. Suppose there is a prefix code C to meet the requirement.

1) For m = 2, 3, LC(m) ≤ 2b+ 1 < 4. Thus, LC(m) ≤ 3.
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2) For m = 4, 5, 6, 7, LC(m) ≤ 3b+ 1 < 11
2

. Thus, LC(m) ≤ 5.

3) For m = 8, 9, · · · , 15, LC(m) ≤ 4b+ 1 < 7. Thus, LC(m) ≤ 6.

Thus, we have

∞∑

m=1

1

2LC(m)
=

16∑

m=1

1

2LC(m)
+

∞∑

m=17

1

2LC(m)

≥
1

2
+ 2×

1

23
+ 4×

1

25
+ 8×

1

26
+

∞∑

m=17

1

2LC(m)

= 1 +
∞∑

m=17

1

2LC(m)

> 1.

(23)

This contradicts the Kraft’s inequality [28]

∞∑

m=1

1

2LC(m)
≤ 1, (24)

so there is no such prefix code C.

IV. ι CODE TO ACHIEVE KC = 2.5

In this section, we provide a new UCI, termed ι code, to achieve KC = 2.5. First, we introduce

some necessary notations. Let α(m) be m bits zeros followed by a single one, for all m ∈ N .

Let β(m) be the binary representation of m ∈ N . Let [β(m)] be the binary string that removes

the most significant bit one of β(m). For example, α(3) = 0001, β(9) = 1001 and [β(9)] = 001.

Let {0, 1}∗ be a set containing all finite binary strings.

Next, the following defines an auxiliary code α̃ : N → {0, 1}∗.

α̃(m) =






1, if m = 1,

α(m
2
)0, if m ≥ 2 and m is even,

α(m−1
2

)1, otherwise,

(25)

for all m ∈ N . Further, we define ι : N → {0, 1}∗ below.

ι(m) = α̃(|β(m)|)[β(m)], (26)

for all m ∈ N . To better understand both codes, Table II lists their first 16 codewords. From

the definition, one can see that both code are prefix codes, and the decoding algorithm naturally

corresponds.
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TABLE II: The first 16 codewords of α̃ code and ι code

n α̃ code ι code

1 1 1

2 01 0 010 0

3 01 1 010 1

4 001 0 011 00

5 001 1 011 01

6 0001 0 011 10

7 0001 1 011 11

8 00001 0 0010 000

9 00001 1 0010 001

10 000001 0 0010 010

11 000001 1 0010 011

12 0000001 0 0010 100

13 0000001 1 0010 101

14 00000001 0 0010 110

15 00000001 1 0010 111

16 000000001 0 0011 0000

Then, we analyze the K∗
ι of ι code. We obtain Lι(1) = 1 and

Lι(m) = |α̃(1 + ⌊log2m⌋)| + ⌊log2m⌋

= 2 + ⌊
1 + ⌊log2m⌋

2
⌋+ ⌊log2 m⌋

≤
3

2
⌊log2m⌋ +

5

2
,

(27)

for all 2 ≤ m ∈ N . Thus, we know that ι code is a UCI and K∗
ι ≤ 2.5 due to Theorem 2. We

consider the probability distribution P = (1
2
, 1
2
), and we obtain

EP (Lι)

max{1, H(P )}
= 2.5. (28)

Thus, K∗
ι ≥ 2.5. Further, we have K∗

ι = 2.5. We find the frist UCI such that KC = 2.5 < 2.75.

This means that the range of K∗
C of the optimal UCI is improved to 2 ≤ K∗

C ≤ 2.5.

Finally, we show that ι code is not asymptotically optimal. We obtain Lι(1) = 1 + 3
2
⌊log2 1⌋

and

Lι(m) = 2 + ⌊
1 + ⌊log2m⌋

2
⌋+ ⌊log2 m⌋

> 1 +
3

2
⌊log2m⌋,

(29)
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for all 2 ≤ m ∈ N . Due to Theorem 1 and Lι(m) ≥ 1 + 3
2
⌊log2m⌋, for all m ∈ N , ι code is

not asymptotically optimal.

V. A FAMILY OF ASYMPTOTICALLY OPTIMAL UCIS

In this section, we introduce a family of asymptotically optimal UCIs. To better understand

this family of asymptotically optimal UCIs, we first introduce a representative UCI in this family.

A. κ code to achieve KC = 8
3

In this subsection, we present an asymptotically optimal UCI, termed κ code, to achieve

Kκ = 8
3
< 3.5. Notably, κ code is a special case of a family of asymptotically optimal UCIs

that will be introduced in the next subsection.

First, we define an auxiliary code γ̃ : N → {0, 1}∗ below.

γ̃(m) =





α̃(m), if m < 4,

α(|β(m− 2)|)[β(m− 2)], otherwise,
(30)

for all m ∈ N . Further, we define κ : N → {0, 1}∗ below.

κ(m) = γ̃(|β(m)|)[β(m)], (31)

for all m ∈ N . Table III lists some codewords for γ̃ code and κ code. From definitions, we know

that γ̃ code and κ code are prefix codes, and the decoding algorithm naturally corresponds. Due

to the definition of γ̃ code and κ code, we obtain

Lγ̃(m) =






1, if m = 1,

3, if 2 ≤ m ≤ 3,

2 + 2⌊log2(m− 2)⌋, otherwise,

(32)

and

Lκ(m) =






1, if m = 1,

4, if 2 ≤ m ≤ 3,

5, if 4 ≤ m ≤ 7,

2 + ⌊log2 m⌋+ 2⌊log2(⌊log2m⌋ − 1)⌋, otherwise.

(33)

Next, a lemma about the codeword length of κ code is given.

Lemma 2. The codeword length of κ code

Lκ(m) ≤
8

3
+

5

3
⌊log2m⌋, (34)
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TABLE III: Some codewords of γ̃ code and κ code

n γ̃ code κ code

1 1 1

2 01 0 010 0

3 01 1 010 1

4 001 0 011 00

5 001 1 011 01

6 0001 00 011 10

7 0001 01 011 11

8 0001 10 0010 000

9 0001 11 0010 001

10 00001 000 0010 010

11 00001 001 0010 011

12 00001 010 0010 100

20 000001 0010 0011 0100

50 0000001 10000 000100 10010

100 00000001 100010 000101 100100

for all 2 ≤ m ∈ N .

Proof. We first prove an auxiliary inequality as follows.

⌊log2(x− 1)⌋ ≤
1

3
+

1

3
x, (35)

for all 3 ≤ x ∈ N . When x = 3 or x = 4, we can verify directly. When x = 5, both sides of

inequality (35) are 2. Hereafter, if the left side of inequality (35) is increased by 1, then x must

be increased by at least 4. At the same time, the right side of inequality (35) is increased by

at least 1
3
× 4 = 4

3
> 1. Thus, inequality (35) holds. For inequality (34), when m ≤ 7, we can

verify directly. When m ≥ 8, we obtain

Lκ(m) = 2 + ⌊log2m⌋ + 2⌊log2(⌊log2m⌋ − 1)⌋

≤ 2 + ⌊log2m⌋+ 2× (
1

3
+

1

3
⌊log2m⌋)

=
8

3
+

5

3
⌊log2m⌋.

(36)

Finally, we propose the main theorem in this subsection.

Theorem 4. (1) 2.5 ≤ K∗
κ ≤ 8

3
;
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(2) κ code is asymptotically optimal.

Proof. (1) Due to Theorem 2 and Lemma 2, we know that κ code is a UCI and K∗
κ ≤ 8

3
. We

consider P = (1
2
, 1
2
), and we obtain

EP (Lκ)

max{1, H(P )}
= 2.5. (37)

Thus, K∗
κ ≥ 2.5. Further, we have 2.5 ≤ K∗

κ ≤ 8
3
.

(2) The expected codeword length is

EP (Lκ) = P (1) + 4(P (2) + P (3)) + 5

7∑

n=4

P (n) +

∞∑

n=8

P (n)Lκ(n)

< 5 +

∞∑

n=8

P (n) log2 n + 2

∞∑

n=8

P (n) log2(log2 n)

≤ 5 +

∞∑

n=2

P (n) log2 n+ 2

∞∑

n=2

P (n) log2(log2 n)

(a)

≤ 5 +H(P ) + P (1) log2 P (1) + 2

∞∑

n=2

P (n) log2(log2 n)

≤ 5 +H(P ) + 2P (1) log2 1 + 2

∞∑

n=2

P (n) log2(log2 n)

(b)

≤ 5 +H(P ) + 2 log2

(
P (1) +

∞∑

n=2

P (n) log2 n

)

≤ Tκ(H(P )) , 5 +H(P ) + 2 log2(1 +H(P )),

(38)

where (a) is due to inequality (9) and (b) is due to the convexity of the logarithm. Therefore,

we have

lim
H(P )→+∞

Rκ(H(P )) = lim
H(P )→+∞

Tκ(H(P ))

H(P )
= 1. (39)

And hence, κ code is asymptotically optimal.

B. A family of asymptotically optimal UCIs

In this subsection, we propose a family of asymptotically Optimal UCIs, termed κ[t] code, to

further reduce the upper bound of K∗
C . First, we provide the relevant definition. For any given

positive integer t, we define a family of auxiliary codes γ̃[t] : N → {0, 1}∗ as follows:

γ̃[t](m) =





α̃(m), if m < 2t,

α(|β(m+ 2− 2t)|+ t− 2)[β(m+ 2− 2t)], otherwise,
(40)
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for all m ∈ N . Further, we define κ[t] : N → {0, 1}∗ as follows:

κ[t](m) = γ̃[t](|β(m)|)[β(m)], (41)

for all m ∈ N . Two points need to be explained here. One is the prefix of γ̃[t] code. The

codeword of γ̃[t] code starts with a series of consecutive zeros followed by a one. From the

definition of γ̃[t] code, we know that γ̃[t](2t − 1) starts with t − 1 consecutive zeros followed

by a one, and γ̃[t](2t) starts with t consecutive zeros followed by a one. Thus, γ̃[t] code a

prefix code. The prefix of γ̃[t] code guarantees the prefix of κ[t] code. Their decoding algorithm

naturally corresponds. The other is the special case of these two familys of codes. When t = 1,

γ̃[1] code is essentially Elias γ code and κ[1] code is essentially Elias δ code. When t = 2, γ̃[2]

code is essentially γ̃ code and κ[2] code is essentially κ code.

Due to the definition of γ̃[t] code and κ[t] code, we obtain

Lγ̃[t](m) =





1, if m = 1,

2 + ⌊m
2
⌋, if 2 ≤ m < 2t,

t+ 2⌊log2(m+ 2− 2t)⌋, otherwise,

(42)

and

Lκ[t](m) =





1, if m = 1,

2 + ⌊log2m⌋ + ⌊1+⌊log2 m⌋
2

⌋, if 2 ≤ m < 22t−1,

t+ ⌊log2m⌋ + 2⌊log2(⌊log2m⌋ + 3− 2t)⌋, otherwise.

(43)

Next, a lemma about the codeword length of κ[t] code is given.

Lemma 3. The codeword length of κ[t] code

Lκ[t](m) ≤
5

2
+

1

2t+ 2
+

(
3

2
+

1

2t+ 2

)
⌊log2m⌋, (44)

for all 2 ≤ m ∈ N .

Proof. We first prove an auxiliary inequality as follows:

t+ 2⌊log2(x+ 3− 2t)⌋ ≤
5

2
+

1

2t+ 2
+

(
1

2
+

1

2t+ 2

)
x, (45)

for all 2t− 1 ≤ x ∈ N . When x = 2t− 1 or x = 2t, we can verify directly. When x = 2t+ 1,

both sides of inequality (45) are 4 + t. Hereafter, if the left side of inequality (45) is increased

by 2, then x must be increased by at least 4. At the same time, the right side of inequality (45)
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is increased by at least
(
1
2
+ 1

2t+2

)
×4 = 2+ 2

t+1
> 2. Thus, inequality (45) holds. For inequality

(44), when 2 ≤ m < 22t−1, we have

Lκ[t](m) = 2 + ⌊log2m⌋ + ⌊
1 + ⌊log2m⌋

2
⌋

≤
5

2
+

3

2
⌊log2m⌋

<
5

2
+

1

2t+ 2
+

(
3

2
+

1

2t+ 2

)
⌊log2m⌋.

(46)

When m ≥ 22t−1, we obtain

Lκ[t](m) = t+ 2⌊log2(⌊log2m⌋ + 3− 2t)⌋ + ⌊log2m⌋

≤
5

2
+

1

2t+ 2
+

(
1

2
+

1

2t+ 2

)
⌊log2m⌋+ ⌊log2m⌋

=
5

2
+

1

2t+ 2
+

(
3

2
+

1

2t+ 2

)
⌊log2m⌋.

(47)

Finally, we propose the main theorem in this subsection.

Theorem 5. (1) 2.5 ≤ K∗
κ[t] ≤ 2.5 + 1

2t+2
;

(2) κ[t] code is a family of asymptotically optimal UCIs.

Proof. (1) Due to Theorem 2 and Lemma 3, we know that κ[t] code is a UCI and K∗
κ[t] ≤

5
2
+ 1

2t+2
. We consider P = (1

2
, 1
2
), and we obtain

EP (Lκ[t])

max{1, H(P )}
= 2.5. (48)

Thus, K∗
κ[t] ≥ 2.5. Further, we have 2.5 ≤ K∗

κ[t] ≤ 2.5 + 1
2t+2

.

(2) When t = 1, Elias [15] has proven it. When t ≥ 2, we obtain the following inequality

derivation similar to (38).

EP (Lκ[t]) =
∞∑

n=1

P (n)Lκ[t](n)

< Lκ[t](2
2t−1 − 1) +

∞∑

n=22t−1

P (n) log2 n+ 2
∞∑

n=22t−1

P (n) log2(log2 n)

≤ 3t− 1 +
∞∑

n=2

P (n) log2 n+ 2
∞∑

n=2

P (n) log2(log2 n)

(a)

≤ Tκ[t](H(P )) , 3t− 1 +H(P ) + 2 log2(1 +H(P )),

(49)
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where (a) is due to (38). Therefore, we have

lim
H(P )→+∞

Rκ[t](H(P )) = lim
H(P )→+∞

Tκ[t](H(P ))

H(P )
= 1. (50)

Thus, κ[t] code is a family of asymptotically optimal UCIs.

When t tends to infinity, the value of Kκ[t] =
5
2
+ 1

2t+2
can be infinitely close to 2.5. An

interesting thing needs to be explained here. When t is no longer a fixed value and tends to

infinity, we can essentially regard lim
t→+∞

κ[t] code as ι code. But at this time, lim
t→+∞

κ[t] code is

not asymptotically optimal.

VI. K∗
C OF THE CLASSIC UCIS

In this section, we provide a more precise range of K∗
C of the classic UCIs by Theorem 2.

The main results of this section are summarized as follows.

Theorem 6. (1) δ code is asymptotically optimal UCI and 2.5 ≤ K∗
δ ≤ 2.75;

(2) ω code is asymptotically optimal UCI and 2.1 < K∗
ω ≤ 3;

(3) η code is UCI and 2.5 ≤ K∗
η ≤ 8

3
;

(4) θ code is asymptotically optimal UCI and 2.5 ≤ K∗
θ ≤ 2.8.

From Table I, we only need to prove that K∗
δ ≤ 2.75, K∗

ω ≤ 3, K∗
η ≤ 8

3
and K∗

θ ≤ 2.8. We

first prove the following lemma.

Lemma 4. For all 2 ≤ m ∈ N , we obtain

(1) Lδ(m) ≤ 2.75 + 1.75⌊log2m⌋;

(2) Lω(m) ≤ 3 + 2⌊log2 m⌋;

(3) Lη(m) ≤ 8
3
+ 5

3
⌊log2m⌋;

(4) Lθ(m) ≤ 2.8 + 1.8⌊log2m⌋.

Proof. (1) We prove the following inequality

⌊log2(1 + x)⌋ ≤ 0.875 + 0.375x, (51)

for all x ∈ N . When x ≤ 2, we can verify directly. When x = 3, both sides of inequality

(51) are 2. Hereafter, if the left side of inequality (51) is increased by 1, then x must be
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increased by at least 4. At the same time, the right side of inequality (51) is increased by

at least 0.375× 4 = 1.5 > 1. Thus, inequality (51) holds. Further, we obtain

Lδ(m) = 1 + ⌊log2m⌋+ 2⌊log2(1 + ⌊log2m⌋)⌋

(a)

≤ 1 + ⌊log2m⌋ + 2(0.875 + 0.375⌊log2m⌋)

= 2.75 + 1.75⌊log2m⌋,

(52)

for all 2 ≤ m ∈ N , where (a) is due to inequality (51).

(2) Our objective is to prove that

Lω(m) = 1 +
s∑

n=1

(λn(m) + 1) ≤ 3 + 2⌊log2m⌋, (53)

for all 2 ≤ m ∈ N . Let a1 , 2 and am+1 , 2am for all m ∈ N . When s ≤ 2; that is,

a1 = 2 ≤ m < 16 = a3, we can verify directly. When s = 3; that is, a3 = 16 ≤ m <

65536 = a4, since

⌊log2 x⌋ ≤
1

2
x, (54)

for all x ∈ N and

⌊log2⌊log2 x⌋⌋ + 1 ≤
1

2
x, (55)

for all 2 ≤ x ∈ N , we obtain

Lω(m) = 3 + ⌊log2m⌋ + ⌊log2⌊log2m⌋⌋ + (⌊log2⌊log2⌊log2m⌋⌋⌋ + 1)

≤ 3 + ⌊log2m⌋ +
1

2
⌊log2m⌋+

1

2
⌊log2m⌋

= 3 + 2⌊log2m⌋,

(56)

for all a3 ≤ m < a4. When s ≥ 4; that is, m ≥ a4, we consider the following three

inequalities.

2.1) We have

λ2(m) + 1 = ⌊log2⌊log2m⌋⌋ + 1

(a)

≤
1

2
⌊log2m⌋ + 1

(57)

for all 2 ≤ m ∈ N , where (a) is due to inequality (54).

2.2) We prove the following inequality

λ3(m) + 1 ≤
1

4
⌊log2m⌋, (58)

September 21, 2021 DRAFT



17

for all a4 ≤ m ∈ N . When m = a4, we obtain

3 = λ3(a4) + 1 <
1

4
⌊log2 a4⌋ = 4. (59)

Hereafter, if the left side of inequality (58) is increased by 1, then m must be increased

by at least 22
23

− 22
22

= 2256− 216. At the same time, the right side of inequality (58)

is increased by at least 1
4
(2256 − 216) > 1. Thus, inequality (58) holds.

2.3) We prove the following inequality

λt(m) + 1 ≤
1

2t−1
⌊log2m⌋, (60)

for all at ≤ m ∈ N , where t is any given integer greater than or equal to 4. When

m = at, due to

λt(at) = λt−1(at−1) = · · · = λ(a1) = 1, (61)

we obtain

2 = λt(at) + 1 =
1

23
a3 ≤

1

2t−1
am−1 =

1

2t−1
⌊log2 at⌋. (62)

Hereafter, if the left side of inequality (60) is increased by 1, then m must be increased

by at least at+1 − at. At the same time, the right side of inequality (60) is increased

by at least
1

2t−1
(⌊log2 at+1⌋ − ⌊log2 at⌋)

=
1

2t−1
(at − at−1) ≥

1

23
(a4 − a3) > 1.

(63)

Thus, inequality (60) holds.

Due to inequality (57), (58) and (60), we obtain

Lω(m) = 2 + ⌊log2m⌋ +
s∑

n=2

(λn(m) + 1)

≤ 2 + ⌊log2m⌋ + 1 +

s−1∑

n=1

⌊log2m⌋

2n

= 3 + (2−
1

2s−1
)⌊log2m⌋

< 3 + 2⌊log2m⌋.

(64)
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(3) When m ≤ 3, we can verify directly. When m ≥ 4, due to ⌊log2m⌋ ≥ 2, we have

Lη(m) = 3 + ⌊log2(m− 1)⌋+ ⌊
⌊log2(m− 1)⌋

2
⌋

≤
8

3
+

1

6
× 2 +

3

2
⌊log2m⌋

≤
8

3
+

1

6
⌊log2m⌋+

3

2
⌊log2m⌋

=
8

3
+

5

3
⌊log2m⌋.

(65)

(4) We prove the following inequality

0.2 + 1.5⌊log2 x⌋ ≤ 0.8x, (66)

for all 3 ≤ x ∈ N . When x = 3, we can verify directly. When x = 4, both sides of inequality

(66) are 3.2. Hereafter, if the left side of inequality (66) is increased by 1.5, then x must be

increased by at least 4. At the same time, the right side of inequality (66) is increased by

at least 0.8 × 4 = 3.2 > 1.5. Thus, inequality (66) holds. For Lθ(m) ≤ 2.8 + 1.8⌊log2m⌋,

when m ≤ 7, we can verify directly. When m ≥ 8, we obtain

Lθ(m) = 3 + ⌊log2m⌋ + ⌊log2⌊log2m⌋⌋ + ⌊
⌊log2⌊log2m⌋⌋

2
⌋

≤ 3 + ⌊log2m⌋ + 1.5⌊log2⌊log2m⌋⌋

= 2.8 + ⌊log2m⌋+ (0.2 + 1.5⌊log2⌊log2m⌋⌋)

≤ 2.8 + 1.8⌊log2m⌋.

(67)

Due to Lemma 4 and Theorem 2, we have K∗
δ ≤ 2.75, K∗

ω ≤ 3, K∗
η ≤ 8

3
and K∗

θ ≤ 2.8.

Furthermore, Theorem 6 is proved.

From Theorem 6, K∗
ι = 2.5 and 2.5 ≤ K∗

κ[t] ≤ 2.5 + 1
2t+2

, we obtain Table IV to compare

the expansion factor between our ι code, κ[t] code and the classic UCIs previously proposed.

Currently, only ι code can achieve Kι = 2.5. For asymptotically optimal UCIs, the current best

result is that κ[t] code can achieve Kκ[t] = 2.5 + 1
2t+2

, for all t ∈ N .

VII. CONCLUSIONS

In this paper, we study the expansion factor of UCI further, and Table IV summarizes the

work of this paper. From Table IV, the proposed ι code improves the expansion factor of optimal

UCI to KC = 2.5, and the proposed κ[t] code improves the expansion factor of asymptotically
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TABLE IV: The latest research results for K∗
C of some UCIs

Code The range of K∗
C Asymptotically optimal

γ code K∗
γ = 3 No

η code 2.5 ≤ K∗
η ≤ 8

3
No

ι code K∗
ι = 2.5 No

δ code 2.5 ≤ K∗
δ ≤ 2.75 Yes

ω code 2.1 < K∗
ω ≤ 3 Yes

θ code 2.5 ≤ K∗
θ ≤ 2.8 Yes

κ code 2.5 ≤ K∗
κ ≤ 8

3
Yes

κ[t] code 2.5 ≤ K∗
κ[t] ≤ 2.5 + 1

2t+2
Yes

optimal UCIs to KC ⇒ 2.5. This work further reduces the range of the expansion factor to

2 ≤ K∗
C ≤ 2.5. There are several unresolved issues, as listed below.

1) one can see that the explicit value of K∗
C of the optimal UCI is still unknown.

2) ω code is the only UCI whose lower bound of K∗
C is less than 2.5. Can ω code achieve

Kω < 2.5?
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