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LEARNING LOW-DEGREE FUNCTIONS FROM
A LOGARITHMIC NUMBER OF RANDOM QUERIES

ALEXANDROS ESKENAZIS AND PAATA IVANISVILI

AssTrACT. We prove that every bounded function f : {-1,1} — [-1,1] of degree at most d can

. . 32\ fload .
be learned with Ly-accuracy ¢ and confidence 1-6 from log(%) g~d-1c4”"Vlogd random queries,
where C > 1 is a universal finite constant.
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1. INTRODUCTION

Every function f : {-1,1}" — R admits a unique Fourier-Walsh expansion of the form

Vxel-L1Y  fx)= ) f(Sws(x), (1)
Scii,...,n}
where wg(x) = [T;cq x; and the Fourier coefficients f(S) are given by
A 1
VSCilon),  f(=5 ) f@ws) (2)
yel-L1)

We say that f has degree at most d € {1,...,n} if f(S) = 0 for every subset S with |S|>d.

1.1. Learning functions on the hypercube. Let C be a class of functions f : {-1,1}* — R on
the n-dimensional discrete hypercube. The problem of learning the class € can be described as
follows: given a source of examples (x, f (x)), where x € {-1,1}", for an unknown function f € C,
compute a hypothesis function h : {-1,1}" — R which is a good approximation of f up to a given
error in some prescribed metric. In this paper we will be interested in the random query model
with L,-error, in which we are given N independent examples (x, f(x)), each chosen uniformly
at random from the discrete hypercube {-1,1}", and we want to efficiently construct a (ran-
dom) function k : {-1,1}" — R such that ||h—f||%2 < & with probability at least 1 -0, where €, €
(0,1) are given accuracy and confidence parameters. The goal is to construct a randomized
algorithm which produces the hypothesis function h from a minimal number N of examples.
The above very general problem has been studied for decades in computational learning
theory and many results are known', primarily for various classes € of structured Boolean
functions f : {-1,1}" — {-1,1}. Already since the late 1980s, researchers used the Fourier—
Walsh expansion (1) to design such learning algorithms (see the survey [14]). Perhaps the most
classical of these is the Low-Degree Algorithm of Linial, Mansour and Nisan [12] who showed
that for the class Gi of all bounded functions f : {-1,1}" — [-1,1] of degree at most d there ex-
ists an algorithm which produces an e-approximation of f with probability at least 1 — 9 using

N = iid log(z—gd) samples. In this generality, the O, s 4(n¢ logn) estimate of [12] was the state of
the art until the recent work [11] of Iyer, Rao, Reis, Rothvoss and Yehudayoff who employed
analytic techniques to derive new bounds on the ¢;-size of the Fourier spectrum of bounded
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functions (see also Section 3) and used these estimates to show that N = Og,é,d(nd_l logn) ex-
amples suffice to learn Gg. The goal of the present paper is to further improve this result and
show that in fact N = O, 5 4(log n) samples suffice for this purpose.

Theorem 1. Fix ¢,6 € (0,1), n€ N, d € {1,...,n} and a bounded function f :{-1,1}* — [-1,1] of
degree at most d. If N € N satisfies

Cd*?\/logd d
o R B0 0, 1)

gd+l ’ S

3
: 3)
where C € (0,00) is a large numerical constant, then N uniformly random independent queries of
pairs (x, f(x)), where x € {—1,1}", suffice for the construction of a random function h: {-1,1}" - R
satisfying the condition ||h —flli2 < & with probability at least 1 — 0.

The proof of Theorem 1 relies on some important approximation theoretic estimates going
back to the 1930s which we shall now describe (see also [9]). To the best of our knowledge,
these tools had not yet been exploited in the computational learning theory literature.

1.2. The Fourier growth of Walsh polynomials in ¢ 2d . Estimates for the growth of coeffi-
cients of polynomials as a function of their degree and their maximum on compact sets go
back to the early days of approximation theory (see [5]). A seminal result of this nature is
Littlewood’s celebrated %—inequality [13] for bilinear forms which was later generalized by
Bohnenblust and Hille [4] for multilinear forms on the torus T" or the unit square [-1,1]". By
means of polarization, one can use this multilinear estimate to derive an inequality for poly-
nomials which reads as follows?. For every K € {R,C} and d € N, there exists Bg< € (0,00) such
that for every n € IN and every coefficients c, € K, where a € (N U {0})" with |a| < d, we have

dil
2d
2d
[Dcaw] < man{ | T e
lal<d

|a|<d

: x € K" with [|x]lg (k) < 1}. (4)

Moreover is the smallest exponent for which the optimal constant in (4) is independent

’ d+1
of the number of variables 7 of the polynomial. The exact asymptotics of the constants B? and

Biic remain unknown, however it is known that there is a significant gap between B? and Bg,

namely that limsupd_ﬂx)(B?)l/d =1+ V2 whereas Bgl: < cVdnd for 4 finite constant C > 1 (see
[7,1,9, 6, 8] for these and other important advances of the last decade). Restricting inequality
(4) to real multilinear polynomials, convexity shows that the maximum on the right-hand side
is attained at a point x € {-1,1}", which, in view of (1), makes (4) an estimate for the Fourier—

Walsh growth of functions on the discrete hypercube. We shall denote by B;ﬂ} the corre-
sponding optimal constant (first explicitly investigated by Blei in [3, p. 175]), that is, the least
constant such that for every n € IN and every function f : {-1,1}" — IR of degree at most d,

i1

[ Y |f<s>|ffl] <B M Ifll,. (5)

Sc{1,...,n}
The best known quantitative result in this setting is due to Defant, Mastyto and Pérez [8] who
showed that Bilil} < exp(x+/dlogd) for a universal constant x € (0,c0). The main contribution

of this work is the following theorem relating the growth of the constant Bilil}

Theorem 2. Fix ¢,0 € (0,1), n€ N, d € {1,...,n} and a bounded function f :{-1,1}" — [-1,1] of
degree at most d. If N € IN satisfies

and learning.

e*d? Lte1)oay (7
N> S8 log 5 ), (6)

2For a = (ag,...,a,) € (NU{0})", we use the standard notations |a| = a] +--- + @, and x% = x‘fl ---xﬁ”
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then given N uniformly random independent queries of pairs (x, f(x)), where x € {-1,1}", one can
construct a random function h: {-1,1}" — IR satisfying ||h —f||%2 < € with probability at least 1 — 0.

In Section 2 we will prove Theorem 2 and use it to derive Theorem 1. In Section 3 we will
present some additional remarks on Boolean analysis and learning, in particular showing that
the dependence on n in Theorem 1 is optimal for ¢ < % Moreover, we shall improve the recent
bounds of [11] on the £;-Fourier growth of bounded functions of low degree.

Acknowledgements. We are very grateful to Assaf Naor for constructive feedback and to Lau-
ritz Streck for useful discussions which led to Proposition 4.

2. Proors
Proof of Theorem 2. Fix a parameter b € (0,00) and denote by

N, & [;2 1og[§ i(:)ﬂ 7)

k=0
Let Xy,..., Xy, be independent random vectors, each uniformly distributed on {~1,1}". For a
subset S C {1,...,n} with |S| < d consider the empirical Walsh coefficient of f, given by

N,
1
A ;f(xj)ws(xj)- (8)

As ag is a sum of bounded i.i.d. random variables and E[ag] = f(S), the Chernoff bound gives
VSCil,.nh  Pllas-f(S)I> b} < 2exp(-Nyb?/2). (9)

Therefore, using the union bound and taking into account that f has degree at most d, we get

R 7)
IP{las—f(S)lsb, for every S C{1,...,n} with |S|<d >1- ZZ( )exp Nbb2/2)>1 0. (10)

Gy

Fix an additional parameter a € (b, ) and consider the random collection of sets given by

Se E{S C{1,.,m): las| > a) (11)
Observe that if the event G, of equation (10) holds, then
VSseS,  If(Sl<las—f(S)+lasl<a+b (12)
and ) )
VSes,  If(S)zlasl-las—f(S)=a-b. (13)
Finally, consider the random function h, : {-1,1}" — R given by
Vxe L1 a0 Y asws(x) (14

Ses§,
Combining (13) with inequality (5), we deduce that

R (5)
8.1'S (- by Y Ifs) |71 < (a—b) @1 Y f(S)F < (a—b)y #1(BENE.  (15)
Ses§, Sc{l,...,n}
Therefore, on the event G, we have

e~ 112, = Z lap($)=F(9) =) las—f(S)P+ Y If(S)P
Ses,

sc(1,..,n} Ses,

24 (5
s+ s 0 Y OIS (B (- 0y E0  ak b)).
Se8,



Choosing a = b(1 + Vd + 1), we deduce that

2, 2 L
Wy 1 sy - flz, < HNETpaT (d+1)777 + (2+ Vd + 1)71), (17)
Next, we need the technical 1nequahty

(d+1)T71 +(2+Vd+ )71 < (eX(d + 1))@ forall d>1. (18)

4

Rearranging the terms, it suffices to show that (2 + Vd + 1)ﬁ <(d+ l)ﬁ(em - dl?), which is

2
. T A
equivalent to (\/diﬁ + 1)‘”1 <ed — ﬁ. We have

2
2 a+1 i(*) 3 4 1
1 2+1)7' <1 <edl — , 19
(\/d+1+ ) <(V2+1) I T I (19)

where inequality (*) holds because the left hand side is convex in the variable A def ﬁ whereas
the right hand side is linear and since (*) holds at the endpoints A = 0, 1.

Combining (17) and (18) we see that [l |, ya77,,~fI2, < holds for b? < e~3d ! e4+1 (Bl )24,
Plugging this choice of b in (7) shows that given N random queries, where

eéd(B{il})Zd 2 d
N=[—€d‘il log 5;(2) ' 20

the random function hb(1+\/ﬁ),b satisfies ||hb(1+\/ﬁ),b - f||%2 < ¢ with probability at least 1 — 6
and the conclusion of the theorem follows from elementary estimates, such as

5 (1)<3 k-2 Gl () -

Theorem 1 is a straightforward consequence of Theorem 2.

Proof of Theorem 1. Theorem 2 combined with the bound Bfiﬂ} < exp(k+/dlogd) of [8] imply

exp(C+/dlogd)
n

the conclusion of Theorem 1 for ¢ > , where C € (0, 0) is a large universal constant.

exp(C+/dlogd
The casee<u

follows from the Low-Degree Algorithm of [12]. O

3. CONCLUDING REMARKS

We conclude with a few additional remarks on the spectrum of bounded functions defined
on the hypercube and corresponding learning algorithms. For a function f : {-1,1}" - R, its
Rademacher projection on level € € {1,...,n} is defined as

Vxel-1,1}",  Rad/f(x) Z f Jws (x (21)
|S|€

1. The first main theorem of [11] asserts that if f :{-1,1}* - Ris a function of degree d, then

| N Afllz, if (d— €)1seven

(22)
1 '||f||L, if (d =) is odd

Veell,... d), ||Radef||L

where Ty(t) is the d-th Chebyshev polynomial of the first kind, that is, the unique real poly-

nomial of degree d such that cos(d0) = T;(cos0) for every 6 € IR. Moreover, Iyer, Rao, Reis,

Rothvoss and Yehudayoff observed in [11, Proposition 2] that this estimate is asymptotically

sharp. We present a simple proof of their inequality (22) (see also [10] for related arguments).
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Proof of (22). For any f : {-1,1}" — R consider its harmonic extension on [-1,1]",

V(o xn) €111 Flxn...,xn) Z f I_[ . (23)
jes
By convexity ||f||Lw —1,11) = lf llz=({=1,1y»)- In particular, the restriction off on the ray f(xy,...,x,),
te[-1,1],1i.e.
VieR,  h() % Y fSmws(! (24)

satisfies max;e[1,1]lhx(#)] < [|fllz, for all (xy,...,x,) € {~1,1}"". Therefore, since degh, < d, a
classical inequality of Markov (see e.g. [5, p. 248]) gives

]
ol _ B I, if (d-£) is even

[Radf (x)| = < fv
' T O £l if (d—€) is odd

(25)

and (22) follows by taking a maximum over all xe{-1,1}" O

In particular, as observed in [11], inequality (22) implies that if f has degree at most d then

4
Veeld),  [Radef], <% 1Al (26)

2. The second main theorem of [11] asserts that if f : {-1,1}" — [-1,1] is a bounded function
of degree at most d, then for every € € {1,...,d} we have

Y Radf(S)l= Y If(S)<nTal), (27)
Sc{1,...,n} Sc{1,...,n}
|S|=¢

The Bohnenblust-Hille-type inequality of [8] implies the following improved bound.

Corollary 3. Let n € N and d € {1,...,n}. Then, every bounded function f : {-1,1}" — [-1,1] of
degree at most d satisfies

=1

. 20 12 _
Vee(l,...,d), Z |f(S)|s(n) e Vlogl & <n'Tdlee, (28)
Scil,...,n} ¢ ¢
|S|=¢

for some universal constant c € (0, 1).

Proof. Combining Holder’s inequality with the estimate of [8] and (26) we get

{+1

) |f(5)|s(2)”( ) IRadef(s M]N
Sc

Scil,.., <
st e (29)
22;[1 (26) 5771 dt
< (Z) exp(icy/Clog€)[Rad, f[|, < (Z) exp(icy/Clog ) 7.
¢
The last inequality of (28) follows from (22) and the elementary bound () < (%) . O

We refer to the recent work [2] for a systematic study of inequalities relating the Fourier
growth with various well-studied properties of Boolean functions.

3. It is straightforward to observe (see also [15, Proposition 3.31]) that if f : {-1,1}" — {-1,1}
is a Boolean function and h: {-1,1}" — R is an arbitrary function, then

|[sign(h) - f||i2 = 4P{sign(h) = f} <4P{h - f| > 1} < 4l|lh - fIIf, (30)
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where we define sign(0) as 1 arbitrarily. Therefore, applying Theorem 1 to a Boolean function,
the above algorithm produces a Boolean function h = sign(h) which is a 4¢-approximation of f.

4. In Theorem 1 we showed that bounded functions f : {-1,1}" — [-1,1] of degree at most d

can be learned with accuracy at most € and confidence at least 1 — 6 from N = Ogld(log(n/é))
random queries. We will now show that this estimate is sharp for small enough values of 6.

Proposition 4. Suppose that bounded linear functions € : {-1,1}" — [-1,1] can be learned with
accuracy at most % and confidence at least 1 — zl—nfrom N random queries. Then N > log, n.

Proof. By the assumption, for any input (Xy,v1),...,(Xn,vN) € {—1,1}" x [-1,1], there exists a
function h(x, y)...(xypy) © =1, 1}" = R such that if Xj,..., Xy are chosen independently and
uniformly from {-1,1}" and there exists a linear function ¢ : {~1,1}" — [-1,1] such that y; =

{(X;) for every j € {1,...,N}, then IP(Qy) > 1 - Zl—n, where (), is the event

def 2 1
Q= {IE(h<x1,€<x1)>,...,<XN,€<XN>>—5) < §}~ (31)

Let X; = (X;(1),...,Xj(n)) for j €{1,..., N} and consider the event
W={X;(1)=X;(2), ¥ je1,...,N}}. (32)

By the independence of the samples, we have P(W) = ZLN Therefore, if N < log,n and we
consider the linear functions r; : {-1,1}" — {-1,1} given by r;(x) = x;, then
1 1
IP(err\Q,Z)>1—;Zl—z—Nzl—lP(W), (33)
which implies that Q, N Q, N'W = (. Choosing Xj,..., Xy from this event and denoting by
h=hix, X, (1) (X, Xn (1) = PXL X (2))n (X, Xy (2)), WE deduce from the triangle inequality that

2 2 2 1)
2:1E(7’1—1"2) < 21E(h—r1) +21E(h—1"2) < 2 (34)
which is clearly a contradiction. Therefore N > log, . O
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