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Abstract

Knowledge Graph Question Answering (KGQA) has become
a prominent area in natural language processing due to the
emergence of large-scale Knowledge Graphs (KGs). Recently
Neural Machine Translation based approaches are gaining
momentum that translates natural language queries to struc-
tured query languages thereby solving the KGQA task. How-
ever, most of these methods struggle with out-of-vocabulary
words where test entities and relations are not seen during
training time. In this work, we propose a modular two-stage
neural architecture to solve the KGQA task. The first stage
generates a sketch of the target SPARQL called SPARQL sil-
houette for the input question. This comprises of (1) Noise
simulator to facilitate out-of-vocabulary words and to re-
duce vocabulary size (2) seq2seq model for text to SPARQL
silhouette generation. The second stage is a Neural Graph
Search Module. SPARQL silhouette generated in the first
stage is distilled in the second stage by substituting precise
relation in the predicted structure. We simulate ideal and re-
alistic scenarios by designing a noise simulator. Experimental
results show that the quality of generated SPARQL silhouette
in the first stage is outstanding for the ideal scenarios but for
realistic scenarios (i.e. noisy linker), the quality of the result-
ing SPARQL silhouette drops drastically. However, our neu-
ral graph search module recovers it considerably. We show
that our method can achieve reasonable performance improv-
ing the state-of-art by a margin of 3.72% F1 for the LC-
QuAD-1 dataset. We believe, our proposed approach is novel
and will lead to dynamic KGQA solutions that are suited for
practical applications.

Introduction
In recent years, there is an increasing interest in the Knowl-
edge Graph Question Answering (KGQA) (Diefenbach et al.
2018) task in Natural Language Processing community
due to its applicability in various real life and practi-
cal business applications. Availability of large-scale knowl-
edge graphs, such as Freebase (Bollacker et al. 2008),
DBpedia (Lehmann et al. 2015), YAGO (Pellissier Tanon,
Weikum, and Suchanek 2020), NELL (Mitchell et al. 2015),
and Google’s Knowledge Graph (Steiner et al. 2012) made
this possible. The KGQA task requires a system to answer a
natural language question leveraging facts present in a given
KB. Mainly two streams of approaches are followed by
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KGQA community (1) semantic parse based (2) information
extraction based. In Semantic parsed based approach, the
task can be accomplished by translating the natural language
question into a structured query languages or logic form
such as SPARQL, SQL, λ-DCS (Liang 2013), CCG (Zettle-
moyer and Collins 2005), etc. Generated query is then exe-
cuted over the given KG to finally arrive to the answer. Infor-
mation extraction based approaches are primarily concerned
with final answer but not intermediate logic form. In seman-
tic parsed based approaches, main challenges in obtaining
correct form of logic/SPARQL is getting the right structure
along with specific entities and relations in the knowledge
graph. Performance of existing off-the-shelf entity-relation
linkers is not encouraging enough in KGQA dataset to adapt
them in this task. Therefore, most of the state-of-art sys-
tems follow Pipeline-based approaches with inbuilt entity-
relation linker. These pipeline based approaches (Singh
et al. 2018; Kapanipathi et al. 2020; Liang et al. 2021) are a
popular way to handle questions that requires multiple enti-
ties and relations to answer a given question (Li et al. 2016;
Usbeck et al. 2017; Trivedi et al. 2017). The error introduced
by inbuilt linkers is a major bottleneck and reduces the over-
all pipeline performance.

With progress of neural network models, KGQA commu-
nity aspires to perform the task by leveraging neural net-
work. However to do so, we need large-scale training data
which is a challenge. These challenges limit the applicabil-
ity of Deep Neural Network (DNN) based approaches on
KGQA task. Existing neural approaches however, are cur-
rently limited to answering questions that require single re-
lation from KG (He and Golub 2016; Dai, Li, and Xu 2016;
Hao et al. 2017; Lukovnikov, Fischer, and Lehmann 2019;
Lukovnikov et al. 2017). Some neural approaches (Mahesh-
wari et al. 2019) assume a noise-free entity linker or they
mainly focus on relation linking sub-task (Yu et al. 2017).
Hao et al. (2017) follows information extraction based ap-
proaches and leverages universal KG information to arrive at
the final answer more accurately. Cheng and Lapata (2018)
develops a system based on sequence-to-tree model where
logic is in the latent form and supervision is in the form of
final answer entity. Advances of translating natural language
query to structured languages using NMT models (Yin,
Gromann, and Rudolph 2021; Cai et al. 2017) is emerging
in recent years. In case of KGQA task, these NMT based
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Figure 1: A high level view of our proposed two stage neural architecture for KGQA.

methods suffer from out-of-vocabulary words and there is no
explicit provision to handle unseen entities/relations at test-
time. However, we believe that the core challenges involved
in performing KGQA task via NMT methods is not explored
fully and there is a significant scope for further investigation.
Motivated by these observations, in this paper, we propose a
novel two-stage neural architecture (see Figure 1) to answer
KG based questions that need multiple entities and relations
to answer them.

The main contributions of this work are as follows:

1. In Stage-I, a sketch of SPARQL called SPARQL silhou-
ette is generated for input question. A noise simulator is
designed in this module to devise three different kinds
of masking strategies to simulate varying levels of noise
introduced in entity/relation linking process.

2. In Stage-II, a simple and novel BERT based neural graph
search module (NGS) is proposed which corrects pre-
dicted relations in the SPARQL silhouette. Purpose of
having this module is to overcome performance limita-
tion that arises due to the weaknesses of entity/relation
linker present in the first stage.

3. An ideal entity/relation linker having 100% F1 score
is simulated and shown that the quality of generated
SPARQL silhouette is high – 83.08% F1 for LC-QuAD-1
and 55.3% Macro F1 QALD for QALD-9.

4. Realistic scenario is simulated and shown that as F1 of
the linker goes down, quality of the resulting SPARQL
silhouette drops drastically. Finally, integrating Stage-II
module with Stage-I boosts the performance significantly
and improves the SOTA by a margin of 3.72% F1 for LC-
QuAD-1 dataset.

Related Work
In the beginning KGQA task was centralized in two direc-
tions either semantic parsed based (Unger et al. 2012; Be-
rant et al. 2013; Reddy, Lapata, and Steedman 2014; Bast
and Haussmann 2015; Abujabal et al. 2017) approaches or
information retrieval based (Bast and Haussmann 2015;
Yao and Van Durme 2014; Dong et al. 2015). Most of the
earlier semantic parsed based approaches used handcrafted
rules. We limit our discussion only to end-to-end neural ap-
proaches.

Deep Neural Network Based Approaches
With availability of large-scale datasets, DNN based tech-
niques have made huge improvements in machine reading
comprehension tasks (Nguyen et al. 2016; Rajpurkar et al.
2016; Joshi et al. 2017). This motivated NLP researchers
to apply DNN technique to translate natural language ques-
tion to structure database query languages (Yu et al. 2018;
Wang et al. 2020; Hosu et al. 2018; Choi et al. 2021). For
KGQA, datasets like SimpleQuestions (Bordes et al. 2015;
He and Golub 2016), where only one entity and one rela-
tion are required to answer a question, performance of DNN
models is already approaching the upper bound (Petrochuk
and Zettlemoyer 2018). To solve simple QA He and Golub
(2016) use a char-level LSTM based encoder for the ques-
tion and a char-level CNN to encode predicates/entities in
KB. An attention based LSTM decoder is used to generate
the topic entities and predicates. Whereas, to solve the com-
plex KGQA task (Bao et al. 2016; Su et al. 2016; Trivedi
et al. 2017; Dubey et al. 2019) it requires multiple KG facts.
To answer complex questions, Hao et al. (2017) first iden-
tify a topic entity from the question using FreeBase API and
collect its 2-hop neighbours as potential answers. A cross-
attention based Neural Net encodes the question w.r.t candi-
date answer aspects. Then they rank the candidates with sim-
ilarity score based ranker without generating any intermedi-
ate logic form. Whereas, Maheshwari et al. (2019) start with
the gold entity in the question to generate the n-hop core
chain of candidates. Then a bi-LSTM based slot matching
model encodes the question and candidate core chains which
are then ranked later. Cheng and Lapata (2018) use a bi-
LSTM encoder and stack-LSTM decoder to generate logical
forms with weak supervision.Recently NMT (Vaswani et al.
2017; Bahdanau, Cho, and Bengio 2015) based methods
have also been used to solve KGQA task where a seq2seq
model (He and Golub 2016; Dai, Li, and Xu 2016; Hao
et al. 2017; Liang et al. 2017; Cheng and Lapata 2018) con-
verts the natural language question directly into a logic form.
Yin, Gromann, and Rudolph (2021) use CNN based seq2seq
models to generate SPARQL queries from natural language
questions. Their vocabulary for sparql generation is limited
to the entities/relations seen during training. However, their
performance reduces drastically if the overlap of entities and
relations in the training and test sets differ as seq2seq mod-
els suffers from out-of-vocabulary words. Table 1 shows the



Approach Question Unseen Intermediate Supervision
Complexity Entities Logic Form

(He and Golub 2016) Simple Yes Yes Strong
(Yin et al. 2016) Simple Yes No Strong
(Hao et al. 2017) Complex Yes No Strong
(Maheshwari et al. 2019) Complex No Yes Strong
(Cheng and Lapata 2018) Complex Yes Yes Weak
(Yin, Gromann, and Rudolph 2021) Complex No Yes Strong
Our Approach Complex Yes Yes Strong

Table 1: Comparison of our approach with other neural network-based approaches. 2nd column represents whether the approach
can handle simple/complex questions. 3rd column represents whether the approach can handle the unseen entities or not. 4th
represents if the approach generates an intermediate logic form or not. 5th column represents the type of supervision required
to train the model; Strong means supervision using the manually annotated logical forms, whereas weak refers to supervision
by providing only the correct denotations.

comparison of our approach with the neural network based
previous approaches. To the best of our knowledge, our work
is the first of its kind of solving KGQA task which considers
multiple relations and used NMT method that handle out-
of-vocabulary situation by designing noise simulator with
masking strategy.

The KGQA Task
In KGQA, we are given a Knowledge Graph G comprising
of an entity set E , a relation set R, and a set of knowledge
facts F . The knowledge facts are expressed in the form of
triples; F = {〈es, r, eo〉} ⊆ E × R × E , where es ∈ E is
known as subject or head entity, eo ∈ E is known as object
or tail entity, and r is a relation which connects these two
entities. These entities (relations) form the nodes (edges) of
the KG. The task now is to identify the subset of entities
from E that constitute the answer of a given question Q in
the natural language form. The most common family of ap-
proaches for the KGQA task is semantic parsing where, the
given question Q is first translated into an SPARQL query S
which is then executed over the KG so as to get the answer
set. For developing a system to convert a question into the
corresponding SPARQL query, we are given a set of train-
ing data {Qi, Si, Ai}ni=1, where Qi is a question (in natural
language text), Si is the SPARQL query, and Ai is the an-
swer set obtained by executing Si on G. The proposed sys-
tem consists of two stage neural modules. In the Stage-I,
seq2seq module generates a SPARQL silhoutte with specific
entities. Relations predicted in this module are corrected by
the Stage-II, neural graph search module.

Stage-I: Seq2Seq Model
Sequence-to-sequence model have achieved state-of-the-art
performance in machine translation (Yin and Neubig 2017)
task. Encoder-decoder architecture of seq2seq models can
vary from RNN, CNN based to transformer models. Prior
research shows (Yin, Gromann, and Rudolph 2021) that
CNN based seq2seq model performs best among these for
translating natural language to SPARQL query. Our prelimi-
nary experimental results were consistent with this fact since

the CNN based model performed the best. Hence, we moved
ahead with the CNN based seq2seq model as our base model
for Stage I. Figure 2 shows the architecture of Stage-I. An
external entity/relation linker is used to detect surface form
mentions of the entities/relations in the question text and
linking the same to the underlying KG (DBpedia here). We
designed a noise simulator for adapting the data to be in nec-
essary format for seq2seq model.

Noise Simulator
Purpose of designing noise simulator is twofold: (i) To simu-
late varying levels of noise in the entity/relation linking pro-
cess (ii) To mask mentions and entities/relations in the ques-
tion text and SPARQL.
[Need for Masking] Masking helps in two ways: (1) han-
dling test entities/relations that are unseen during training
(2) reducing vocabulary size as KGs contain a large num-
ber of entities and relations. A simple neural seq2seq model
which translates natural language question into a SPARQL
query will struggle to output some of the entities/relations
during test time that are unseen during training time and
hence will not be available in the output vocabulary. In the
absence of linking and masking, our elementary experiments
shows the performance of seq2seq model bo be very low
with F1 score 16% which was expected. This outcome is

Dataset Statistics Val Test

LC-QuAD-1
Entities (dbr) 52.3 46.8
Properties (dbp) 97.2 98.3
Ontologies (dbo) 96.5 94.6

QALD-9
Entities (dbr) 27.1 25.9
Properties (dbp) 0.0 16.9
Ontologies (dbo) 47.8 38.3

Table 2: % of the entities and relations in val and test sets
that are available within train set’s gold SPARQLs.

obvious given the statistics in Table 2 which captures per-
centage of entities and relations (i.e. properties and ontology
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Figure 2: A detailed architecture of Stage-I.

in DBpedia) in validation and test sets that are available in
the training set. This suggest that entity and relation linker is
must for any neural model. Even if we use only neural mod-
els with perfect linkers, our SPARQL vocabulary dictionary
will be over growing which becomes difficult to manage. To
handle the situation of increasing SPARQL vocabulary dic-
tionary, we need masking/tagging techniques to mask enti-
ties and relations.
[Scenario ‘A’: Noise-Free Linking] In this scenario, we
simulate an entity and relation linker that has 100% F1. For
this, we pick all entities/relations from the gold SPARQL and
pretend as if they were the output of the linker (see Figure 7
in appendix). We begin with extracting all the entities and re-
lations from the gold SPARQL using their prefixes (dbr for
entities and dbp or dbo for relations). Next, we pick these
entities and relations, and align the same with surface-form
mention text in the given question. We observe that entities
match exactly with substrings in the questions most of the
time (e.g. Austin College in Figure 7 of the appendix). For
relations, an exact match is not always possible, e.g., a given
relation dbo:film is semantically best aligned to word
movies in the question. We use pre-trained fastext embed-
dings (Bojanowski et al. 2017) to represent words and rela-
tion and compute cosine similarity between each word in the
question and the given relation. The highest-scoring word
is considered as the aligned word. After identifying men-
tions of entities/relations, we mask them in question text and
the corresponding gold SPARQL query. This masked pair is
subsequently supplied to the seq2seq module as a training
example.
[Scenario ‘B’: Partly Noisy Linking] Purpose of this sce-
nario is to allow partial noise in the entity/relation linking
process. For this, we first feed the natural language question
into an external entity/relation linker. The linker returns two
things: (i) A set of surface form mentions for entities/rela-
tions in the question text, and (ii) Linked entities/relations
for these mentions. We take linker’s output and find inter-
section of these entities/relations with the entities/relations
present in the gold SPARQL. These common entities/rela-
tions are masked in the SPARQL query. Also, their corre-
sponding surface forms are masked in the question text. In
order to mask the surface forms in the question, we use exact
match and string overlap based Jaccard similarity. Figure 8
in appendix illustrates this scenario.
[Scenario ‘C’: Fully Noisy Linking] Goal here is to sim-
ulate a completely realistic scenario where we rely entirely

[Q] Name the mascot of Austin 
College?

[S] SELECT ?uri WHERE
{ dbr:Austin_College dbp:mascot ?uri }

Entity and Relation Linker Entity and Relation Extraction

dbr:Austin_College
dbp: name
dbo:mascot

dbr:Austin_College
dbp:mascot

Entity and Relation Masking

[Qm] <r0> the <r1> of <e0> ? [Sm] SELECT var_uri WHERE brack_open
<e0> <dbp_mascot> var_uri brack_close

Figure 3: An illustrative example for Scenario ‘C’.

on an external entity/relation linker. For this, we feed in-
put question to the entity/relation linker and get the sug-
gested surface form mentions and linked entities/relations.
We mask each of these suggested mentions using exact
match and partial match. Corresponding SPARQL query’s
entities and relations are also masked based on the sugges-
tions. This scenario is depicted in Figure 3.

Convolutional Seq2Seq Model
The pair of masked question and SPARQL query obtained
from the noise simulator, under any noise scenario, is fed
to a Convolutional Neural Network (CNN) based seq2seq
model (Gehring et al. 2017). As shown in Figure 4, this
model reads the entire masked question and then predicts
the corresponding masked SPARQL query token-by-token
in a left-to-right manner. This seq2seq model consists of the
following key components.
[Input Embedding Layer] Both encoder and decoder con-
sist of an embedding layer that maps each input token to a
point-wise summation of its word embedding and positional
embedding. The embedding of each word is initialized ran-
domly. In order to capture the sense of order, the model is
provisioned with the positional embedding.
[Convolution + Pooling Layers] The token embeddings ob-
tained from the previous layer are fed to the multiple convo-
lution and pooling layers. Each convolution layer consists
of a 1-dimensional convolution followed by Gated Linear
Units (GLU) (Dauphin et al. 2017). Residual connections
(He et al. 2016) are added from input to the output of each
convolution layer.
[Multi-Step Attention] Each decoder layer comprises a
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Figure 5: Architecture of neural graph search
module. (a) Relation Classifier. This module
predicts relation for a given entity (b) On-
tology Type Classifier. This module predicts
rdf:type ontology class.

convolution layer followed by a multi-step attention layer.
This multi-step attention is used to find the attention scores
from a particular decoder state to the source tokens. Atten-
tion between decoder state di (after ith layer) of the last
token in generated sequence so far and state zj of the jth
source element (after last encoder layer) is computed as:
aij = exp(di · zj)/

∑m
t=1 exp(di · zt) where, m is the num-

ber of source elements. The context vector, ci, is now com-
puted as, ci = [

∑m
j=1 a

i
j(zj+ej)]+di where, ej is the input

embedding for the source element j.
[Output Layer] Finally, output at a particular time
step is calculated over all the Z possible tokens,
P (zt+1|z1, . . . , zt, X) = softmax(WdL + b) where
P (zt+1|·) ∈ RZ , and W , b are trainable parameters. dL is
the decoder state of last target element at the last layer L. X
is the input sequence.
[Training Loss:] The model is trained using label smoothed
cross-entropy loss given by following expression (for single
training example) L(θ) = −(1/N) ·

∑N
n=1

∑Z
z=1 q(yn =

z|yn−1) · logPθ(yn = z|yn−1) where, N is the number of
words in output sequence and yn is the first n tokens of out-
put sequence. Pθ(yn = z|yn−1) is model’s probability to
output token z given yn−1 sequence generated so far. The
quantity q(yn = z|yn−1) is equal to γ if f(yn) = z and
(1− γ)/(Z − 1) o/w, where γ ∈ [0, 1], γ > 1/Z.

Stage-II: Neural Graph Search Module
While working with LC-QuAD-1 and QALD-9 datasets, our
error analysis on output of Stage-I revealed that entity link-
ing performance is reasonably good but the same is not true
for relation linking. Existing literature (Wu et al. 2020;
Li et al. 2020) also show enough evidences of achieving
high performance on the entity linking task, whereas rela-
tion linking turns out to be harder due to complexity of nat-
ural language. Because of this, we have most of the entities
within a SPARQL silhouette generated by Stage-I as cor-
rect but the relations are incorrect. Graph search module in
Stage-II takes a SPARQL silhouette as input and produces
an improved version of the same by replacing incorrect rela-
tions(See Figure 10 in appendix for an example).1 This is a
BERT-based module and its architecture is shown in Figure
5. This module works as follows.

1. One-by-one, we consider each triple 〈es, r, eo〉 in the
SPARQL silhouette and try correcting its relation r
through this module. Note, in triple 〈es, r, eo〉, at least
one of the entity must be an existential variable unless it
is an rdf:type relation, which we handle separately. We
consider this triple for the correction only if the other en-
tity is grounded to some KB entity and that grounded en-
tity could be in subject (or object) position.

2. For each such triple identified in the previous step, we

1It is easy to extend this idea and perform an iterative graph
searching when entity linker performance is also low.



prepare input in the following format: [CLS] Q [SEP]
[SUB (or OBJ)] [SEP] es (or eo). Here, Q is token se-
quence of input question text and [SUB (or OBJ)] is spe-
cial token depending on whether the grounded entity is
in subject (or object) position (refer Figure 5a). We also
pass grounded entity (es or eo) as the last element of this
input. [CLS] and [SEP] are special tokens from BERT
vocabulary.

3. We feed above input sequence of tokens into the BERT
layer of graph search module. The output is passed
through a linear layer followed by a softmax layer. This
softmax layer induces a probability score pr for each re-
lation r ∈ R in the given KG. While training, we use
the following loss function (given for single example):
` = (1 − α) ∗ (`c) + (α) ∗ (`gs). Here, `c denotes stan-
dard cross entropy loss between predicted probabilities
{pr}r∈R and the gold relation. The graph search loss
term `gs forces the predicted probabilities to be low for
all those relations which are invalid relations (in the given
KG) for corresponding input entity es (or eo) in the input
position (subject or object). For this, we assume a uni-
form probability distribution over all such valid relations
and compute its cross entropy loss with {pr}r∈R. α is a
hyperparameter.

4. During inference, at softmax layer, we restrict the outputs
only to those relations r ∈ R which are valid relation for
the input entity as being subject or object. For example,
if input grounded entity is es then we restrict prediction
to only those relations r for which 〈es, r, ?x〉 is a valid
triple for some grounding of ?x. In DBpedia same rela-
tion can exist in the form of ‘dbo’ and ‘dbp’ for a specific
entity. In such cases, we always pick the ‘dbo’ version.
Prediction is made based out of 61623 relations available
in DBpedia.

5. If a relation r in a given triple is rdf:type then
we handle them little differently. Note, in DBpedia,
a triple containing rdf:type relation looks like this
〈?x, rdf:type, dbo:type〉 where, ?x is a variable and
dbo:type is the DBpedia ontology class of the entity ?x.
For such triples, we maintain a separate version of the
neural graph module (refer Figure 5b). Input to this mod-
ule is [CLS] Q. We need to predict the corresponding on-
tology class dbo:type. DBpedia ontology contains 761
classes and hence, in this model, prediction is one of
these 761 classes. This module is trained with standard
cross-entropy loss. An example of the rdf:type classifi-
cation would be to predict dbo:Country for the question
‘Name the country with currency as Aureus?’.

Experiments
Datasets: We work with two different KGQA datasets
based on DBpedia: LC-QuAD-1 (Trivedi et al. 2017) and
QALD-9 (Ngomo 2018). LC-QuAD-1 contains 5000 exam-
ples and is based on the 04-2016 version of the DBpedia.
We split this dataset into 70% training, 10% validation, and
20% test sets (same as the leaderboard). QALD-9 is a mul-
tilingual dataset and is based on the 10-2016 version of the
DBpedia. Questions in this dataset vary in terms of reason-

ing nature (e.g. counting, temporal, superlative, compara-
tive, etc.) and therefore, in terms of the SPARQL aggrega-
tion functions as well. This dataset contains 408 training and
150 test examples. We split the training set into 90% training
and 10% validation sets.

Evaluation Metric: Performance is evaluated based on
the standard precision, recall, F1 score for KGQA systems.
For more detail please refer to .
Baseline: We compare our approach with three baselines:
WDAqua (Diefenbach et al. 2020), QAmp (Vakulenko et al.
2019) and gAnswer (Zou et al. 2014). WDAqua is a graph
based approach where authors first develop SPARQL query
based on four predefined patterns. In the second step they
rerank generated candidates. QAmp used text similarity and
graph structure based on an unsupervised message-passing
algorithm. gAnswer is graph data driven approach and gen-
erate query graph to represent user intention.

Experimental Setup:
1) Stage-I: We use Falcon (Sakor, Singh, and Vidal 2019)
for entity/relation linking and experiment with all 3 noise
scenarios. We use fairseq2 library for implementation of
CNN based seq2seq model (Gehring et al. 2017) compris-
ing of 15 layers3. and used Nesterov Accelerated Gradient
(NAG) optimizer. We experimented with different values of
hyperparameters and report results for the values yielding
the best performance on the validation set. Details about tun-
ing ranges and optimal values of all these hyperparameters
are given in Table 6 and Figure 9 of appendix. We used 2
Tesla v100 GPUs for training seq2seq model.
2) Stage-II: For neural graph search module, we work with
a pre-trained BERT-base uncased model. It consists of 12
transformer layers, 12 self-attention heads, and 768 hidden
dimension. We used 1 Tesla v100 GPU for training.

Results
Table 3 compares the performance of our model with base-
line models for the LC-QuAD-1 dataset. The first two rows
are top entries in the LC-QuAD-1 leaderboard 4. The next set
of rows show result of our approach. Our results of stage-II
are under realistic scenario or full noise setting for entity/re-
lation linking.

Table 4 captures the performance of our approach on
QALD-9 dataset. The first two rows in Table 4 correspond to
a baseline model and a top entry in the QALD-9 challenge
(Ngomo 2018). The next set of rows show performance of
our model.

Insights: From Tables 3 and 4, one can observe that per-
formance of Stage-I under No Noise linking becomes an up-
per bound on the performance of seq2seq model. This means
seq2seq model can achieve upto 83.08% F1 for LC-QuAD-1
and 55.3% Macro F1 QALD for QALD-9 dataset if the enti-
ty/relation linker were to be 100% correct. The gap between
the performance of No Noise linking (upper bound) and Full
Noise linking (lower bound) illustrates how the performance

2https://github.com/pytorch/fairseq
3We will release our code after the review period.
4http://lc-quad.sda.tech/lcquad1.0.html



Model
Type

Model
Name

AM Prec. Recall F1

Baseline WDAqua - 22.00 38.00 28.00
QAmp - 25.00 50.00 33.33

Stage-I
(Ours)

No Noise 82.88 83.11 83.04 83.08
Part Noise 41.34 42.40 42.26 42.33
Full Noise 24.92 25.54 25.64 25.59

Stage-II
(Ours)

w/o type 30.63 32.17 32.20 32.18
w/ type 34.83 37.03 37.06 37.05

Table 3: Test set performance on LC-QuAD-1 dataset.

Model
Type

Model
Name AM Mac.

Prec.
Mac.
Rec.

Mac.
F1

Mac.
F1

QALD

Baseline
WDAqua - 26.1 26.7 25.0 28.9

gAnswer - 29.3 32.7 29.8 43.0

Stage-I
(Ours)

No Noise 29.9 80.4 42.1 40.9 55.3

Part Noise 13.1 63.9 28.7 22.4 39.6

Full Noise 11.1 82.6 23.0 20.6 36.0

Stage-II
(Ours)

w/o type 15.3 59.4 26.1 23.3 36.2

w/ type 15.3 59.4 26.1 23.3 36.2

Table 4: Test set performance on QALD-9 dataset. Here
Mac. means Macro and Rec. means Recall.

of entity/relation linker impacts the overall performance of
KGQA. Further, the performance of Stage-II demonstrates
how one can improve the lower bound numbers by adopt-
ing our proposed graph search module. For LC-QuAD-1,
we gain 11.46% in F1 in Stage-II whereas, for QALD-9 this
gain is only 0.2% in Macro F1 QALD. For QALD-9 dataset,
the numbers in last two rows are same because we have
only two questions with rdf:type and their classes belong to
YAGO ontology so our model does not predict them. One
may also observe that the overall performance after Stage-
II improves the respective baseline in case of LC-QuAD-1
dataset but QALD-9 dataset it struggles.
Error Analysis: Reason for QALD-9 having low upper
bound is its training set size being too small (367). Further
analysis reveals that QALD-9 dataset has large variety of
SPARQL keywords from a small train set. Figure 6 captures
the distribution of SPARQL keywords in QALD-9 dataset
(excluding SELECT and DISTINCT keywords as they ap-
pear in almost all the questions). From this figure, its clear
that number of questions varies from 3 to 37 for each cate-
gory of SPARQL keywords which is too less for any neural
model to learn from. We also trained our model with com-
bining LC-QuAD-1 and QALD-9 dataset in both the stages.
But it did not improve the performance of QALD-9 dataset
because the nature of the SPARQL is very different in both
the datasets. Because of these reasons, unlike LC-QuAD-1,
the generated SPARQL silhouette in QALD-9 dataset has er-
rors other than incorrect entity/relation. Therefore, Stage-II
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Figure 6: Frequency of SPARQL keywords in QALD-9.

Dataset E/R Precision (%) Recall (%)

LC-QuAD-1 E 79.19 85.60
R 43.74 44.99

QALD-9 E 78.00 98.55
R 41.05 37.17

Table 5: Falcon performance on entity (E) and relation (R)
linking on test sets.

offers much smaller gain for QALD-9 relative to LC-QuAD-
1. Lastly, Table 5 which demonstrates the performance of
Falcon linker on test set for both the datasets rules out the
possibility of systematic data bias in terms of entity/relation
linking. Though entity linking performance is reasonable for
both the datasets, relation linking is consistently substandard
for both the datasets. The poor performance of Falcon on re-
lation linking also justifies a substantial gap between upper
and lower bounds for both datasets.

Anecdotal Examples: Table 7 of appendix shows ex-
amples from LC-QuAD-1 test set where our neural graph
search module struggles to disambiguate between two very
similar looking relations that exist in DBpedia for an en-
tity. Table 8 captures examples from QALD-9 test set where
gold SPARQL have an intrinsic structure because the way in
which corresponding facts are being captured within DBpe-
dia. This makes it difficult for any KB agnostic techniques
(such as seq2seq) to output such structures. Finally, Table 9
shows examples from QALD-9 test set where gold SPARQL
comprises infrequent SPARQL keywords making it hard for
seq2seq model to learn about them.

Conclusions
We propose a simple sequential two-stage purely neural ap-
proach to solve the KGQA task. We demonstrate that, if en-
tity/relation linking tasks are done perfectly, then Stage-I,
vanilla seq2seq neural module can produce impressive per-
formance on KGQA task. However, in noisy realistic scenar-
ios, it performs differently. We have proposed a novel Stage-
II, a neural graph search module to overcome noise intro-
duced by entity/relation modules. Our approach improves
state-of-art performance for LC-QuAD-1 dataset. Though,
for QALD-9 dataset due to the small training size and in-



trinsic nature of facts in DBpedia, our model struggles to
improve state-of-art, we believe, this research demonstrates
great potential of pure neural approaches to solve the KGQA
task and opens up a new research direction.
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Appendix
Noise Simulator

[Q] Name the mascot of Austin College?
[S] SELECT ?uri WHERE

{ dbr:Austin_College dbp:mascot ?uri }
Original Input

Masked Input

Embedding Based 
Surface Alignment

[Q] Name the <r0> of <e0>
[S] SELECT ?uri WHERE

{ <e0> <r0> ?uri }

[Qm] name the <r0> of <e0> ?
[Sm ] SELECT var_uri WHERE brack_open

<e0> <r0> var_uri brack_close

Figure 7: An illustrative example for Scenario ‘A’: Noise-
Free Linking. To align the surface forms of the entities/re-
lations mentions in the given question text, we used word
embedding as it offers higher alignment F1. We used Falcon
as a linker.

[Q] Name the mascot of 
Austin College?

[S] SELECT ?uri WHERE 
{ dbr:Austin_College dbp:mascot ?uri }

Entity and Relation Linker Entity and Relation Extraction

dbr:Austin_College
dbp: name
dbo:mascot

dbr:Austin_College
dbp:mascot

Intersection

dbr:Austin_College

Entity and Relation Masking

[Qm] name the mascot of <e0> ? [Sm] SELECT var_uri WHERE brack_open <e0>  
<dbp_mascot> var_uri brack_close

Figure 8: An illustrative example for Scenario ‘B’: Partly
Noisy Linking. To align the surface forms of the entities/re-
lations mentions in the given question text, we used exact
match as well as string overlap based Jaccard similarity with
a threshold of 0.7. We used Falcon as a linker.

Evaluation Metric
1) Precision, Recall, and F1 for Single Question: For single
question Q, we compute precision P , recall R, and F1

using the set of gold answer entities Sg and predicted
answer entities Sp. While computing these metrics, we
handle boundary cases as follows. If Sg = Sp = ∅ then
we take P = R = F1 = 1. If only Sg = ∅ then we take
R = F1 = 0.
2) Macro Precision, Macro Recall, Macro F1, and Macro
F1 QALD: These metrics are defined for the whole dataset.
For this, we first compute P , R, and F1 at individual
question level and average of these numbers across entire
dataset gives us the macro version of these metrics. For
F1, if use the boundary condition of having P = 1 when
Sp = ∅, Sg 6= ∅ then such a Macro F1 is called as Macro F1

QALD as per Ngomo (2018). But if we instead use P = 0
then it is called Macro F1.
3) Precision, Recall, and F1 for the whole set: For whole
set, P and R are same as macro version of these metrics.
F1, however, is computed by taking Harmonic mean of
these P and R. The reported metrics for the LC-QuAD-1
dataset were computed in this manner.
4) Answer Match (AM): For a question Q, when executing
the predicted SPARQL, if we have Sp = Sg then we say
AM=1 otherwise AM=0.

Anecdotal Examples
Table 7 shows examples from LC-QuAD-1 test set where
our neural graph search module is unable to disambiguate
between two very similar looking relations that exist in DB-
pedia for an entity.

Table 8 captures examples from QALD-9 test set where
gold SPARQL have a peculiar structure just because the way
in which corresponding facts are being captured within in
the DBpedia and that makes it almost impossible for any
KB agnostic techniques (such as seq2seq) to output such
structures. The first two rows of Table 7 shows examples
where gold SPARQL queries of two very similar questions
is quite different. Even though Falcon picks correct enti-
ties, our SPARQL silhouette struggle to yield two differ-
ently structured SPARQL queries for two very similar look-
ing natural language questions. Third row of the table con-
tains some entities/relations containing dct, dbc, etc. Falcon
linker does not tag these kinds of entity/relation, so we miss
out correctly predicting the sketch in Stage-I and so in Stage-
II as well.

Table 9 shows various examples from QALD-9 test set
where we miss predicting the correct sketch of SPARQL be-
cause of very few number of such examples present in the
training set. These are examples where SPARQL contains
infrequent keywords such as GROUP BY, UNION, FILTER
etc.



Hyperparameter Tuning Range Best
Value

η for Stage-I [1× 10−1, 2× 10−1, 2.5× 10−1, 5.0× 10−1] 0.25

η for Stage-II [10−4, 10−5, 10−6] 10−5

b for both stages 8 8

α for LC-QuAD-1 [1× 10−1, 4× 10−1, 6× 10−1, 7× 10−1] 4× 10−1

α for QALD-9 [1× 10−1, 4× 10−1, 6× 10−1, 7× 10−1] 6× 10−1

Table 6: Tuning range and the final chosen best values of various hyperparameters. η means learning rate and b means batch
size.
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SELECT DISTINCT ?uri WHERE
{ 
dbr:Marine_Corps_Air_Station_Kaneohe_Bay
dbo:tenant ?uri . 
dbr:New_Sanno_Hotel dbo:architect ?uri

}

Which architect of 
Marine Corps Air 

Station Kaneohe Bay 
was also tenant of 
New Sanno hotel? 

Input Question

SPARQL Silhouette 

Stage-I
Seq2Seq Model

Stage-II
Neural Graph 

Search Module

Which architect of Marine Corps Air 
Station Kaneohe Bay was also tenant 
of New Sanno hotel [SEP] SUB [SEP] 
Marine_Corps_Air_Station_Kaneohe_Bay

Input for Stage-II for the first triple in SPARQL Silhouette

dbo: architect

Corrected Relation

Figure 10: An example of input to the neural graph search module.



Question Gold
Relation

Predicted
Relation

Where was the person born who died in Bryn Mawr
Hospital? placeOfDeath deathPlace

Name the rivers who originate from Essex? mouthPlace sourceRegion

Name the artist who made Dream Dancing and is of-
ten associated with Joe Pass. associatedBand associatedMusicalArtist

What is used as money for French Southern and
Antarctic Lands is also the product of the Karafarin
Bank ?

product products

Table 7: Anecdotal examples from LC-QuAD-1 test set where graph search module is unable to disambiguate between two
closely related relations (gold and predicted) that are available for the highlighted entities in DBpedia.

Question Gold SPARQL SPARQL silhouette

Who was called Scar-
face?

SELECT ?uri WHERE
{
?uri dbo:alias ?alias
FILTER contains(lcase(?alias),
”scarface”)
}

SELECT DISTINCT ?uri WHERE
{
dbr:Scarface dbo:alias ?uri
}

Who was called
Rodzilla?

SELECT DISTINCT ?uri WHERE
{
?uri <http://xmlns.com/foaf/0.1/nick>
“Rodzilla”@en
}

SELECT DISTINCT ?uri WHERE
{
dbr:Rodzilla dbo:alias ?uri
}

Give me all gangsters
from the prohibition
era.

SELECT DISTINCT ?uri WHERE
{
?uri dbo:occupation dbr:Gangster ;
dct:subject dbc:Prohibition-eragangsters
}

SELECT DISTINCT ?uri WHERE
{
?uri a dbo:Film ;
dbo:time dbr:Gangsters of the Frontier
}

Table 8: Anecdotal examples from QALD-9 test set where gold SPARQL have a peculiar structure just because the specific
way in which the corresponding facts are present in the DBpedia.



Question Gold SPARQL SPARQL silhouette

Which countries have
more than ten volca-
noes?

SELECT DISTINCT ?uri WHERE
{
?x a dbo:volcano ;
dbo:locatedInArea ?uri .
?uri a dbo:Country
} GROUP BY ?uri HAVING
( COUNT(?x) >10 )

SELECT DISTINCT ?uri WHERE
{
?uri a dbo:Country ;
dbo:location
dbr:Countries of the United Kingdom
}

Give me a list of all
critically endangered
birds.

SELECT DISTINCT ?uri ?p WHERE
{
?uri rdf:type dbo:Bird
{ ?uri dbo:conservationStatus ”CR” }
UNION { ?uri dct:subject
dbc:Critically endangered animals }
}

SELECT DISTINCT ?uri WHERE
{
?uri a dbo:Film ;
dbo:principal
dbr:Endangered Species (H.A.W.K. album
}

Which daughters of
British earls died at the
same place they were
born at?

SELECT DISTINCT ?uri WHERE
{
?uri rdf:type yago:WikicatDaughtersOfBritishEarls
;
dbo:birthPlace ?x ;
dbo:deathPlace ?y FILTER ( ?x = ?y )
}

SELECT DISTINCT ?uri WHERE
{
?uri rdf:type
yago:WikicatStatesOfTheUnitedStates ;
dbo:place dbr:Daughters of the Dust
}

Table 9: Anecdotal examples from QALD-9 test set where gold SPARQL comprises infrequent SPARQL keywords. The corre-
sponding SPARQL Silhouette predicted by our Stage-I is also shown for these examples.
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