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Energy Efficient Sampling Policies for Edge
Computing Feedback Systems

Vishnu Narayanan Moothedath, Jaya Prakash Champati, and James Gross

Abstract—We study the problem of finding efficient sampling policies in an edge-based feedback system, where sensor samples are

offloaded to a back-end server that processes them and generates feedback to a user. Sampling the system at maximum frequency

results in the detection of events of interest with minimum delay but incurs higher energy costs due to the communication and

processing of redundant samples. On the other hand, lower sampling frequency results in higher delay in detecting the event, thus

increasing the idle energy usage and degrading the quality of experience. We quantify this trade-off as a weighted function between

the number of samples and the sampling interval. We solve the minimisation problem for exponential and Rayleigh distributions, for the

random time to the event of interest. We prove the convexity of the objective functions by using novel techniques, which can be of

independent interest elsewhere. We argue that adding an initial offset to the periodic sampling can further reduce the energy

consumption and jointly compute the optimum offset and sampling interval. We apply our framework to two practically relevant

applications and show energy savings of up to 36% when compared to an existing periodic scheme.

Index Terms—Energy minimisation, optimal sampling, edge computing, feedback systems, event detection, cyber physical systems,

video analytics systems

✦

1 INTRODUCTION

W ITH the advent of next-generation mobile networks
such as 5G Release 15 and 16, there is an increasing

interest in realising various real-time services and applica-
tions. Perhaps most prominently, this materialises with the
Release 16 features of URLLC (ultra-reliable low latency
communication) targeting sub-millisecond end-to-end de-
lays primarily for industrial automation applications. How-
ever, in addition to these extreme use cases, a plethora
of new applications are arising that all process states of
reality and accurately provide feedback either to devices or
humans. Examples of such feedback systems with low la-
tency requirements are human-in-the-loop applications like
augmented reality, wearable cognitive assistants (WCA), or
ambient safety. Also, in the domain of cyber-physical sys-
tems (CPS), such applications are prominent, for example, in
the context of automated video surveillance or distributed
control systems. All these applications have in common that
feedback depends on state capture and timely processing,
whereas essential state changes are random events and
hence an efficient operation of the application becomes a
central aspect of the system. This is even more emphasised
by the recent trend to place most of the processing logic of
such feedback systems with edge computing facilities, lever-
aging supposedly ubiquitous real-time compute capabilities
with the additional costs of offloading compute tasks (in
terms of communication delays and energy consumption).

In this paper, we study approaches that enable capturing
the relevant system changes in edge-based feedback systems

• Vishnu Narayanan Moothedath and James Gross are with the Department
of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg
10, Stockholm 11428, Sweden. E-mail: {vnmo,jamesgr}@kth.se

• Jaya Prakash Champati is with the Edge Networks Group, IMDEA Net-
works Institute, Avda. del Mar Mediterraneo 22, 28918 Leganes (Madrid),
Spain. E-mail: jaya.champati@imdea.org

while striking a balance with the total energy consumption.
We consider feedback systems that monitor a process (or
human activities) via sampling, while only reacting to a
sub-set of samples, referred to as essential events, that lead
to a system change – for instance, a new augmentation
towards a human user, an alarm in a surveillance system,
or an actuation or fault detection in a general CPS set-
up. After an essential event is captured and processed
(including the generation of feedback), the feedback system
transits to the next state where it starts monitoring for an
essential next event to happen. The trade-off that we study
relates to the strategy applied to sample the process. More
frequent sampling leads to a timely capture of the essential
event. However, it also leads to the capture of unimportant
samples of the process, wasting system resources in terms
of energy, communication bandwidth, and computing cy-
cles. We are interested in mathematically characterising this
trade-off between detection delay and energy usage and
studying the implied consequences in the system design.

1.1 Related Works

Some of the earliest ideas on detecting the relevant system
changes (or essential events) come from control systems
with applications in manufacturing and observable models
[1]. The survey [2] looks at some important works that
focus on failure events in complex systems. This is viewed
from a statistical perspective in [3] and is later revisited
in [4] where the authors look for stochastic changes in
the system with an aim of quickest detection. Moving on
to the recent research on edge computing and CPS, some
important works use data mining and post-processing to
detect events from the collected data [5]. We, on the other
hand, are interested in detecting live events and generating
corresponding feedback to dictate the process. Examples of
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such an event detection occur in real-time video analytics
systems which are explored extensively in recent years from
multiple perspectives [6], [7]. However, the aspect of energy
consumption is not considered in the above works. Instead
of using minimal energy, they look only at detecting the
relevant system changes as fast as possible.

Wireless video surveillance, where the video frames are
captured by sensors and are sent to the processing node
over wireless sensor networks (WSN) is studied in [8].
The authors discuss the challenges faced by these systems
including the energy consumption – that we are particularly
interested in from a general event detection perspective. The
authors discuss some of the adopted methods to reduce
energy consumption. These methods include optimising
sensor topologies [9], optimising video coding and trans-
mission techniques [10], and forcing node cooperation be-
tween multiple sensors [11]. In a similar context of object
detection and tracking, [12] discusses the energy saving by
sending the camera to an idle state where the frames are
dropped for a duration determined adaptively based on
the speed of the object. Energy-efficient surveillance and
tracking using a network of sensors are also discussed in
[13], where only a subset of the sensors are activated at any
given time. A different but widely studied method to save
energy is offloading the sensor data [14], [15]. The drawback
of an increased latency compounded on a large number
of samples during an offloading is addressed (to a certain
extent) by making offloading decisions [16] for the samples.
This includes binary decisions [17]–[22], partial offloading
decisions [23]–[25], and stochastic decisions [26].

1.2 Contributions

In this paper, we focus on detecting the essential events of
an edge-based feedback system in real-time in an energy-
efficient manner. In contrast to all the above-mentioned
works, our approach minimises energy consumption by
reducing the amount of data generated by the sensors
thereby reducing the total amount of data in the commu-
nication and processing pipeline. While some of the existing
works reduce energy by lightly processing and filtering
the samples before transmitting, or taking a cluster wise
sensing decision, we look at statistically determining the
optimum sampling or sensing time instances. While the idea
of offloading tends to concentrate on the sensor side and
take a hit at total energy consumption by shifting the energy
usage to the edge device, our work provides a framework
for reducing the total energy consumption in the system. To
the best of our knowledge, our work is the first attempt to
find the energy-optimal sampling points of an edge-based
feedback system for capturing the relevant system changes.

For illustrating the performance of the proposed design,
we focus on two relevant and practical systems that are
considered in the related works. The first one is a general
CPS that aims at fault detection. Such systems are typically
characterised by exponentially distributed inter-failure in-
tervals, a relatively small amount of data transfer, and a
low-power communication technology. A basic direction on
how to approach the above-mentioned trade-off for a CPS
is given by the authors in [27]. The second system is a video
analytics system (VAS). The motivation for considering the

VAS comes from a WCA system, where a human task
progress is monitored continuously for the detection of
the task completion. The task completion time comprises
of multiple system delays (communication, processing etc.)
and a delay that is tied to the response time and skill of
the human user. Previous works on WCA [28] and general
distribution fitting indicates that this task completion time
can be modelled as a random variable following a Rayleigh
distribution. Other characteristics of a VAS are large data
transfer and the requirement of a high throughput commu-
nication technology, owing to the continuous sequence of
video frames that needs to be transmitted to the processing
node.

Our key contributions are listed below.

• We pose the problem to find the energy-minimising
periodic sampling interval of an edge-based feedback
system as an optimisation problem. The convexity of
this problem is proved for certain distributions by
developing a novel approach that uses the Poisson
sum formula and Fourier transforms – which can
be of independent academic interest elsewhere. The
problem is solved using a lightweight bisection algo-
rithm that converges exponentially to the optimum.

• We prove that adding an initial offset to the peri-
odic sampling further reduces the expected energy
consumption when the TTE distribution is not expo-
nential. Thus we pose a more generic optimisation
problem in two variables and propose an algorithm
to find a solution that achieves near-optimality.

• Using simulations, we study the energy reduction on
systems with a wide range of parameterisations by
considering the CPS and the VAS use-cases. Particu-
larly for the VAS, we show the inefficiency of systems
used in practice and the larger potential of energy
optimisation where we obtain up to 40% increase in
battery life. One reason for this is the larger com-
munication content and power requirements for the
VAS, which point to the increased relevance of the
proposed solution in these future systems. We also
observe that oversampling needs to be particularly
avoided as it introduces a substantial increase in
energy usage.

The paper is organised as follows. In Section 2, we
discuss the system model. In Sections 3 and 4, we lay down
the general solution approach and solutions for exponential
and Rayleigh distributed TTEs. We discuss the numerical
results in Section 5 and conclude in Section 6.

2 SYSTEM MODEL AND PROBLEM STATEMENT

Consider a feedback system consisting of a mobile terminal
(simply terminal) and a back-end server (simply back-end),
that is designed to monitor a process through sampling.
The terminal captures samples that are sent to the back-
end for processing. Immediately after the occurrence of an
essential event (simply event), the process moves to an
intermediate state where no more events are expected. The
next sample drawn at or after this transition point – referred
to as a successful sample – indicates the event detection
at the back-end’s processor, and causes feedback to the
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terminal. The reception of this feedback triggers the start
of a fresh monitoring cycle to detect the next event. Within
a monitoring cycle, the feedback is generated only to the
successful sample, and all other samples are discarded by
the back-end. The time taken from the start of a monitoring
cycle to the event is termed as Time to event (TTE), and the
time between this event and the corresponding feedback is
termed as Time to feedback (TTF). We denote the TTE using
the random variable T , and a value for T is denoted by
C. The timing diagram of the system is given in Fig. 1.
Here we focus on modelling and designing the monitoring
cycle corresponding to a single event, and the proposed
design can be independently extended to all the (potentially
predetermined set of) events that the system is supposed to
detect.

Fig. 1: Timing diagram of an arbitrary monitoring cycle.

For example, in a CPS, the event might correspond to
the detection of a system failure. The feedback potentially
triggers a reset and the terminal starts monitoring for the
next failure. In the VAS (or WCA) system studied in [29],
[30], the user is assigned to complete a set of tasks and
the events correspond to the completion of each task. The
terminal takes snapshots (video frames) of the user activity
using a camera and sends them to the back-end for image
processing.

The terminal can sample the process, transmit it to the
back-end and can receive feedback whenever available. The
back-end on the other hand is capable of receiving the
sample, processing it and transmitting the feedback after an
essential event detection. At all other times, the terminal and
back-end go to their respective idle mode to save energy,
and the power consumed while in this mode is denoted by
%0. Though the back-end can possibly serve and manage
multiple terminals, we restrict our study to the back-end’s
interaction with a single terminal.

Sampling the system for detecting the event is governed
by a set of sampling policies Π. We consider sampling
policies c ∈ Π that sample the system periodically with a
sampling interval )s, except for the first sample, which is
sampled after waiting for a duration X ≥ )s. We refer to X

as offset. This offset takes care of a minimum time threshold,
sampling before which only adds to the energy wastage. We
elaborate this in detail in Section 4. Apart from the set of
sampling policies Π, we also consider a special case with
X = )s, referred to as Π̂. In other words, under Π the samples
are taken at C = :)s + X, : ∈ N whereas under Π̂ the samples
are taken at C = :)s, : ∈ N+. While the optimum policy
under Π comprises of an optimum sampling interval )∗s and

an optimum phase X∗, the optimum policy under the ana-
lytically simpler subset Π̂ corresponds to (only) an optimum
sampling interval )#

s . We use the notation (·)# instead of (·)∗
to have a clear distinction between the underlying set of
policies. Following the same conventions, we refer to these
optimum policies as c∗ and c#, respectively.

The number of samples taken is denoted by a random
variable S, and a value for S is denoted by B. This includes
both the discarded samples taken during TTE as well as
the final sample that leads to detecting the event. This TTF
consists of a (potential) random lagW until the next sample
is drawn as well as a deterministic processing and two-
way communication delays. The random lagW is referred
to as wait and F denotes a value of W. Note that only
the processing and communication delay corresponding to
the final sample contributes to the delay after the wait. In
this work, we assume that the total power consumption
during transmission and reception is the same at both the
terminal and the back-end and we refer to it simply as
communication power denoted by %c, which is typically
much larger than the idle power %0. We also assume that
the communication delay in either direction is gc and the
processing time of the successful sample be gs.

When not performing a transmission, reception, or pro-
cessing, both the terminal and the back-end enter idle mode,
which incurs an idle power consumption. The total time
within a state, during which the terminal or back-end is in
an idle mode is referred to as the idle time and is denoted
by the random variable T0. The notations used and their
meanings are reiterated in TABLE 1 for readability.

S number of samples W wait time
T time to event (TTE) T0 idle time
�X ( ·) CDF - �̄X ( ·) CCDF of X
)s sampling interval X offset
gc communication delay gs processing delay
%c communication power %0 idle power
E energy E energy penalty
N {0,1,2,. . . } N

+ {1,2,3,. . . }

TABLE 1: Table of notations.

2.1 Problem Statement

An ideal sampling policy should sample the system im-
mediately after the event so that the wait is zero and the
number of samples required per event is exactly 1. However,
such a sampling policy is unattainable given the fact the TTE
is randomly distributed. As a result, we have to settle with
a sampling policy that simultaneously reduces the expected
wait and expected number of discarded samples to yield the
maximum attainable benefit. Note that this is not straight-
forward as the wait time and the number of samples shows
opposite behaviour with a change in sampling frequency.
For instance, an aggressive sampling reduces the wait time,
but it also increases the number of samples. In this work, we
use energy as a metric to quantify this opposing behaviour.
Each sample warrants energy in terms of communication
and processing; and during the wait F, energy is expended
as governed by the idle power. It is this optimal trade-off
of energy usage between the sampling frequency and the
number of samples that we seek to quantify.
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Note that the fundamental random variable here is the
TTE T and the other random variables – S,W and T0 – are
derived from T through the selection of the optimization
variables )s and X. We can compute the idle time denoted
by T0 in terms of other parameters as follows:

T0 = T +W + gs − (S − 1)gc . (1)

Let E be the energy required for detecting one event.

E = (S + 1)gc%c + T0%0

= Sgc(%c − %0) +W%0 + (T + gc + gs)%0 + gc%c . (2)

We aim to minimise the expected energy for a given
TTE statistics. In (2), the terms except those containing the
number of samples S or the wait W are either constants
or have constant expectations for a fixed distribution of
T . Hence these terms are irrelevant in the optimisation
where we minimise the expected energy. Let E()s, X) be
the component of the total energy which is relevant for the
optimisation and let us call it energy penalty. We obtain

E()s, X) = UE[S] + VE[W] , (3)

where we use the constants U and V for mathematical
tractability in the upcoming sections. Here,

U = gc (%c − %0) and V = %0 . (4)

In (3), V E[W] corresponds to the additional energy ex-
pended for waiting, and U represents the energy wasted per
discarded sample due to the additional communication and
processing. The minimum values of E under the policies Π

and Π̂ are referred to as E∗ and E#, respectively. That is

E∗ = E()∗s , X∗) and E#
= E()#

s , )
#
s ) .

In what follows, we study the general optimisation prob-
lems P and P̂ under the set of sampling policies Π and
Π̂, respectively. These optimisation problems are defined as
follows:

P : c∗ = {)∗s , X∗} = arg min
{)s, X }

E()s, X)

P̂ : c#
= {)#

s } = arg min
)s

E()s, )s) ,
(5)

where c∗ and c# are the optimum policies for P and P̂,
respectively. We will solve these problems for the CPS and
the VAS where the TTEs follow exponential and Rayleigh
distributions, respectively.

3 SOLUTION TO THE PROBLEM P̂
Being the simpler one, we start with the optimisation prob-
lem P̂ in this section and find the optimum periodic sam-
pling interval by minimising E()s, X) given in (3). Through-
out this section, we will drop the redundant second argu-
ment X (=)s under P̂) from the energy penalty for simplicity.
As the solution is specific to the distribution of T , we will
first lay down the solution approach to find the energy
penalty for any general distribution and later apply this to
particular distributions.

3.1 General TTE Distribution

Here, we derive the expressions for the expected number of
samples and the expected wait time under a general TTE
distribution, which together constitutes E()s).

3.1.1 Expected number of samples

Recall that S is the random number of samples taken for
detecting an event. We have

P(S = :) = P
(
⌈C/)s⌉ = :

)
, ∀: ≥ 1

= P(: − 1 < C/)s ≤ :)
= �T

(
:)s

)
− �T

(
(: − 1))s

)

⇒ E[S] =
∞∑

:=1

:
(
�T

(
:)s

)
− �T

(
(: − 1))s

) )
. (6)

3.1.2 Expected wait time

Recall that w denotes a value of the random wait time
W. We have a fixed set of sampling instances governed
by )s. The CDF of the wait �W (F) can be obtained by
taking the probability of the TTE to fall at most F short
of any sampling instance. Even though the TTEs are finite
in practice, we consider they can be arbitrarily large for the
sake of generalised analysis. As a result, a successful sample
can be located anywhere from the first sampling instance
to possibly infinity. For real systems, however, there is an
upper bound for the TTE (preemption or otherwise) and it
implies that the corresponding probability is zero beyond
this point. We can compute the CDF ofW as follows.

�W (F) =
∞∑

:=1

P
(
:)s − F < C ≤ :)s

)

=

∞∑

:=1

(
�T (:)s) − �T (:)s − F)

)
. (7)

SinceW is a non-negative random variable, we have

E[W] =
∫ ∞

0

(
1 − �W (F)

)
dF

=

∫ )s

0

(
1 −

∞∑

:=1

(
�T (:)s) − �T (:)s − F)

) )
dF .

Here, integral limits and infinite sum are finite, and the
summand is non-negative. Thus

E[W] = )s −
∞∑

:=1

∫ )s

0

(
�T (:)s) − �T (:)s − F)

)
dF . (8)

Using (6) and (8), we can calculate the energy penalty
given in (3). Clearly, the expected number of samples de-
crease with an increase in )s. We can see that the summation
containing the integral in the expected wait time expression
also decrease with an increase in )s, thus increasing E[W].
This opposing behaviour of the two penalties result in a
minima in their weighted sum E()s) (with weights U and
V) at the optimum sampling interval )#

s . Depending on
the distribution of T and the resultant energy penalty, )#

s

can be computed using known optimisation techniques or
numerical solvers [31].

3.2 Exponentially Distributed TTE

In this subsection, we look into a feedback system where the
TTEs are exponentially distributed. This part of the work
describing about the solution of P̂ under an exponentially
distributed TTE was published earlier by the authors in [27].
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Lemma 1. For exponentially distributed TTE with mean 1/_, the
energy penalty E()s) imparted by a periodic sampling policy with
a period )s is given by

E()s) =
U_ + V

(
4−_)s + _)s − 1

)

_(1 − 4−_)s ) . (9)

Proof. Given that the TTEs are exponentially distributed
with rate parameter _, we have �T (C) = 1 − 4−_C . From
(6), the expected number of samples can be computed as

E[S] = 1

1 − 4−_)s
. (10)

Substituting �T (C) in (7)

�W (F) =
∞∑

:=1

(
(1 − 4−_:)s) − (1 − 4−_(:)s−F ))

)

=

∞∑

:=1

4−_:)s (4_F − 1) = 4_F − 1

4_)s − 1

⇒ 5W (F) =
_4_F

4_)s − 1

⇒ E[W] = 4−_)s + _)s − 1

_(1 − 4−_)s) . (11)

Substituting (10) and (11) in (5), we get the energy penalty
E()s) for using a particular sampling interval )s as

E()s) =
U_ + V

(
4−_)s + _)s − 1

)

_(1 − 4−_)s) .

�

Lemma 2. The energy penalty E()s) is convex in )s .

Proof. In the following, we drop the argument )s from E()s)
for simplicity in presentation. Note from (4) that V > 0.

E ′ :=
dE
d)s

=
V
(
1 − 4−_)s (_)s + U

V
_ + 1)

)

(1 − 4−_)s)2
,

E ′′ :=
d2E
d)2

s

=
V_4−_)s

(
(1 + 4−_)s )(_)s + U

V
_) + 24−_)s − 2

)

(1 − 4−_)s )3
.

E ′′ ≥ 0⇒ Ẽ := (1 + 4−_)s )(_)s + U
V
_) + 24−_)s − 2 ≥ 0 ,

Ẽ ′ :=
dẼ
d)s

= _(1 − 4−_)s (_)s + U
V
_ + 1)) ,

Ẽ ′′ :=
d2Ẽ
d)2

s

= _24−_)s (_)s + U
V
_) .

From the above expressions, since Ẽ ′′ ≥ 0 ∀)s, we can
conclude that Ẽ is globally convex and any infimum point
is its minimum. To find this infimum:

Ẽ ′ = 0⇒ _)s + U
V
_ = 4_)s − 1 .

Substituting in the above expression for Ẽ, we obtain

min
)s>0
{Ẽ} =(1 + 4−_)s)(4_)s − 1) + 24−_)s − 2

=4_)s + 4−_)s − 2

≥0 ∀)s > 0

⇒ Ẽ ≥0 ∀)s > 0

⇒ E ′′ ≥0 ∀)s > 0 .

As )s is non-negative, the energy penalty E is convex. �

Proposition 1. The optimum sampling interval )#
s under an

exponentially distributed TTE with mean 1/_ is the solution to the
expression

4_)
#

s − _)#
s =

U
V
_ + 1 . (12)

Proof. The proof follows from Lemma 1 and Lemma 2. We
can find the optimum by equating the first derivative of total
penalty to zero.

dE()s)
d)s

= 0⇒ 1 − 4−_)s (_)s + U
V
_ + 1) = 0

⇒ 4_)s − _)s =
U
V
_ + 1 .

�

We know that 4G−G is a monotonically increasing convex
function in G with 4G − G ≥ 1, ∀G ≥ 0. Hence, this single vari-
able expression can be solved using well-known numerical
solvers.

Though the value of energy penalty depends on the
values of V and U, the optimum sampling interval )#

s only
depends on their ratio. Furthermore, from (4), it can be
seen that this ratio V/U does not depend on the individual
power figures but only on the percentage additional power
necessary for communication or processing when compared
to their respective idle power requirement. In other words,
for fixed _, V/U and thus the optimum sampling interval is a
function of only gc and %c/%0.

3.3 Rayleigh Distributed TTE

We will now consider a Rayleigh distributed TTE with mean

` = f
√

c
2 and CDF �T (C) = 1 − 4−C

2/2f2
; where f is the scale

parameter.

Lemma 3. The expected number of samples is given by

E[S] =
∞∑

:=0

4−:
2) 2

s /2f2
. (13)

Proof. Substituting the Rayleigh CDF in (6) gives

E[S] =
∞∑

:=1

:

(
4−(:−1)2) 2

s /2f2 − 4−:2) 2
s /2f2

)
.

Since the positive and negative terms converges individu-
ally to a finite value, we can rearrange the terms to complete
the proof. �

Lemma 4. The expected wait time is given by

E[W] = )s

∞∑

:=0

4−(:)s)2/2f2 − f
√

c
2 . (14)

Proof. Substituting the Rayleigh CDF in (8) gives

E[W] = )s −
∞∑

:=1

∫ )s

0

(
4
−(:)s−F )2/2f2 − 4−(:)s )2/2f2 )

dF

= )s + )s

∞∑

:=1

4−(:)s)2/2f2 −
∞∑

:=1

∫ )s

0
4
−(:)s−F )2/2f2

dF

= )s

∞∑

:=0

4−(:)s)2/2f2 −
∞∑

:=1

∫ )s

0
4
−(:)s−F )2/2f2

dF .
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Let erf (G) be the error function defined as

erf (G) = 2
√
c

∫ G

0
4−C

2
dC .

Also, let erfc(G) = 1 − erf (G) be the complimentary error

function. Substituting
(:)s − F)
f
√

2
= C, we get

E[W] = )s

∞∑

:=0

4−(:)s)2/2f2 − f
√

2
∞∑

:=1

∫ :)s/f√2

(:−1))s/f√2

4−C
2

dC

= )s

∞∑

:=0

4−(:)s)2/2f2 − f
√

c
2

∞∑

:=1

(
erf

( :)s

f
√

2

)
− erf

( (:−1))s

f
√

2

) )

= )s

∞∑

:=0

4−(:)s)2/2f2 − f
√

c
2

∞∑

:=1

(
erfc

( (:−1))s

f
√

2

)
− erfc

( :)s

f
√

2

) )

= )s

∞∑

:=0

4−(:)s)2/2f2 − f
√

c
2

(
erfc(0) − erfc(∞)

)

= )s

∞∑

:=0

4−(:)s)2/2f2 − f
√

c
2 .

�

Substituting (14) and (13) in (5), we obtain the total
energy penalty, given by

E()s) = U

∞∑

:=0

4−:
2) 2

s /2f2 + V
(
)s

∞∑

:=0

4−(:)s)2/2f2 − f
√

c
2

)

= (U + V)s)
∞∑

:=0

4−:
2) 2

s /2f2 − Vf

√
c
2 . (15)

Note that this energy penalty can be expressed using the
Jacobi third theta function \3(I, @) given by [32]

\3 (I, @) =
∞∑

==−∞
@=

2
42=8I . (16)

Although the Jacobi theta functions do not have a closed-
form solution, it is finite and can be computed numerically
or from tables. If required by the numerical solvers, this
infinite sum can be approximated to a finite sum with a
sufficiently large number of terms.

In what follows, we prove the convexity of E()s). Note
that it involves a sum of infinite terms, and one can show
that some of those terms are non-convex. Therefore, using
typical methods to prove convexity is not applicable. In-
stead, we use a novel approach that involves a transfor-
mation of the infinite sum using the Poisson sum formula,
which can be of independent interest in proving convexity
for a sum of infinite terms, in general.

Lemma 5. Let 5 (:, C) = 4−:
2C2/2f2

. Then for C ∈ (0,∞),

∞∑

:=0

5 (:, C) =
√

2c
f

C

∞∑

:=0

5 (:, 2cf2

C
) .

Proof. According to the Poisson sum formula, periodic sum-
mation of an aperiodic function is equal to the periodic

summation of its Fourier transform. That is, for the given
function 5 (:, C)

∞∑

:=−∞
5 (:, C) =

∞∑

==−∞

∫ ∞

−∞
5 (G, C)4−2c8=G dG

=

∞∑

==−∞

∫ ∞

−∞
4−G

2C2/2f2
4−2c8=G dG

=
√

2c
f

C

∞∑

==−∞
4−2c2=2 f2/C2

⇒
∞∑

:=−∞
5 (:, C) =

√
2c

f

C

∞∑

:=−∞
5 (:, 2cf2

C
) .

Since 5 (:, C) is an even function of :, we get

∞∑

:=0

5 (:, C) =
√

2c
f

C

∞∑

:=0

5 (:, 2cf2

C
) .

�

Lemma 6. The function 5 (C) = ∑∞
:=0 5 (:, C) is convex in C .

Proof. We prove the convexity using the second derivative
test. Since the function sequence converges, it is sufficient
to prove that the terms inside the summation are indepen-
dently convex. For this, we make use of the function and its
alternate expression given by Lemma 5.

5 (C) = 1 +
∞∑

:=1

4−:
2C2/2f2

⇒ 5 ′′(C) =
∞∑

:=1

:2

f4
(:2C2 − f2)4−:2C2/2f2

≥ 0⇐ C ≥ f

:
,∀: ≥ 1 .

Therefore, 5 (C) is convex if C ≥ f . (17)

Now using Lemma 5, we get

5 (C) =
√

2c
f

C

(
1 +

∞∑

:=0

4−2c2:2f2/C2
)

⇒ 5 ′′(C) = 2
√

2c
f

C3

(
1 + 1

G4

(
G4 − 10c2:2f2G2

+ 8c4:4f4)4−2c2:2f2/C2
)

≥ 0⇐ C ∉
(
cf

√
5 −
√

17:, cf

√
5 +
√

17:
)
, ∀: ≥ 1 .

Therefore, 5 (C) is convex if C ≤ 2.9f . (18)

The proof is complete by combining the conditional convex-
ity of 5 (C) given in (17) and (18). �

Lemma 7. The function 6(C) = C 5 (C) is convex in C .

Proof. We prove the convexity in a way similar to Lemma 6.

5 (C) = C
(
1 +

∞∑

:=1

4−:
2C2/2f2

)

⇒ 5 ′′(C) =
∞∑

:=1

:2C

f4
(:2C2 − 3f2)4−:2C2/2f2

≥ 0⇐ C ≥
√

3
f

:
,∀: ≥ 1 .

Therefore, 5 (C) is convex if C ≥ 1.74f . (19)
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Now using Lemma 5, we get

5 (C) =
√

2c f
(
1 +

∞∑

:=0

4−2c2:2f2/C2
)

⇒ 5 ′′(C) = 4
√

2c5 :2f3

C6

(
4c2:2f2 − 3C2

)
4−2c2:2f2/C2

≥ 0⇐ C ≤ 2cf
√

3
· : ,∀: ≥ 1 .

Therefore, 5 (C) is convex if C ≤ 3.6f . (20)

The proof is complete by combining the conditional convex-
ity of 5 (C) given in (19) and (20). �

Proposition 2. The energy penalty E()s) is convex in )s .

Proof. The proof is straightforward from Lemma 6 and 7. �

With the convexity in hand, we can use known optimi-
sation techniques [31] to solve P̂. Later in Section 5, we will
use a simple bisection algorithm for this optimisation.

4 SOLUTION TO THE PROBLEM P
In this section, we consider the optimisation problem P
and find the optimal sampling interval and offset {)∗s , X∗}.
Before going into the details, it is worth mentioning the
motivation behind the introduction of the offset X to the
model. In practice, there is a minimum time threshold before
which the event does not occur. For example, in a WCA,
a human user takes a strictly non-zero minimum amount
of time to finish a task and sampling before this minimum
threshold simply adds to the energy wastage. The addition
of an offset to the policy mitigates this energy wastage by
not allowing the first sample to fall before a given time.
However, this threshold is not necessary for benefiting from
the offset. Even in the absence of a threshold, an offset
in sampling is particularly useful in situations where the
TTE distribution has a small variance and/or large mode.
Here, the probability of the event occurring before the first
sample is small enough so that the expected energy saving
in delaying the sampling outweighs the expected cost of the
encountered wait due to a (potential) event. As a result, the
optimum value of an offset is always greater than or equal
to the minimum threshold.

4.1 General TTE Distribution

As in the earlier section, we start by assuming a general TTE
distribution and later extend it to particular distributions.

4.1.1 Expected number of samples

The probability that the number of samples taking any given
integer value can be computed from the CDF and CCDF of
of the TTE.

P(S = 1) = �T
(
X
)

P(S = :) = �T
(
(: − 1))s + X

)
− �T

(
(: − 2))s + X

)
, ∀ : ≥ 2

⇒ P(S ≤ :) = �T
(
(: − 1))s + X

)
, ∀ : ≥ 1

⇒ P(S > :) = �̄T
(
(: − 1))s + X

)
, ∀ : ≥ 1 . (21)

The expected number of samples can be computed as

E[S] =
∞∑

:=0

P(S > :)

= 1 +
∞∑

:=1

�̄T
(
(: − 1))s + X

)
(from (21))

⇒ E[S] = 1 +
∞∑

:=0

�̄T
(
:)s + X

)
. (22)

4.1.2 Expected wait time

Recall that the offset X ≥ )s and that the maximum possible
wait F is upper-bounded by the sampling interval (at the
time of the event). As a result, a value of F such that )s <

F ≤ X can arise only before the first sample while a value
F ≤ )s can potentially arise before any sampling instance.
The CDF of wait penalty �W (F) can be obtained by taking
the probability of the TTE to fall at most F short of any
sampling instance.

�W (F) =




∞∑

:=0

(
�T (:)s + X) − �T (:)s + X − F)

)
if F ≤ )s

1 − �T
(
X − F

)
if )s < F ≤ X

1 if F > X

SinceW is a non-negative random variable, we have

E[W] =
∫ ∞

0

(
1 − �W (F)

)
dF

=

∫ )s

0

(
1 −

∞∑

:=0

(
�T (:)s + X) − �T (:)s + X − F)

) )
dF

+
∫ X

)s

�T
(
X − F

)
dF .

Since integral limits and infinite sum are finite, and the
summand is non-negative, we get

E[W] = )s −
∞∑

:=0

∫ )s

0

(
�T (:)s + X) − �T (:)s + X − F)

)
dF

+
∫ X

)s

�T
(
X − F

)
dF . (23)

As expected, a substitution of X = )s in (22) or (23) under
the policy Π returns the same result that we obtained under
the policy Π̂ discussed in Section 3.

4.2 Exponentially Distributed TTE

Due to the memory-less property of the distribution, it is
predictable that the optimum offset under an exponentially
distributed TTE takes the default value of X = )s; thus
making the solution of P and P̂ one and the same. Before
formally proving this in Proposition 3, we will first com-
pute the energy penalty E()s, X) by substituting the CCDF
and CDF of the exponential distribution in (22) and (23),
respectively. We get

E[S] = 1 + 4−_X

1 − 4−_)s

E[W] = (1 − _X)4
−_)s + _)s 4

−_X + _X − 1

_(1 − 4−_)s )
⇒ E()s, X) = UE[S] + VE[S]

=
4−_)s

(
V−_(VX+U)

)
+ _

(
VX+U+4−_X (V)s+U)

)
− V

_(1 − 4−_)s ) . (24)
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Proposition 3. Given that the TTEs are exponentially dis-
tributed, X∗ = )∗s under an optimal policy for P; therefore, P
and P̂ are equivalent.

Proof. Let c (C1,C2 ... ) be a sampling policy with sampling inter-
vals given by C1, C2, . . . and let E

(
c (C1 ,C2 ... )

)
be the associated

energy penalty. Let )#
s be the optimum sampling interval

obtained by solving P̂, where there is no offset. That is

E
(
c (C ,C ,C ,... )

)
≥ E

(
c ()

#
s ,) #

s ,) #
s ,... ) ), ∀C ≥ 0 . (25)

Now, let )∗s and X∗ be the solution to P resulting in an op-
timal policy c (X

∗,)s
∗ ,)s

∗ ,)s
∗,... ) and let �T |X∗ be the conditional

CDF of the TTE given T > X∗. If the problem to compute the
optimum sampling interval and phase is repeated at time X∗

using the conditional CDF, we get a new solution containing
an optimum sampling interval )̃s

∗
and an optimum (second)

offset X̃∗. As this updated set of sampling policy denoted

by c (X
∗ , X̃∗ ,)̃s

∗
,)̃s
∗
,... ) is a superset of the previously obtained

sampling policy c (X
∗,)s

∗ ,)s
∗ ,)s

∗ ,... ) , the new solution provides
us with an energy penalty that is not worse than the one
obtained before. However, due to the memory-less property
of the exponential distribution we know that

�T (C) = �T |T>: X∗ (C + :X∗), ∀: ∈ N .

Therefore by using the conditional CDF, optimisation prob-
lem is essentially unchanged and the newly obtained solu-
tion will be numerically equal to the corresponding values
obtained in the previous step; i.e., )̃s

∗
= )s

∗ and X̃∗ = X∗. By
repeating this process supported by similar arguments, we
get a sequence of non-increasing energy penalties. That is

E
(
c ()

#
s ,) #

s ,... ) ) ≥ E
(
c (X

∗ ,) ∗s ,) ∗s ,... ) ) (as Π̂ ⊆ Π)

≥ E
(
c (X

∗ , X∗ ,) ∗s ,) ∗s ,... ) )

...

≥ E
(
c (X

∗ , X∗ ,... ) )

≥ E
(
c ()

#
s ,) #

s ,... ) ) (from (25))

⇒ E
(
c ()

#
s ,) #

s ,... ) )
= E

(
c (X

∗ , X∗ ,... ) ) .

Therefore, X∗ = )#
s as a result of the convexity of E()s) from

Proposition 2. Thus, the optimum set of sampling instances
under Π is {C = :)∗s , : ∈ N+}, which is essentially the
solution to P̂, proving that P ≡ P̂. �

As a result of the equivalence of P and P̂, we do not
benefit from proceeding with the relatively complex optimi-
sation of (24) and we can use the solution from Proposition
1 to find the optimum energy penalty.

4.3 Rayleigh Distributed TTE

Lemma 8. The energy penalty E under Rayleigh distributed TTE
is given by

E()s, X) = (U + V)s)
∞∑

:=0

4−(:)s+X)2/2f2 − Vf

√
c
2 + VX + U . (26)

Algorithm 1 Algorithm to find optimum sampling interval
)∗s and optimum offset X∗ with the constraint X = =)s, = ∈ N+.
Initialise the upper limit of optimising variables, ) (max)

s and
= (max) ;
Initialise stopping criterion b ;
= (L) ← 1 ; = (H) ← = (max) ;
for 8 ← 0 to

⌈
log2 (= (max) − 1)

⌉
do

=← (= (L) + = (H) )/2 ;
)
(L)

s = 0; ) (H)s = )
(max)

s ;
while )

(H)
s − ) (L)s > b do

)s ← () (L)s + ) (H)s )/2 ;
if m

m)s
E()s, =)s) ≥ 0 then

)
(H)

s ← )s ;
else

)
(L)

s ← )s ;
end

end
if E()s, =)s) − E()s, (= − 1))s) ≥ 0 then

= (H) ← = ;
else

= (L) ← = ;
end

end
)∗s = )s ; X∗ = =)∗s ;

Proof. Substituting the CDF of the Rayleigh distribution,

�T (C) = 1 − 4−C2/2f2
in (22) or (23) gives

E[S] = 1 +
∞∑

:=0

4−(:)s+X)2/2f2
(27)

E[W] = X + )s

∞∑

:=0

4−(:)s+X)2/2f2 − f
√

c

2
. (28)

The energy penalty E()s, X) can be computed by adding
E[S] and E[W] using the weights U and V, respectively. �

Proving the convexity of E()s, X) in the two variables )s

and X is hard. The difficulty arises as we need to prove that
the Hessian is non-negative and showing this for the infinite
sum is highly non-trivial. Furthermore, the proof that we
used in Lemma 5 cannot be extended as the function is not
even in )s after the addition of the second variable X. Instead,
we will consider a sub-optimal solution by assuming that
the offset is an integer multiple of the sampling interval. We
will now show that the energy penalty is convex in )s for a
fixed offset of the form X = =)s.

Lemma 9. The function 5= (C) = (0 + 1C)
∑∞

:=0 4
−( (:+=)C)2/2f2

is
convex in C for = ∈ N .

Proof. See that 5= (C) for any = is obtained by removing first
= − 1 terms from 50(C). From Proposition 2, we know that
50 (C) is convex.

⇒ 0 ≤ 5 ′′0 (C) =
∞∑

:=0

:2C2 (0 + 1C) − B2(0 + 31C)
f2

:24−(:+=)
2C2/2f2

.

As the terms in 5 ′′0 (C) are non-decreasing with :, removing
first = − 1 terms will not affect the sign of the sum and
therefore 5= (C) is also convex. �
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We can see with the help of (16) and (26) that the energy
penalty is the sum of a linear function and a continuously
decreasing and convex Jacobi theta function. This shows the
presence of a single minima with respect to X for any fixed
)s. With this information and the convexity in )s for any
fixed X (Lemma 9), we use Algorithm 1 to find the sampling
interval and offset that attains a minimal energy penalty
while satisfying the constraint X = =)s, = ∈ N. In the next
section, we will compare this energy penalty to E∗ obtained
using a brute force search and show that Algorithm 1 attains
near-optimality. As a direct result of this near-optimality, we
will reuse the same notations (·)∗ to represent the solution
obtained using Algorithm 1, unless otherwise necessary.

5 NUMERICAL RESULTS

In this section, we present the numerical results to illustrate
the behaviour of the energy penalty, the gain achieved by
the proposed design, and their dependency on the system
parameters. We consider two parameter settings that are
motivated by the characteristics of the CPS and the VAS. We
start with describing the characterisation of both of these
systems and the underlying distribution of the observed
process. Afterwards, we compare the proposed design(s)
with a baseline sampling policy that is used in practice.
Furthermore, to verify the near-optimality of Algorithm 1 in
solving P, we compare its solution with that of a brute force
method. For the CPS with an exponentially distributed TTE,
the offset is irrelevant and hence we are not using Algorithm
1. As a result, this comparison with a brute-force solution is
required only for the VAS but not for the CPS.

5.1 Parameter Settings

For the CPS, we consider a failure detection system where
the TTE is exponentially distributed with a mean of 10s. To
detect the events (i.e., failures for a CPS), the terminal sam-
ples the process and sends the sample to the back-end via a
low-power, low-throughput transmitter. For the device, we
refer to the wireless sensor network characterisation in [33]
with the data size fixed at 127 Bytes. For communication
technology, we choose 802.15.4 operating in the Sub1GHz
ISM band with an approximate throughput of 250kbps,
resulting in a communication delay of 4ms. The device is
assumed to work at 3V drawing a current of 15mA during
communication and 5mA during idling. We also assume
that the processing time of the successful sample gs = 5ms.

On the other hand, a VAS typically need to transmit
video frames, thus requiring a larger throughput. We refer
to the WCA Lego experiment [28] where a set of tasks
performed by a human user are monitored to detect the
task completion by taking snapshots of the progress. The
frame size used in the experiment is roughly 300kB (640×480
resolution) and the mean task time observed is 4.846s. The
processing time observed at the back end is approximately
525ms. For the terminal device, we consider a Google Glass
using an 802.11ax transmitter providing a data rate of
400Mbps thus resulting in a 5.85ms communication delay
for each snapshot. The Google Glass typically takes 334mW
during active/screen-off and 2960mW during video chat [34].
Thus, we assume these power figures as the idle power and

the communication power, respectively. On top of this, we
also assume a minimum possible task time Cmin (response
time of the human user) of 0.5s. The parameters used for
the CPS and the VAS are presented in TABLE 2.

%0 %c gc gs V/U E[T ] Cmin

CPS 15mW 45mW 4ms 5ms 125 10s –
VAS 334mW 2.96W 5.85ms 525ms 21.7 4.84s 0.5s

TABLE 2: Parameters used for the cyber-physical sys-
tem(CPS) and the video analytics system (VAS).

Even though our solution does not depend on the type
of energy source, we assume that the CPS and the VAS are
powered by a fixed battery pack of arbitrary capacity. As
battery life improvement is one of the directly observable
results of energy saving, we evaluate the performance of the
proposed solution in terms of percentage increase in battery
life. Note that as we use a percentage increase, the exact
capacity of the battery is irrelevant.

c0 c# c∗ cb

CPS )s 83.3 ms ) #
s - -

VAS
)s 83.3 ms ) #

s ) ∗s Brute
X - - X∗ Force

TABLE 3: Various sampling policies considered for compar-
ison and their corresponding sampling interval and offset.

For the performance evaluation of the proposed policies
c# and c∗, we consider a baseline periodic sampling policy
denoted by c0 as shown in TABLE 3. For selecting the
baseline sampling rate for the VAS, we take a hint from
the WCA system [28] that motivated the system model.
The authors use a video camera to capture the monitored
process that runs at a frame rate of 24fps which ideally
results in a sampling interval of 41.6ms. However, whenever
the processing of the discarded samples takes more than
41.6ms, the next sample is delayed accordingly. As a result,
the mean sampling interval is observed to be around 83.3ms
thus justifying a baseline with sampling interval anywhere
in between 41.6ms and 83.3ms. That being said, we will see
in the next subsection that the optimum sampling interval
for the considered VAS is around 300ms. As a result, even
though our model does not take samples by considering the
processing time, we take our baseline sampling to be 83.3ms
to show the minimum performance improvement when the
baseline is closest to the optimum We use the same baseline
sampling interval for the CPS for simplicity in comparison.

To verify the near-optimality of c∗ obtained using Algo-
rithm 1, we compare it with that of a brute force solution of
P. To find this brute force solution, we divide the practically
feasible domain of the two-dimensional plane formed by )s

and X into grids of size 10−3 × 10−3 s2 and search for the
optimum solution (also known as grid search).

As the explanations to some of the figures of the CPS
and the VAS involve similar arguments, we explain them
concurrently whenever it is convenient. Also, note that the
y-axes of some of these figures are kept different intention-
ally for better visualisation. The parameters for all the plots
are taken from TABLE 2 and TABLE 3, with a potential
exception to the variable parameter under discussion in a
particular plot.
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(a) log10 (E[S]), E[W] vs. )B . (b) Penalty components, E vs. )s. (c) E vs. E[T ].

Fig. 2: Expected number of samples E[S], expected wait E[W], energy penalty E and its components plotted against the
sampling interval )s and mean TTE E[T ] for the CPS. Proposed policy c# is compared with the baseline policy c0.

(a) log10 (E[S]), E[W] vs. )B . (b) Penalty components, E vs. )s. (c) E vs. E[T ].

Fig. 3: Expected number of samples E[S], expected wait E[W], energy penalty E and its components vs. the sampling
interval )s and mean TTE E[T ] for the VAS. Proposed policies c# and c∗ are compared with the baseline policy c0.

5.2 Energy Penalty

In Fig. 2a and Fig. 3a we present the the expected number
of samples E[S] and the expected wait E[W] by varying
)s for the CPS and the VAS, respectively. For comparison,
at )s = 10ms, the CPS and the VAS expect 1000 and 100
samples per event, respectively. The expected wait however
is approximately the same at around 4ms. As noted in
Sections 3 and 4, E[S] and E[W] show opposing behaviour
with an increase in )s. After a very rapid decrease, E[S] goes
asymptotically to 1 with increasing )s. This points to the
single sample that is ideally required for the event detection.
On the other hand, E[W] shows a gradual (approximately
linear) increase with )s. For instance, doubling the sampling
interval doubles the wait. For a VAS operating at a sampling
frequency of 0.5s, this corresponds to approximately 50%
increase in the TTF. Recall that TTF is the effective delay
experienced by the human user.

In Fig. 2b and Fig. 3b, we show the energy penalty and
its components as a function of )s. Observe E[S] and E[W]
exhibit an opposing behaviour with a change in )s resulting
in an energy penalty minima in their weighted sum. This
minima and the corresponding )s is also marked in the
figures. The qualitative behaviour of the energy penalty and
its components is similar for the CPS and the VAS with a
minimum value of 6mJ and 100mJ, respectively. Another
important observation is the change in E as a result of a
deviation of )s from the optimum. As E increases much
more rapidly with a negative deviation than with a positive
deviation, it is particularly important to avoid any negative
errors in calculating this optimum. That is, an oversampling
can cost much more than an undersampling by a similar
amount. These errors can arise due to an incorrect estima-
tion of the TTE statistics or insufficient convergence of the
optimisation algorithm.

5.3 Energy Saving

In Fig. 2c and Fig. 3c we show energy penalty incurred for
the CPS and the VAS as a function of the mean TTE for
various sampling policies from TABLE 3. Since the mean
TTE value is application-specific, plotting energy penalty
across mean TTE values provides an insight into how the
behaviour of the particular CPS and VAS scales across
application scenarios with different parameterisation. The
energy penalty reduction achieved by the proposed policies
is clear from these figures. Note that when the sampling
interval of 83.3ms is smaller than )#

s or )∗s , the penalty
is dominated by the discarded samples. As a result, the
difference in E increases with an increase in mean TTE. This
increase is much more prominent for the VAS.

The increase in battery life is a more direct measure of
energy saving from an application perspective. In Fig. 4
we present this by plotting the percentage increase in the
expected battery life of the terminal. In Fig. 4a we choose
the baseline c0 whereas in Fig. 4b we choose a different
baseline sampling interval of 2s. We can see that irrespective
of the baseline or the application considered, there is an
observable increase in battery life. Particularly for the VAS,
the proposed sampling policy improves the battery life by
36% over c0 at the considered mean TTE of 4.84s.

The motivation to consider two baselines is the value of
their sampling interval relative to the optimum sampling in-
terval (for the TTE range considered). The sampling interval
of 0.83ms is much smaller, and the sampling interval 2s is
much larger than the optimal sampling intervals. Therefore,
the former results in oversampling and the latter results
in undersampling which results in shifting the dominating
component of the energy penalty from E[S] to E[W]. As a
result, the increase in battery life is a increasing function of
the mean TTE in Fig. 4a, whereas it is a decreasing function
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in Fig. 4b. Note that the optimum sampling interval is pos-
itively correlated with the mean task time and the battery
life is inversely proportional to the energy. Therefore, this
change of percentage increase in battery life is in alignment
with the variation of E[S] and E[W] with )s observed
earlier in Fig. 2 and Fig. 3.

(a) Baseline policy c0

(b) Baseline policy with )s = 2s.

Fig. 4: Percentage increase in battery life achieved by the
policy c∗ vs. mean TTE E[T ] for the CPS and the VAS. The
increase is calculated by considering two baselines policies:
(a) c0, and (b) a policy with sampling interval )s = 2s.

(a) )∗s , X
∗ vs. E[T ].

(b) E vs. E[T ].

Fig. 5: Optimum sampling interval )∗s , optimum offset X∗

and the corresponding energy penalty E∗ for various sam-
pling policies vs. the mean TTE E[T ] for the VAS.

(a) E∗, )∗s vs. gc for fixed %c, %0.

(b) E∗, )∗s vs. log10 (%c/%0) for fixed gc, %c.

Fig. 6: Variation of optimum sampling interval )∗s and
the corresponding energy penalty E∗ for various sampling
policies with variation in communication delay gc and idle
power %0 for the VAS. The vertical lines denotes gc and
log10 (%c/%0) of the VAS from TABLE 2.

5.4 Comparison of Sampling Policies

We saw the battery life improvement provided by c∗ over c0

earlier in Fig. 4. Even though we have two solutions – c# and
c∗ – for the VAS, we considered only the better performing
c∗ in that figure. Now in 5, we compare the performance
of the two policies and see the benefit provided by adding
the offset X. We also compare the proposed c∗ with the
brute force solution discussed in Section 5.1. In Fig. 5a, we
compare the optimum sampling interval and offset obtained
by Algorithm 1 and brute-force, whereas Fig. 5b compares
the optimum energy penalty attained by c# and c∗. From
Fig. 5a, we can see that there is an observable (albeit small)
difference in )∗s (and X∗) obtained by the algorithm and the
brute-force. Nonetheless, Fig. 5b shows that the difference in
energy penalty generated as a result of this difference is very
minimal, thus confirming the near-optimality of Algorithm
1. We also observe that the additional penalty reduction
offered by P over P̂ amounts to roughly 51% at a mean
task time of 1s and 14% at a mean task time of 5s, thus
demonstrating the advantage of introducing the offset.

5.5 Variation of E with System Parameters

Recall that the optimum sampling interval depends only on
the ratio V/U = g−1

c ( %c
%0
−1)−1. Fig. 6a and Fig. 6b illustrates the

variation of the energy penalty of the VAS with respect to
the system parameters gc and %c/%0. Observe from the figures
that the energy penalty obtained by solving P varies much
less with the system parameters than the baseline policy.
This shows the relative independence of the optimum en-
ergy penalty with the system parameters. Since these results
are qualitatively similar for the CPS, we omit them due to
space constraints.
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For fixed power, communication delay gc is dictated by
the data size per sample and the transmission schemes.
Fig. 6a illustrate the dependency of E with respect to these
aspects of communication. We can see that a larger commu-
nication delay results in larger )∗s . However, the correspond-
ing increase in the incurred penalty is much smaller for the
proposed optimum. In Fig. 6b we show the change in )∗s and
E with respect to %c/%0 for constant gc and %c. We can see that
the optimum sampling interval increases with an increase
in the difference between the communication power and
idle power. However, a more interesting observation is the
corresponding change in the energy penalty. With %0 << %c,
we obtain a significant penalty reduction by using c∗. On the
other hand, as the %0 approaches %c (i.e., 0dB in the figure),
the penalty reduction goes to zero.

With advancements in semiconductor technology that
reduces %0 and the emergence of communication standards
like the mmWave, %c/%0 ratio is expected to increase from
the 9.47dB that we modelled. Similarly, increasing image
processing capabilities increase gc as well. As a result, it
is evident from the figures that the gain offered by the
proposed algorithm is more likely to increase in the future.

6 CONCLUSION AND FUTURE SCOPE

We considered an edge-based feedback system that captures
essential events via sampling and proposed an optimisation
framework with which the sampling interval that minimises
the energy consumption can be computed. Apart from the
generic approach to solve the optimisation problem for an
arbitrary task time distribution, we also considered two
particular examples of interests – a VAS (video analytics
system) and a CPS (cyber physical system). The TTE (time
to event) of the VAS follows a Rayleigh distribution while
that of the CPS follows an exponential distribution. These
two systems are used to illustrate the behaviour of the
variable components of energy. We discussed the energy
savings enabled by the optimum sampling interval, the
benefit provided by offsetting the first sample and the near-
optimality of the proposed algorithm. We also discussed
the dependency of the optimum to the system parameters
like communication delay and idle power. Finally, we also
discussed the additional energy expended as a result of
a computation error and concluded that this expense is
relatively steeper for a negative error.

From a mathematical perspective, the basic difference
between a CPS and a VAS is the underlying TTE distribu-
tion. However, from a design perspective, the one important
distinction is the benefit of adding the offset X. As explained
before, offset is particularly useful when the statistical mode
of the TTE distribution is large enough and the variance of
the distribution is small enough so that the probability of
events occurring in the early stages of a monitoring cycle
is small. As a result, offset is not useful for an application
with an exponentially distributed TTE (see Proposition 3)
but is useful when TTE is Rayleigh distributed. However,
there are other distributions where the offset is much more
useful and the proposed solution can provide a higher
performance improvement. For instance, the exponentially
modified Gaussian distribution can model the human re-
sponse times in some similar applications.

In this work, we considered the problem with only one
single category of event. However in a CPS, systems might
need to capture different categories of failures, and thus
might have different severity or costs associated with them.
Similarly in a VAS, the responsiveness of the system need to
be considered and any minimisation of energy usage that
affects the responsiveness over a certain limit should be
avoided. Such demands for an additional characterisation
that adds a variable weight to the required energy savings
is the primary direction for the future scope of this work.
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