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Abstract

In this paper, we develop a new classification method based on nearest centroid, and it is called the
nearest disjoint centroid classifier. Our method differs from the nearest centroid classifier in the following
two aspects: (1) the centroids are defined based on disjoint subsets of features instead of all the features,
and (2) the distance is induced by the dimensionality-normalized norm instead of the Euclidean norm.
We provide a few theoretical results regarding our method. In addition, we propose a simple algorithm
based on adapted k-means clustering that can find the disjoint subsets of features used in our method,
and extend the algorithm to perform feature selection. We evaluate and compare the performance of our
method to other classification methods on both simulated data and real-world gene expression datasets.
The results demonstrate that our method is able to outperform other competing classifiers by having
smaller misclassification rates and/or using fewer features in various settings and situations.

1 Introduction

In general, classification is the task of predicting the category that an observation belongs to. Many ap-
plications in real life are dealing with classification problems, such as determining the category of images
[Russakovsky et al., 2015], deciding the topic of documents [Lewis et al., 2004], and diagnosing the cancer
type of tissues [Edgar et al., 2002]. In order to perform classification, people often build models that can
automatically make predictions by identifying patterns in a dataset that includes observations and their asso-
ciated class labels. Over the years, researchers have developed many different classification methods, ranging
from simpler ones such as logistic regression [Hastie et al., 2009], k-nearest neighbors [Cover and Hart, 1967],
Naive Bayes [Hand and Yu, 2001], and decision trees [Breiman et al., 1984], to more complicated ones such
as support vector machines [Cortes and Vapnik, 1995], random forest [Breiman, 2001], gradient boosting
machine [Friedman, 2001], and neural networks [Krizhevsky et al., 2012].

Among numerous existing classification methods, the nearest centroid classifier is one of the simplest
classification method. It computes the centroid of each class as the average of the training samples that
belong to that class, and classifies a test sample to the class with the nearest centroid. Intuitively, the
nearest centroid classifier can be understood as creating one prototype to represent each class, and making
predictions by selecting the class with the prototype that is most similar to the test sample. The theoretical
simplicity makes it easy to understand and interpret, and the computational efficiency makes it appealing in
practice. Therefore, it has been used in many different fields of application, including gene expression anal-
ysis [Tibshirani et al., 2002, Levner, 2005, Dabney, 2005, Dabney and Storey, 2007] and text classification
[Han and Karypis, 2000, Lertnattee and Theeramunkong, 2004, Tan, 2008].

The nearest shrunken centroid classifier, a simple modification of the nearest centroid classifier, was
proposed by Tibshirani et al. [2002]. It works by shrinking the class centroids toward the overall centroids
after standardizing each feature by the pooled within-class standard deviation of that feature. Importantly,
the shrinkage process can be considered as performing feature selection, which is desirable in applications
with high-dimensional features. For example, when predicting the cancer type using a gene expression
dataset, the nearest shrunken centroid classifier would select a small subset of the genes to make predictions,
whereas the nearest centroid classifier would use all the genes. This characteristic makes the nearest shrunken
centroid classifier a popular method in gene expression analysis [Tibshirani et al., 2003, Sørlie et al., 2003,
Volinia et al., 2006, Parker et al., 2009, Curtis et al., 2012].

In this paper, we develop a new classification method based on nearest centroid, and it is called the
nearest disjoint centroid classifier. The main idea is to define the centroids based on disjoint subsets of
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features instead of all the features. More specifically, we partition the features into k groups, each one
corresponding to one of the k classes, and the centroid for each class is defined using the corresponding
group of features. In order to find the k disjoint subsets of features, we propose a simple algorithm based
on adapted k-means clustering. A similar formulation was proposed in Fraiman and Li [2020], in which the
authors used an alternating k-means algorithm with disjoint centroids to perform biclustering. However,
our method applies to supervised classification problems rather than unsupervised biclustering problems.
Importantly, this means that we assume there are k disjoint subsets of features with discriminative power,
which is generally true for high-dimensional data where the number of features p is much larger than the
number of classes k. In addition, our method is able to perform feature selection by adding a special cluster
that represents a “global” baseline, and features assigned to the special cluster are not used in making
predictions.

The rest of this paper is organized as follows. In Section 2, we formulate the problem and give a high-level
description of our nearest disjoint centroid classifier. In Section 3, we present and prove a few theoretical
results regarding our method. In Section 4, we provide a rigorous proof of the main consistency result. In
Section 5, we propose a simple algorithm based on adapted k-means clustering that finds the disjoint subsets
of features used in our method. In Section 6, we extend our method to perform feature selection by assigning
features to a special cluster that is not used for classification. In Section 7, we evaluate and compare the
performance of our nearest disjoint centroid classifier on simulated data to other classification methods. In
Section 8, we apply our method to three cancer gene expression datasets, and show that our method is
able to outperform other competing classifiers by having smaller misclassification rates and/or using fewer
features. In Section 9, we conclude with a discussion.

2 Problem Formulation

Suppose we are given n training samples and their associated class labels (X1, Y1), . . . , (Xn, Yn) where Xi ∈
R

p and Yi ∈ {1, . . . , k} for 1 ≤ i ≤ n. For 1 ≤ j ≤ k, let Sj denote the set of indices of training samples that
belong to class j. Throughout this paper, we assume k ≤ min(n, p), and all Sj are non-empty. The nearest
centroid classifier works by first computing the per-class centroid cj as

cj =
1

|Sj |
∑

i∈Sj

Xi, 1 ≤ j ≤ k.

Then, it classifies a test sample X to the class Y with the nearest centroid. When using Euclidean distance,
we have

Y = argmin
1≤j≤k

||X − cj ||22.

Essentially, the centroids cj are all vectors in R
p, and they are computed by minimizing the following

objective function:
k
∑

j=1

∑

i∈Sj

||Xi − cj ||22.

Now, suppose the centroids are defined using disjoint subsets of features instead of all the features.
More specifically, let I = {1, . . . , p} be the index set of features, then I could be partitioned into k disjoint
nonempty sets I1, . . . , Ik, where I1 ∪ · · · ∪ Ik = I. For any X = (x1, . . . , xp) ∈ R

p, let X(Ij) = (xi)i∈Ij . The
space of X(Ij) is defined as RIj , and we define the dimensionality-normalized norm on R

Ij as

||X(Ij)||dn =

√

∑

i∈Ij
x2
i

lj
,

where lj = |Ij | denote the cardinality of the index set Ij , and it is also the dimension of the space R
Ij .

In our method, we would like to find the k disjoint subsets of features I1, . . . , Ik and the corresponding
k disjoint centroids cj ∈ R

Ij , 1 ≤ j ≤ k such that the following objective function is minimized:

k
∑

j=1

∑

i∈Sj

||Xi(Ij)− cj ||2dn. (1)
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For a test sample X , we would classify it to the class Y with the nearest disjoint centroid (distance induced
by the dimensionality-normalized norm), which is given by

Y = argmin
1≤j≤k

||X(Ij)− cj||2dn.

The reason of using the dimensionality-normalized norm instead of the Euclidean norm in the objective
function (1) is twofold:

1. Theoretically, it is important for each individual term ||X(Ij)− cj ||2dn to be appropriately normalized,
so that the objective function (1) is summing up n roughly comparable terms no matter how large or
small each subset of features Ij is. If we use the Euclidean norm in the objective function, then when
the data is imbalanced (some classes have much more observations that other classes), the majority
classes would be assigned much smaller subsets of features, and the minority classes would be assigned
much larger subsets of features. This is because such assignment would minimize the objective function
by minimizing the inner sum

∑

i∈Sj
||Xi(Ij)− cj ||22 for each class j.

2. Empirically, we conducted several simulations to compare the performance of our method using the
dimensionality-normalized norm and the Euclidean norm. Although they are not included in the paper,
the results confirmed our expectation that using Euclidean norm would lead to worse performance when
the data is imbalanced.

It is easy to see that if the k disjoint subsets of features I1, . . . , Ik are given, then the corresponding k
centroids can be computed as

cj =
1

|Sj |
∑

i∈Sj

Xi(Ij), 1 ≤ j ≤ k.

However, finding the best disjoint subsets of features I1, . . . , Ik to minimize the objective function (1) is a
combinatorial optimization problem, which is computationally intractable for large p. In light of this fact,
we present a simple algorithm in Section 5 that uses adapted k-means clustering to find the disjoint subsets
of features I1, . . . , Ik.

Again, we emphasize that our method assumes that there are k disjoint subsets of features with discrim-
inative power, which might not apply to all data, but it is generally true for high-dimensional data where
the number of features p is much larger than the number of classes k. In addition, it is possible to extend
our method to handle the more general case by allowing the centroids to have a common set of features,
which could be selected by running any feature selection algorithm. In that case, our main theoretical result
Theorem 1 would still hold, and our main algorithms Algorithm 1 and Algorithm 2 would only need to be
slightly modified.

3 Theoretical Results

Suppose the training samples and their associated class labels (X1, Y1), . . . , (Xn, Yn) are i.i.d. with the same
distribution as (X,Y ) where X ∈ R

p and Y ∈ {1, . . . , k}. Let µ denote the distribution of (X,Y ), and let
µn denote the empirical distribution of the n training samples and their associated class labels. In addition,
suppose that for 1 ≤ j ≤ k, the probability of Y = j is given by p(j):

P (Y = j) = p(j),

and the conditional distribution of X given Y = j is given by µ(j):

X |Y = j ∼ µ(j).

Similarly, for 1 ≤ j ≤ k, let p
(j)
n denote the empirical proportion of Yi = j, and let µ

(j)
n denote the empirical

conditional distribution of Xi given Yi = j in the training data.
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We minimize the empirical risk defined as

W (I, c, µn) =
1

n

n
∑

i=1

k
∑

j=1

1{Yi=j} · ||Xi(Ij)− cj ||2dn

=

k
∑

j=1

p(j)n

∫

||x(Ij)− cj ||2dndµ(j)
n (x)

over all feature subsets I = {I1, . . . , Ik} and centroids c = {c1, . . . , ck}. The risk is defined as

W (I, c, µ) =

∫ k
∑

j=1

1{y=j} · ||x(Ij)− cj ||2dndµ(x, y)

=

k
∑

j=1

p(j)
∫

||x(Ij)− cj ||2dndµ(j)(x).

The optimal risk is defined as
W ∗(µ) = inf

I

inf
c
W (I, c, µ).

For a fixed feature subset Ij , it is easy to verify that

argmin
cj

∫

||x(Ij)− cj ||2dndµ(j)
n (x) =

∫

x(Ij)dµ
(j)
n (x),

and

argmin
cj

∫

||x(Ij)− cj ||2dndµ(j)(x) =

∫

x(Ij)dµ
(j)(x).

Let δn ≥ 0. A feature subsets In and centroids cn as a whole is a δn-minimizer of the empirical risk if

W (In, cn, µn) ≤ W ∗(µn) + δn,

where W ∗(µn) = infI infcW (I, c, µn). When δn = 0, In and cn as a whole is called an empirical risk
minimizer. Since µn is supported on at most n points, the existence of an empirical risk minimizer is
guaranteed.

The first theoretical result of this paper is the following consistency theorem, which states that the risk
of a δn-minimizer of the empirical risk converges to the optimal risk as long as limn→∞ δn = 0.

Theorem 1. Assume that all µ(j) have finite second moments that are bounded by a constant h:

max
1≤j≤k

∫

||x||22dµ(j)(x) ≤ h.

Let In and cn be a δn-minimizer of the empirical risk. If limn→∞ δn = 0, then

lim
n→∞

W (In, cn, µ) = W ∗(µ) a.s.

A detailed proof of Theorem 1 is given in Section 4, which also includes a remark at the end that provides
some analysis on the rate of convergence.

We can characterize the feature subsets I∗ = {I∗1 , . . . , I∗k} and the centroids c∗ = {c∗1, . . . , c∗k} that achieve
the optimal risk W ∗(µ) if we make some additional assumptions.

Theorem 2. Assume that the feature subsets I∗ = {I∗1 , . . . , I∗k} is a partition of the p features I = {1, . . . , p},
and for 1 ≤ j ≤ k we have

min
Ij⊂I

∫

||x(Ij)− cj ||2dndµ(j)(x) =

∫

||x(I∗j )− c∗j ||2dndµ(j)(x),

where cj =
∫

x(Ij)dµ
(j)(x) and c∗j =

∫

x(I∗j )dµ
(j)(x). Then

W (I∗, c∗, µ) = W ∗(µ).
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Proof. We prove by contradiction. Assume that there exist feature subsets I† = {I†1 , . . . , I†k} and centroids

c† = {c†1, . . . , c†k} such that

W (I†, c†, µ) < W (I∗, c∗, µ).

Since by definition

W (I, c, µ) =
k
∑

j=1

p(j)
∫

||x(Ij)− cj ||2dndµ(j)(x),

there must exist at least one t ∈ {1, . . . , k} such that
∫

||x(I†t )− c†t ||2dndµ(t)(x) <

∫

||x(I∗t )− c∗t ||2dndµ(t)(x).

However, the property of I∗ guarantees that
∫

||x(I∗t )− c∗t ||2dndµ(t)(x) = min
It⊂I

∫

||x(It)− ct||2dndµ(t)(x)

≤
∫

||x(I†t )−
∫

x(I†t )dµ
(t)(x)||2dndµ(t)(x)

≤
∫

||x(I†t )− c†t ||2dndµ(t)(x).

where c∗t =
∫

x(I∗t )dµ
(t)(x) and ct =

∫

x(It)dµ
(t)(x). Now we have a contradiction, and therefore such I†

and c† could not exist.

Corollary 3. Assume that the p features are all independent and consist of k successive blocks, each of size
d. In addition, assume that for 1 ≤ j ≤ k and X = (x1, . . . , xp) ∼ µ(j), the d entries in the j-th block
x(j−1)d+1, . . . , xjd are i.i.d. with variance σ2

1 , and the rest of the p − d entries are i.i.d. with variance σ2
2 ,

with σ2
1 < σ2

2. For 1 ≤ j ≤ k, if we let

I∗j = {x(j−1)d+1, . . . , xjd},

and c∗j =
∫

x(I∗j )dµ
(j)(x), then W (I∗, c∗, µ) = W ∗(µ).

Proof. This is a direct corollary of Theorem 2. We only need to verify that for 1 ≤ j ≤ k we have

min
Ij⊂I

∫

||x(Ij)− cj ||2dndµ(j)(x) =

∫

||x(I∗j )− c∗j ||2dndµ(j)(x),

where cj =
∫

x(Ij)dµ
(j)(x) and c∗j =

∫

x(I∗j )dµ
(j)(x). By assumption, for any specific feature Ij = {i},

∫

||x(Ij)− cj ||22dµ(j)(x) = σ2
1

if i ∈ I∗j , and
∫

||x(Ij)− cj ||22dµ(j)(x) = σ2
2 > σ2

1

if i /∈ I∗j . This means that for any feature subset Ij ⊂ I∗j , we have
∫

||x(Ij)− cj ||2dndµ(j)(x) = σ2
1 .

In addition, for any other feature subset Ij that includes at least one feature i /∈ I∗j , we have
∫

||x(Ij)− cj ||2dndµ(j)(x) > σ2
1 .

Hence for 1 ≤ j ≤ k we have

min
Ij⊂I

∫

||x(Ij)− cj ||2dndµ(j)(x) = σ2
1 =

∫

||x(I∗j )− c∗j ||2dndµ(j)(x),

and the proof is completed.
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4 Proof of the Main Theoretical Result

In this section, we give a detailed proof of Theorem 1, which is our main theoretical result. Recall that the
L2 Wasserstein distance between two probability measures µ1 and µ2 on R

p, with finite second moment, is
defined as

γ(µ1, µ2) = inf
X1∼µ1,X2∼µ2

(E||X1 −X2||22)1/2,

where the infimum is taken over all joint distributions of two random variables X1 and X2 such that X1 has
distribution µ1 and X2 has distribution µ2. It has been shown in Rachev and Rüschendorf [1998] that γ is
a metric on the space of probability distributions on R

p with finite second moment, and that the infimum is
a minimum and can be achieved.

We first prove the following four lemmas.

Lemma 4. For any feature subset Ij and centroid cj, we have
∣

∣

∣

∣

∣

[
∫

||x(Ij)− cj ||2dndµ1(x)

]1/2

−
[
∫

||x(Ij)− cj ||2dndµ2(x)

]1/2
∣

∣

∣

∣

∣

≤ γ(µ1, µ2).

Proof. Let X1 ∼ µ1 and X2 ∼ µ2 achieve the infimum defining γ(µ1, µ2). Then

[
∫

||x(Ij)− cj ||2dndµ1(x)

]1/2

=

[

E
||X1(Ij)− cj||22

lj

]1/2

≤
[

E
(||X1(Ij)−X2(Ij)||2 + ||X2(Ij)− cj ||2)2

lj

]1/2

.

Using Cauchy–Schwarz inequality, we have

E

[

(||X1(Ij)−X2(Ij)||2 + ||X2(Ij)− cj ||2)2
lj

]

≤ E||X1 −X2||22 + E

[ ||X2(Ij)− cj ||22
lj

]

+ 2E

[

||X1 −X2||2 ·
||X2(Ij)− cj ||2

√

lj

]

≤ E||X1 −X2||22 + E

[ ||X2(Ij)− cj ||22
lj

]

+ 2
[

E||X1 −X2||22
]1/2

[

E
||X2(Ij)− cj ||22

lj

]1/2

=

(

[

E||X1 −X2||22
]1/2

+

[

E
||X2(Ij)− cj ||22

lj

]1/2
)2

.

Consequently

[
∫

||x(Ij)− cj||2dndµ1(x)

]1/2

≤
[

E||X1 −X2||22
]1/2

+

[

E
||X2(Ij)− cj ||22

lj

]1/2

= γ(µ1, µ2) +

[
∫

||x(Ij)− cj||2dndµ2(x)

]1/2

,

which implies that

[
∫

||x(Ij)− cj ||2dndµ1(x)

]1/2

−
[
∫

||x(Ij)− cj ||2dndµ2(x)

]1/2

≤ γ(µ1, µ2).

The other direction can be proved similarly.

Lemma 5. For any feature subset Ij and centroid cj, if

max

(
∫

||x(Ij)− cj ||2dndµ1(x),

∫

||x(Ij)− cj ||2dndµ2(x)

)

≤ h,

then
∣

∣

∣

∣

∫

||x(Ij)− cj ||2dndµ1(x) −
∫

||x(Ij)− cj ||2dndµ2(x)

∣

∣

∣

∣

≤ 2
√
hγ(µ1, µ2).
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Proof. Let a =
[∫

||x(Ij)− cj ||2dndµ1(x)
]1/2

and b =
[∫

||x(Ij)− cj ||2dndµ2(x)
]1/2

. Then

∣

∣

∣

∣

∫

||x(Ij)− cj ||2dndµ1(x)−
∫

||x(Ij)− cj ||2dndµ2(x)

∣

∣

∣

∣

= |a2 − b2| = |a+ b||a− b| ≤ 2
√
hγ(µ1, µ2),

where the last inequality follows from Lemma 4.

Lemma 6. Recall that µ denote the distribution of (X,Y ), and is associated with p(j) and µ(j) for 1 ≤ j ≤ k.

In addition, µn denote the empirical distribution of (X1, Y1), . . . , (Xn, Yn), and is associated with p
(j)
n and

µ
(j)
n for 1 ≤ j ≤ k. For any feature subsets I and centroids c, if

max
Ij∈I,cj∈c

(
∫

||x(Ij)− cj ||2dndµ(j)(x),

∫

||x(Ij)− cj ||2dndµ(j)
n (x)

)

≤ h,

then
|W (I, c, µ)−W (I, c, µn)| ≤ 2k

√
h max

1≤j≤k
γ(µ(j), µ(j)

n ) + kh max
1≤j≤k

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
.

Proof. By triangle inequality, we have

|W (I, c, µ)−W (I, c, µn)| =

∣

∣

∣

∣

∣

∣

k
∑

j=1

p(j)
∫

||x(Ij)− cj ||2dndµ(j)(x) −
k
∑

j=1

p(j)n

∫

||x(Ij)− cj ||2dndµ(j)
n (x)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

k
∑

j=1

p(j)
∫

||x(Ij)− cj ||2dndµ(j)(x) −
k
∑

j=1

p(j)
∫

||x(Ij)− cj ||2dndµ(j)
n (x)

∣

∣

∣

∣

∣

∣

(2)

+

∣

∣

∣

∣

∣

∣

k
∑

j=1

p(j)
∫

||x(Ij)− cj ||2dndµ(j)
n (x)−

k
∑

j=1

p(j)n

∫

||x(Ij)− cj||2dndµ(j)
n (x)

∣

∣

∣

∣

∣

∣

. (3)

Using Lemma 5, we have the following bound for the first term:

(2) =
k
∑

j=1

p(j)
∣

∣

∣

∣

∫

||x(Ij)− cj ||2dndµ(j)(x)−
∫

||x(Ij)− cj ||2dndµ(j)
n (x)

∣

∣

∣

∣

≤
k
∑

j=1

p(j)2
√
hγ(µ(j), µ(j)

n ) ≤
k
∑

j=1

2
√
hγ(µ(j), µ(j)

n ) ≤ 2k
√
h max

1≤j≤k
γ(µ(j), µ(j)

n ).

We have the following bound for the second term:

(3) =
k
∑

j=1

∫

||x(Ij)− cj ||2dndµ(j)
n (x)

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
≤

k
∑

j=1

h
∣

∣

∣
p(j) − p(j)n

∣

∣

∣
≤ kh max

1≤j≤k

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
.

Lemma 6 follows directly from the above three inequalities.

Lemma 7. For 1 ≤ j ≤ k, lim
n→∞

|p(j) − p(j)n | = 0 a.s., and lim
n→∞

γ(µ(j), µ(j)
n ) = 0 a.s.

Proof. It is well known that the empirical measure µn converges to µ almost surely. This implies that for

1 ≤ j ≤ k, we have p
(j)
n converges to p(j) almost surely, and µ

(j)
n converges to µ(j) almost surely. For each

1 ≤ j ≤ k, since p
(j)
n converges to p(j) almost surely, we know that

lim
n→∞

|p(j) − p(j)n | = 0 a.s.

Since µ
(j)
n converges to µ(j) almost surely, by Skorokhod’s representation theorem, there exist Zn ∼ µ

(j)
n and

Z ∼ µ(j) jointly distributed such that Zn → Z almost surely. By the triangle inequality, we have

2||Zn||22 + 2||Z||22 − ||Zn − Z||22 ≥ ||Zn||22 + ||Z||22 − 2||Zn||2||Z||2 ≥ 0.
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Hence Fatou’s lemma implies

lim inf
n→∞

E
[

2||Zn||22 + 2||Z||22 − ||Zn − Z||22
]

≥ E

[

lim inf
n→∞

(

2||Zn||22 + 2||Z||22 − ||Zn − Z||22
)

]

= 4E||Z||22.

Since limn→∞ E||Zn||22 = E||Z||22, we must have limn→∞ E||Zn − Z||22 = 0, which implies that

lim
n→∞

γ(µ(j), µ(j)
n ) = 0 a.s.

Having proved the above four lemmas, we are ready to prove Theorem 1, which states the following:
Assume that all µ(j) have finite second moments that are bounded by a constant h:

max
1≤j≤k

∫

||x||22dµ(j)(x) ≤ h.

Let In and cn be a δn-minimizer of the empirical risk. If limn→∞ δn = 0, then

lim
n→∞

W (In, cn, µ) = W ∗(µ) a.s.

Proof. Let ε > 0 be arbitrary, and let I∗ and c∗ be any element satisfying

inf
I

inf
c
W (I, c, µ) ≤ W (I∗, c∗, µ) < inf

I

inf
c
W (I, c, µ) + ε. (4)

Then

W (In, cn, µ)−W ∗(µ) = W (In, cn, µ)− inf
I

inf
c
W (I, c, µ)

≤ W (In, cn, µ)− (W (I∗, c∗, µ)− ε)

= W (In, cn, µ)−W (In, cn, µn) +W (In, cn, µn)−W (I∗, c∗, µ) + ε

≤ W (In, cn, µ)−W (In, cn, µn) + (W (I∗, c∗, µn) + δn)−W (I∗, c∗, µ) + ε

≤ |W (In, cn, µ)−W (In, cn, µn)|+ |W (I∗, c∗, µn)−W (I∗, c∗, µ)|+ δn + ε.

We now further analyze the right hand side of the last inequality:

W (In, cn, µ)−W ∗(µ) ≤ |W (In, cn, µ)−W (In, cn, µn)|+ |W (I∗, c∗, µn)−W (I∗, c∗, µ)|+ δn + ε. (5)

For the first term |W (In, cn, µ)−W (In, cn, µn)|, recall that In and cn is a δn-minimizer of the empirical

risk. This means that for each I
(j)
n ∈ In, the corresponding c

(j)
n ∈ cn is selected to minimize

∫

||x(I(j)n ) −
c
(j)
n ||2dndµ

(j)
n (x), and it can be written as c

(j)
n =

∫

x(I
(j)
n )dµ

(j)
n (x). Note that for each I

(j)
n ∈ In and the

corresponding c
(j)
n ∈ cn, we have

∫

||x(I(j)n )− c(j)n ||2dndµ(j)
n (x) ≤

∫

||x(I(j)n )− c(j)n ||22dµ(j)
n (x) ≤

∫

||x− b(j)n ||22dµ(j)
n (x),

where b
(j)
n =

∫

xdµ
(j)
n (x). Since µ

(j)
n converges to µ(j) almost surely, by the strong law of large numbers, we

know that

b(j)n =

∫

xdµ(j)
n (x)

a.s.→
∫

xdµ(j)(x) = bj ,

and
∫

||x− b(j)n ||22dµ(j)
n (x)

a.s.→
∫

||x− bj||22dµ(j)(x).

Similarly, for each I
(j)
n ∈ In and the corresponding c

(j)
n ∈ cn, we have

∫

||x(I(j)n )− c(j)n ||2dndµ(j)(x) ≤
∫

||x(I(j)n )− c(j)n ||22dµ(j)(x) ≤
∫

||x− b(j)n ||22dµ(j)(x),
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and
∫

||x− b(j)n ||22dµ(j)(x)
a.s.→
∫

||x− bj||22dµ(j)(x).

Note that
∫

||x− bj||22dµ(j)(x) ≤
∫

||x||22dµ(j)(x) ≤ h.

Therefore, for each j we can select Nj such that for all n ≥ Nj , with probability 1 we have
∫

||x(I(j)n )− c(j)n ||2dndµ(j)
n (x) ≤

∫

||x− b(j)n ||22dµ(j)
n (x) ≤ 2h,

and
∫

||x(I(j)n )− c(j)n ||2dndµ(j)(x) ≤
∫

||x− b(j)n ||22dµ(j)(x) ≤ 2h.

Let N0 = max1≤j≤k Nj , then for all n ≥ N0, with probability 1 we have

max
I
(j)
n ∈In,c

(j)
n ∈cn

(
∫

||x(I(j)n )− c(j)n ||2dndµ(j)(x),

∫

||x(I(j)n )− c(j)n ||2dndµ(j)
n (x)

)

≤ 2h.

Using Lemma 6, for all n ≥ N0, with probability 1 we have

|W (In, cn, µ)−W (In, cn, µn)| ≤ 2k
√
2h max

1≤j≤k
γ(µ(j), µ(j)

n ) + 2kh max
1≤j≤k

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
. (6)

For the second term |W (I∗, c∗, µn) − W (I∗, c∗, µ)|, for each Ij ∈ I∗, we can write the corresponding
cj ∈ c∗ as cj =

∫

x(Ij)dµ
(j)(x) in order to minimize W (I∗, c∗, µ). Similar to the steps in bounding the first

term, for each Ij ∈ I∗ and the corresponding cj ∈ c∗, we have
∫

||x(Ij)− cj ||2dndµ(j)
n (x) ≤

∫

||x(Ij)− cj ||22dµ(j)
n (x) ≤

∫

||x− bj ||22dµ(j)
n (x)

a.s.→
∫

||x− bj ||22dµ(j)(x),

and
∫

||x(Ij)− cj ||2dndµ(j)(x) ≤
∫

||x(Ij)− cj ||22dµ(j)(x) ≤
∫

||x− bj||22dµ(j)(x).

Therefore, for each j we can select Mj such that for all n ≥ Mj , with probability 1 we have
∫

||x(Ij)− cj ||2dndµ(j)
n (x) ≤

∫

||x− bj ||22dµ(j)
n (x) ≤ 2h,

and
∫

||x(Ij)− cj ||2dndµ(j)(x) ≤
∫

||x− bj ||22dµ(j)(x) ≤ 2h.

Let M0 = max1≤j≤k Mj , then for all n ≥ M0, with probability 1 we have

max
Ij∈I∗,cj∈c∗

(
∫

||x(Ij)− cj||2dndµ(j)(x),

∫

||x(Ij)− cj ||2dndµ(j)
n (x)

)

≤ 2h.

Using Lemma 6, for all n ≥ M0, with probability 1 we have

|W (I∗, c∗, µn)−W (I∗, c∗, µ)| ≤ 2k
√
2h max

1≤j≤k
γ(µ(j), µ(j)

n ) + 2kh max
1≤j≤k

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
. (7)

Combining the inequalities (5), (6), (7), for all n ≥ max(N0,M0), with probability 1 we have

W (In, cn, µ)−W ∗(µ) ≤ 4k
√
2h max

1≤j≤k
γ(µ(j), µ(j)

n ) + 4kh max
1≤j≤k

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
+ δn + ε.

Using Lemma 7, we know that max1≤j≤k γ(µ
(j), µ

(j)
n )

a.s.→ 0, and max1≤j≤k

∣

∣

∣
p(j) − p

(j)
n

∣

∣

∣

a.s.→ 0. Since ε is

arbitrary and limn→∞ δn = 0, we have

W (In, cn, µ)−W ∗(µ)
a.s.→ 0.
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Remark. If we slightly modify inequality (4) and choose εn such that limn→∞ εn = 0, and let I∗n and c∗n be
any element satisfying

inf
I

inf
c
W (I, c, µ) ≤ W (I∗n, c

∗
n, µ) < inf

I

inf
c
W (I, c, µ) + εn. (8)

Then, similar to inequality (5), we could obtain

W (In, cn, µ)−W ∗(µ) ≤ |W (In, cn, µ)−W (In, cn, µn)|+ |W (I∗n, c
∗
n, µn)−W (I∗n, c

∗
n, µ)|+ δn + εn. (9)

Also, similar to inequality (7), we could prove that for all n ≥ M0, with probability 1 we have

|W (I∗n, c
∗
n, µn)−W (I∗n, c

∗
n, µ)| ≤ 2k

√
2h max

1≤j≤k
γ(µ(j), µ(j)

n ) + 2kh max
1≤j≤k

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
. (10)

Combining the inequalities (6), (9), (10), for all n ≥ max(N0,M0), with probability 1 we have

W (In, cn, µ)−W ∗(µ) ≤ 4k
√
2h max

1≤j≤k
γ(µ(j), µ(j)

n ) + 4kh max
1≤j≤k

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
+ δn + εn.

Now, if we assume there exist βn such that for 1 ≤ j ≤ k, we have

lim
n→∞

βn|p(j) − p(j)n | < ∞ a.s., and lim
n→∞

βnγ(µ
(j), µ(j)

n ) < ∞ a.s. (11)

Then, as long as we choose δn and εn such that limn→∞ βnδn < ∞ and limn→∞ βnεn < ∞, we have

lim
n→∞

βn [W (In, cn, µ)−W ∗(µ)]

≤ 4k
√
2h max

1≤j≤k
lim
n→∞

βnγ(µ
(j), µ(j)

n ) + 4kh max
1≤j≤k

lim
n→∞

βn

∣

∣

∣
p(j) − p(j)n

∣

∣

∣
+ lim

n→∞
βnδn + lim

n→∞
βnεn

≤ ∞ a.s.

There are a few choices for βn that satisfy inequality (11), depending on the assumptions on µj and
pj. The earliest result is by Ajtai et al. [1984] for the Lebesgue measure which was later sharpened by
Dobrić and Yukich [1995] to βn = n1/p. Theorem 11.1.6 of Rachev [1991] generalizes Dudley [1969] to show
that under a metric entropy condition, we could let βn = n2/p. Horowitz and Karandikar [1994] proved
that under some very weak assumptions, we could let βn = n2/(p+4). Some refinements were provided in
Fournier and Guillin [2015] and Weed and Bach [2019].

5 Algorithm

In this section, we present a simple algorithm that outputs the k disjoint subsets of features I1, . . . , Ik. The
idea is to first transpose the n × p data matrix and then use an adapted version of the k-means clustering
algorithm to produce a partition of the p rows I1, . . . , Ik. The algorithm works as shown in Algorithm 1.

Recall that Sj denote the set of indices of training samples that belong to class j. After we have obtained
the k disjoint subsets of features I1, . . . , Ik, we can compute the k disjoint centroids that represent the k
classes using the following equation:

cj =
1

|Sj |
∑

i∈Sj

Xi(Ij), 1 ≤ j ≤ k. (12)

To classify a new data point, we simply choose the class with the nearest disjoint centroid (distance induced
by the dimensionality-normalized norm).

In practice, it is recommended to run our algorithm multiple times to produce multiple partitions, and
choose the partition that results in the lowest training error. There are mainly two reasons:

1. First, our algorithm depends on the partition obtained from the initial k-means clustering, which
itself is not deterministic and might provide different results in different runs. Therefore, running our
algorithm multiple times increases the probability of finding a partition that gives better performance.

2. Second, just like k-means clustering algorithm, our algorithm also might encounter empty cluster
problem, although the probability is small when k is much smaller than p. More specifically, if in any
assignment step any group of row indices Ij , 1 ≤ j ≤ k becomes empty, then the algorithm cannot
proceed and need to restart.
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Algorithm 1 Finding the k disjoint subsets of features I1, . . . , Ik (no feature selection)

1. Start by transposing the n × p data matrix and then performing k-means clustering on the rows to
obtain k clusters as the initial partition of the p rows I1, . . . , Ik.

2. We use an alternating procedure to update I1, . . . , Ik. It is quite similar to the Lloyd’s algorithm
in k-means clustering, except that the cluster centers mj are defined on R

Sj instead of Rn, and the
distance function is induced by the dimensionality-normalized norm instead of the Euclidean norm:

(a) (Update step) Given row partitions I1, . . . , Ik, update the cluster centers m1, . . . ,mk by

mj =
1

|Ij |
∑

i∈Ij

Ti(Sj), 1 ≤ j ≤ k,

where Ti denotes the i-th row of the transposed p× n data matrix.

(b) (Assignment step) Given cluster centers m1, . . . ,mk, update the row partitions I1, . . . , Ik by as-
signing every row to the cluster center with the smallest distance (induced by the dimensionality-
normalized norm), and all the rows that are closest to mj form Ij , 1 ≤ j ≤ k.

Alternate between (a) and (b) until convergence, and obtain a partition of the p rows I1, . . . , Ik.

6 Feature Selection

In this section, we consider extending Algorithm 1 to perform feature selection. So far, although our method
partitions features into disjoint subsets, it still uses all the features to classify new data points. However,
in many applications such as gene expression analysis, the data usually include thousands of genes, many
of which can be considered as irrelevant to predicting certain types of cancer. In those situations, it would
be desirable if our method could perform feature selection, namely selecting a subset of the features so that
only those features are used in making predictions.

In order to enable our method to perform feature selection, we need to make some small adjustments to
Algorithm 1. More specifically, we add a new special cluster I0, and the features that belong to this special
cluster are not used in prediction. Its cluster center m0 are defined on R

S0 , and we define S0 = {1, . . . , n}.
Intuitively, this cluster center represents a “global” baseline that is based on all data points, as opposed
to other cluster centers mj that represent class-specific baselines that are based on data points specific to
class j. When classifying new data points, we still choose the class with the nearest disjoint centroid among
c1, . . . , ck (distance induced by the dimensionality-normalized norm), which in turn depends on features in
I1, . . . , Ik. In this way, the features in I0 are not used at all in making predictions, and therefore our method
can be considered as performing feature selection.

The modified algorithm that is able to perform feature selection works as shown in Algorithm 2. As a
way to control the number of selected features, we introduce a tuning parameter λ. When computing the
distances (induced by the dimensionality-normalized norm) to the clusters centers in the assignment step,
the distance to m0 is multiplied by a factor λ. When λ = ∞, the distance to m0 will become ∞, so no
feature will be assigned to the special cluster I0, which means that all features will be selected. As λ gets
smaller and smaller, the distance to m0 will become smaller and smaller, so features are more and more
likely to be assigned to the special cluster I0, which means that less and less features are getting selected.
In practice, λ can be considered as a hyperparameter that needs to be tuned based on the data, because it
affects both the number of selected features and the performance of the model.

After we have obtained the k + 1 disjoint subsets of features I0, . . . , Ik, the rest of the process is ex-
actly the same as before: compute the k disjoint centroids c1, . . . , ck based on I1, . . . , Ik using Equation
(12), and classify a new data point to the class with the nearest disjoint centroid (distance induced by the
dimensionality-normalized norm). Noticeably, the features in I0 are not involved in the computation of the
distances to the k disjoint centroids c1, . . . , ck, therefore they are not used in prediction.
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Algorithm 2 Finding the k + 1 disjoint subsets of features I0, . . . , Ik (with feature selection)

1. Start by transposing the n × p data matrix and then performing k-means clustering on the rows to
obtain k + 1 clusters as the initial partition of the p rows I0, . . . , Ik.

2. We use an alternating procedure to update I0, . . . , Ik. It is quite similar to the Lloyd’s algorithm
in k-means clustering, except that the cluster centers mj are defined on R

Sj instead of Rn, and the
distance function is induced by the dimensionality-normalized norm instead of the Euclidean norm:

(a) (Update step) Given row partitions I0, . . . , Ik, update the cluster centers m0, . . . ,mk by

mj =
1

|Ij |
∑

i∈Ij

Ti(Sj), 0 ≤ j ≤ k,

where Ti denotes the i-th row of the transposed p× n data matrix.

(b) (Assignment step) Given cluster centers m0, . . . ,mk, update the row partitions I0, . . . , Ik by as-
signing every row to the cluster center with the smallest distance (induced by the dimensionality-
normalized norm), and all the rows that are closest to mj form Ij , 0 ≤ j ≤ k. Note that the
distance to m0 is multiplied by a factor λ, which is a tuning parameter.

Alternate between (a) and (b) until convergence, and obtain a partition of the p rows I0, . . . , Ik.

7 Simulation Studies

In this section, we evaluate and compare the performance of seven classification methods on simulated data
with different settings. The first three classification methods are all based on nearest centroid:

1. Nearest disjoint centroid (NDC): This is the method presented in this paper. We consider both versions
of our nearest disjoint centroid method, with and without feature selection. Algorithm 1 (NDC) is the
version without feature selection, and Algorithm 2 (NDC-S) is the version with feature selection. For
both algorithms, we run 100 times and pick the best partition, as suggested at the end of Section 5.

2. Nearest centroid (NC): This method simply classifies every data point to the class with the nearest
centroid, and each centroid is defined as the average of the data points that belong to each class.

3. Nearest shrunken centroid (NSC) [Tibshirani et al., 2002]: This method is a simple modification of the
nearest centroid method. It shrinks the class centroids toward the overall centroid after standardizing
by the within-class standard deviation. The shrinkage process achieves feature selection.

In addition, we also include the following four widely used classification methods: k-nearest neighbors (KNN)
[Cover and Hart, 1967], linear discriminant analysis (LDA) [Fisher, 1936], support vector machine (SVM)
[Cortes and Vapnik, 1995], and logistic regression with L1 regularization (Logistic) [Hastie et al., 2009]. The
evaluation metric is the misclassification rate. The number of neighbors in KNN is set to be 15. Other
hyperparameters, including the λ in NDC-S, the threshold ∆ in NSC, and the λ in logistic regression with
L1 regularization, are chosen via cross-validation on the training set.

We generate simulated data in four different settings. In all settings, the data matrix satisfies the following
property:

1. The rows have k blocks, each of size n. They represent k classes, each consisting of n data points.

2. The columns also have k blocks, each of size d. They represent k groups of features, each of size d.

3. As a whole, the data matrix consists of k × k blocks, each of size n× d.

4. All the entries in the data matrix are independent. In addition, the entries in each small n× d block
are identically distributed. The entries in the k blocks on the main diagonal of the data matrix follow
N (µ1, σ

2
1), and all the other entries in the data matrix follow N (µ2, σ

2
2).
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In all settings, we set k = 4 and n = 250. The rest of the parameters, including d, µ1, µ2, σ1, σ2, might
vary in different settings. For each setting, we perform 50 simulations, and report the means and standard
errors of the misclassification rates. In each simulation, we generate two data matrices, one as training set
and the other as test set.

7.1 Simulation 1: Blocks with Different Means and the Same Variance

In the first simulation, we consider the case where the k×k blocks have different means and the same variance.
More specifically, we set µ1 = a, and µ2 = 0, where a ∈ {0.3, 0.6, 0.9}. As a increases, the difference between
the means in different blocks also increases. In addition, we set σ1 = σ2 = 1, which means that all entries
have the same standard deviation of 1. We also set d ∈ {3, 5, 10}. As d increases, the number of features in
each block also increases.

NDC NDC-S NC NSC KNN LDA SVM Logistic
d = 3

a = 0.3 0.736 0.738 0.611 0.614 0.678 0.612 0.635 0.609
a = 0.6 0.669 0.686 0.447 0.448 0.511 0.448 0.467 0.445
a = 0.9 0.542 0.586 0.286 0.286 0.332 0.288 0.306 0.286

d = 5
a = 0.3 0.731 0.737 0.570 0.573 0.651 0.571 0.590 0.569
a = 0.6 0.626 0.648 0.350 0.351 0.433 0.354 0.373 0.351
a = 0.9 0.475 0.520 0.178 0.180 0.227 0.182 0.196 0.182

d = 10
a = 0.3 0.724 0.730 0.488 0.491 0.607 0.494 0.507 0.489
a = 0.6 0.564 0.609 0.210 0.211 0.301 0.217 0.224 0.214
a = 0.9 0.346 0.490 0.058 0.058 0.087 0.063 0.066 0.064

Table 1: The means of the misclassification rate for Simulation 1 over 50 simulations. Most of the standard
errors are less than 0.003, and the largest standard error is 0.011.

Results are reported in Table 1. In this setting, we see that NC, NSC, LDA, and Logistic have extremely
similar and also the smallest misclassification rates, followed closely by SVM and KNN, and finally NDC
and NDC-S with significantly larger misclassification rates. In addition, we observe a general pattern that
as d and a increase, the misclassification rates decrease. This pattern makes intuitive sense, because larger
d means more features, and larger a means larger difference between the means in different blocks, both of
which should improve the performance of classification methods.

It is important to point out that our method (NDC and NDC-S) performing worse than other competing
classification methods, including NC and NSC which are directly comparable, is expected in this setting.
The reason is that all the features provide useful signals by having different means across different classes,
and there is no benefit in considering features separately since they all have the same variance. Our method
defines centroids using disjoint subsets of features, thereby losing valuable information compared to NC and
NSC, both of which define centroids using all the features. However, when different features have different
variances, our method would perform much better that all other classification methods, as we will see in the
following simulations.

7.2 Simulation 2: Blocks with Different Variances and the Same Mean

In the second simulation, we consider the case where the k× k blocks have different variances and the same
mean. More specifically, we set σ1 = 1, and σ2 = 1+b, where b ∈ {0.3, 0.6, 0.9}. As b increases, the difference
between the variances in different blocks also increases. In addition, we set µ1 = µ2 = 0, which means that
all entries have the same mean of 0. We also set d ∈ {3, 5, 10}. As d increases, the number of features in
each block also increases.
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NDC NDC-S NC NSC KNN LDA SVM Logistic
d = 3

b = 0.3 0.699 0.696 0.748 0.748 0.707 0.747 0.680 0.749
b = 0.6 0.528 0.610 0.739 0.738 0.638 0.739 0.583 0.746
b = 0.9 0.357 0.396 0.739 0.737 0.570 0.739 0.501 0.750

d = 5
b = 0.3 0.583 0.638 0.749 0.747 0.705 0.750 0.675 0.750
b = 0.6 0.358 0.378 0.747 0.743 0.630 0.747 0.555 0.747
b = 0.9 0.229 0.246 0.740 0.736 0.555 0.741 0.458 0.748

d = 10
b = 0.3 0.426 0.446 0.746 0.742 0.700 0.744 0.686 0.748
b = 0.6 0.189 0.201 0.743 0.739 0.623 0.743 0.583 0.749
b = 0.9 0.075 0.080 0.736 0.730 0.547 0.738 0.480 0.744

Table 2: The means of the misclassification rate for Simulation 2 over 50 simulations. Most of the standard
errors are less than 0.003, and the largest standard error is 0.008.

Results are reported in Table 2. In this setting, we see that NC, NSC, LDA, and Logistic also have
extremely similar but the worst performance, with misclassification rates around 0.75 (equivalent to random
guessing) in all cases. These numbers indicate that NC, NSC, LDA, and Logistic are all unable to detect
heteroskedastic structure in the data, regardless of the value of d and b. SVM and KNN perform slightly
better, although their misclassification rates are still much larger than those of NDC and NDC-S, both of
which clearly outperform all other competing classification methods.

The reason that our method performs well in this setting lies in the fact that different features have
different variances across different classes. Although different features have the same mean so the centroids
have the same value, by defining centroids using disjoint subsets of features, different variances across different
classes lead to different distances to different centroids. In addition, Corollary 3 guarantees that when
σ1 < σ2, we can obtain the appropriate disjoint subsets of features.

7.3 Simulation 3: Blocks with Different Means and Different Variances

In the third simulation, we consider the case where the k × k blocks have different means and different
variances, which is a combination of the first and second case. More specifically, we set µ1 = c, σ1 = 1, and
µ2 = 0, σ2 = 1 + c, where c ∈ {0.3, 0.6, 0.9}. As c increases, the difference between the means and variances
in different blocks also increases. We also set d ∈ {3, 5, 10}. As d increases, the number of features in each
block also increases.

NDC NDC-S NC NSC KNN LDA SVM Logistic
d = 3

c = 0.3 0.670 0.680 0.664 0.666 0.668 0.664 0.630 0.666
c = 0.6 0.466 0.537 0.579 0.583 0.540 0.579 0.496 0.579
c = 0.9 0.293 0.394 0.511 0.514 0.439 0.513 0.397 0.510

d = 5
c = 0.3 0.551 0.613 0.633 0.637 0.649 0.635 0.596 0.633
c = 0.6 0.301 0.324 0.511 0.516 0.490 0.513 0.426 0.508
c = 0.9 0.162 0.181 0.412 0.412 0.360 0.416 0.311 0.408

d = 10
c = 0.3 0.388 0.425 0.563 0.566 0.612 0.567 0.535 0.564
c = 0.6 0.136 0.146 0.378 0.381 0.393 0.388 0.326 0.378
c = 0.9 0.037 0.041 0.251 0.252 0.239 0.261 0.201 0.250

Table 3: The means of the misclassification rate for Simulation 3 over 50 simulations. Most of the standard
errors are less than 0.003, and the largest standard error is 0.009.
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Results are reported in Table 3. In this setting, we see that in general, the ranking of different classification
methods is similar to the ranking in Simulation 2: NDC and NDC-S clearly have the best performance,
followed by SVM and KNN, and NC, NSC, LDA, and Logistic have similar but the worst performance.
Comparing the results in Table 3 to those in Table 1, we notice that the additional difference between the
variances in different blocks significantly helps NDC and NDC-S, leading to much smaller misclassification
rates. In contrast, the misclassification rates of all other classification methods increase significantly after
introducing the additional difference between block variances. Importantly, in this simulation, larger c means
larger difference between both the means and the variances in different blocks, so both kinds of signals are
present in the data. In this situation, NDC and NDC-S outperform all other competing classifiers, which
indicates that our method could potentially obtain competitive performance when dealing with complex
datasets in the real world.

7.4 Simulation 4: Adding Irrelevant Features

In the fourth simulation, we study the impact of adding irrelevant features on different classification methods.
More specifically, we fix d = 5, and the first 20 columns of the data matrix is the same as the data matrix in
Simulation 3, where we set µ1 = c, σ1 = 1, µ2 = 0, σ2 = 1+c, and c ∈ {0.3, 0.6, 0.9}. However, the remaining
r columns of the data matrix are r irrelevant features consisting of i.i.d. standard Gaussian variables, where
r ∈ {20, 40, 80}.

NDC NDC-S NC NSC KNN LDA SVM Logistic
r = 20

c = 0.3 0.548 0.580 0.633 0.634 0.668 0.642 0.625 0.632
c = 0.6 0.349 0.330 0.512 0.514 0.519 0.527 0.490 0.512
c = 0.9 0.229 0.168 0.414 0.414 0.386 0.431 0.387 0.412

r = 40
c = 0.3 0.571 0.582 0.639 0.640 0.682 0.651 0.643 0.638
c = 0.6 0.380 0.322 0.511 0.511 0.545 0.536 0.514 0.511
c = 0.9 0.262 0.164 0.411 0.414 0.406 0.445 0.412 0.412

r = 80
c = 0.3 0.602 0.608 0.647 0.643 0.696 0.665 0.659 0.645
c = 0.6 0.415 0.310 0.521 0.515 0.572 0.560 0.540 0.513
c = 0.9 0.302 0.162 0.418 0.417 0.439 0.467 0.442 0.415

Table 4: The means of the misclassification rate for Simulation 4 over 50 simulations. Most of the standard
errors are less than 0.003, and the largest standard error is 0.005.

The misclassification rates are reported in Table 4. Comparing to the results for d = 5 in Table 3, we
see that NDC-S, NC, NSC, and Logistic seem to be only minimally affected by the presence of irrelevant
features. However, other classification methods, including NDC, KNN, LDA, and SVM, are all noticeably
affected by the inclusion of irrelevant features, and their misclassification rates further increase as r increases.
In particular, the difference between the behaviors of NDC and NDC-S in this setting demonstrates that by
including feature selection as part of the algorithm, NDC-S becomes much more robust to the presence of
irrelevant features. For datasets in the real world, it is often the case that some of the features are irrelevant,
and therefore NDC-S might be a better default choice to use on real-world data.

To validate our hypothesis that the feature selection part of NDC-S is working as intended, we also
compute the means and standard errors of the number of selected features for different classification methods,
and the results are reported in Table 5. As we can see, other than NDC-S, NSC, and Logistic, the remaining
five classification methods always use all the features, because they are not capable of performing feature
selection. Comparing the feature selection of NDC-S, NSC, and Logistic, we could argue that in general
NDC-S has the best performance. This is because for c = 0.6 and c = 0.9, regardless of the number of
irrelevant features r, NDC-S always select close to 20 features, which is exactly the number of relevant
features in the data.
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NDC NDC-S NC NSC KNN LDA SVM Logistic
r = 20

c = 0.3 40(0) 31(2) 40(0) 32(1) 40(0) 40(0) 40(0) 33(0)
c = 0.6 40(0) 24(1) 40(0) 27(1) 40(0) 40(0) 40(0) 34(0)
c = 0.9 40(0) 21(1) 40(0) 23(1) 40(0) 40(0) 40(0) 35(0)

r = 40
c = 0.3 60(0) 45(3) 60(0) 41(2) 60(0) 60(0) 60(0) 41(1)
c = 0.6 60(0) 22(2) 60(0) 34(2) 60(0) 60(0) 60(0) 43(1)
c = 0.9 60(0) 21(1) 60(0) 31(2) 60(0) 60(0) 60(0) 45(1)

r = 80
c = 0.3 100(0) 80(5) 100(0) 54(4) 100(0) 100(0) 100(0) 51(1)
c = 0.6 100(0) 23(2) 100(0) 39(4) 100(0) 100(0) 100(0) 57(1)
c = 0.9 100(0) 20(0) 100(0) 34(4) 100(0) 100(0) 100(0) 61(1)

Table 5: The means (and standard errors) of the number of selected features for Simulation 4 over 50
simulations.

8 Applications

In this section, we apply our method to three gene expression datasets, all of which were proposed and
preprocessed by de Souto et al. [2008]. In all three datasets, the rows represent different samples of tissues,
and the columns represent different genes. The samples have already been labeled with different classes based
on their types of tissue. We evaluate and compare the performance of the same eight classification methods:
nearest disjoint centroid classifier without feature selection (NDC), nearest disjoint centroid classifier with
feature selection (NDC-S), nearest centroid classifier (NC), nearest shrunken centroid classifier (NSC), k-
nearest neighbors (KNN), linear discriminant analysis (LDA), support vector machine (SVM), and logistic
regression with L1 regularization (Logistic). We perform 3-fold cross validation on the datasets, and report
the means and standard errors of the misclassification rates.

In addition to misclassification rates, we also consider whether the classifiers can perform feature selection,
and if yes, how many features are selected. We know that NDC, NC, KNN, LDA, and SVM require all the
features to perform classification. However, a varying number of features can be selected by changing the
threshold ∆ in NSC, or changing the λ in NDC-S or Logistic. Those hyperparameters are selected by nested
cross-validation to achieve the smallest misclassification rate on each fold, and we also report the means and
the standard errors of the number of features selected by each classifier.

8.1 Breast and Colon Cancer Gene Expression Dataset

The first dataset consists of 104 samples and 182 genes. There are two types of samples: 62 samples
correspond to breast cancer tissues, and 42 samples correspond to colon cancer tissues.

NDC NDC-S NC NSC KNN LDA SVM Logistic
0.029(0.029) 0.019(0.010) 0.183(0.041) 0.125(0.038) 0.087(0.001) 0.058(0.017) 0.048(0.009) 0.019(0.010)

Table 6: The means (and standard errors) of the misclassification rates on the breast and colon cancer gene
expression dataset.

The misclassification rates are reported in Table 6. As we can see, NDC-S and Logistic have the best
performance, followed closely in turn by NDC, SVM, LDA, and KNN. Finally, NC and NSC have the worst
performance, with misclassification rates over 12%. In particular, the small standard errors indicate that
the difference between the performance of our method (NDC and NDC-S) and the two directly comparable
classifiers (NC and NSC) is quite significant. One possible reason that our method performs well on this
dataset is that there is a natural interpretation for the disjoint features that our method produced: two
disjoint groups of genes that are useful for identifying breast and colon cancer, respectively. Since breast
cancer and colon cancer are two completely different types of cancer, it is quite possible that the genes

16



that are useful in predicting one type of cancer are largely irrelevant to predicting another type of cancer.
Therefore, our nearest disjoint centroid classifiers, which identify two disjoint sets of genes that are used
in predicting the two types of cancer, perform better than the nearest centroid classifier and the nearest
shrunken centroid classifier, both of which rely on the same set of genes to predict the two types of cancer
and thus might incorporate more noisy and irrelevant information.

NDC NDC-S NC NSC KNN LDA SVM Logistic
182(0) 90(1) 182(0) 138(24) 182(0) 182(0) 182(0) 14(3)

Table 7: The means (and standard errors) of the number of selected features on the breast and colon cancer
gene expression dataset.

The number of selected features are reported in Table 7. For this dataset, logistic regression with L1

regularization only selects 14 features on average (among the three models built for the three folds), which is
surprisingly small considering it achieves less than 2% misclassification rate with less than 8% of the features.
However, comparing NDC-S and NSC, we see that NDC-S also achieve less than 2% misclassification rate
while selecting 90 features on average (around 49% of the features), whereas NSC achieve more than 12%
misclassification rate while selecting 138 features on average (around 76% of the features).

8.2 Leukemia Gene Expression Dataset

The second dataset consists of 72 samples and 1868 genes. There are two types of samples: 47 samples
correspond to acute myeloid leukemia, and 25 samples correspond to acute lymphoblastic leukemia.

NDC NDC-S NC NSC KNN LDA SVM Logistic
0.056(0.014) 0.028(0.014) 0.056(0.028) 0.028(0.014) 0.153(0.077) 0.167(0.042) 0.208(0.087) 0.181(0.091)

Table 8: The means (and standard errors) of the misclassification rates on the leukemia gene expression
dataset.

The misclassification rates are reported in Table 8. As we can see, all four centroid-based classification
methods (NDC, NDC-S, NC, NSC) achieve misclassification rates that are less than 6%, whereas the other
four classification methods (KNN, LDA, SVM, Logistic) perform significantly worse, with misclassification
rates over 15%.

NDC NDC-S NC NSC KNN LDA SVM Logistic
1868(0) 51(17) 1868(0) 1868(0) 1868(0) 1868(0) 1868(0) 10(3)

Table 9: The means (and standard errors) of the number of selected features on the leukemia gene expression
dataset.

The number of selected features are reported in Table 9. For this dataset, it is worth noting that despite
having equally good performance in terms of misclassification rates, NDC-S only selects 51 features on
average (around 3% of the features), where NSC requires all the features. This is an example where only our
NDC-S algorithm could give stellar performance in both classification and feature selection, whereas other
competing classifiers could perform well in one aspect at most.

8.3 Breast Cancer Gene Expression Dataset

The third dataset consists of 49 samples and 1198 genes. There are two types of samples: 25 samples
correspond to breast tumors that are estrogen-receptor-positive, and 24 samples correspond to breast tumors
that are estrogen-receptor-negative.

The misclassification rates are reported in Table 10. As we can see, our NDC-S algorithm again achieves
the smallest misclassification rate on this dataset, although the difference between the misclassification rates
of most of the classifiers is not that significant after taking the standard errors into consideration.
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NDC NDC-S NC NSC KNN LDA SVM Logistic
0.183(0.032) 0.145(0.043) 0.206(0.057) 0.164(0.043) 0.186(0.064) 0.224(0.019) 0.384(0.104) 0.163(0.019)

Table 10: The means (and standard errors) of the misclassification rates on the breast cancer gene expression
dataset.

NDC NDC-S NC NSC KNN LDA SVM Logistic
1198(0) 15(3) 1198(0) 445(226) 1198(0) 1198(0) 1198(0) 12(5)

Table 11: The means (and standard errors) of the number of selected features on the breast cancer gene
expression dataset.

The number of selected features are reported in Table 11. For this dataset, we notice that both NDC-S
and Logistic are surprisingly efficient at identifying relevant features, selecting 15 and 12 features on average
(around 1% of the features), respectively. In contrast, NSC selects 445 features on average (around 37% of
the features). This shows that our NDC-S algorithm is able to achieve the smallest misclassification rate
with as few as 15 features (on average) out of 1198 features.

Name Normalized Frequency Description
X80062 at 0.96 SA mRNA
29610 s at 0.80 GYPE Glycophorin E
X57129 at 0.66 HISTONE H1D
X02958 at 0.60 Interferon alpha gene IFN-alpha 6
X17025 at 0.57 Homolog of yeast IPP isomerase

Table 12: The top five most frequently selected genes in the breast cancer gene expression dataset.

Since the selected features are genes that might be biologically related to breast cancer, we decide to run
the experiment 100 times and compute the normalized frequency of genes that get selected by our algorithm.
The top five most frequently selected genes, their normalized frequencies, and their descriptions are listed
in Table 12. Noticeably, the first two genes, named “X80062 at” and “29610 s at”, get selected by our
algorithm 96% and 80% of the time, respectively. This suggests that the biological relationship between
these two genes and breast cancer might be worthy of further investigation.

9 Discussion

In this paper, we have developed a new classification method based on nearest centroid, and it is called the
nearest disjoint centroid classifier. The two main differences between our nearest disjoint centroid classifier
and the nearest centroid classifier is: (1) the centroids are defined based on disjoint subsets of features instead
of all the features, and (2) the distance is induced by the dimensionality-normalized norm instead of the
Euclidean norm. We have presented and proved a few theoretical results regarding our method. In addition,
we have proposed a simple algorithm based on adapted k-means clustering that can find the disjoint subsets
of features used in our method, and extended the algorithm to perform feature selection by making a few
small adjustments. We have evaluated and compared the performance of our method to other classifiers on
both simulated data and real-world gene expression datasets. The results have demonstrated that in many
situations, our nearest disjoint centroid classifier is able to outperform other competing classifiers by having
smaller misclassification rates and/or using fewer features.

In the future, we plan to explore different ways of utilizing the disjoint subsets of features and the
associated centroids obtained by our method. In this paper we focused on one simple and straightforward
way to perform classification: classify a new data point to the class with the nearest disjoint centroid.
However, there are many other methods that could be adapted to using disjoint subsets of features instead
of all the features. For example, we could fit a (multinomial) logistic regression model based on the distances
from every data point to the k disjoint centroids. We could also define distances from a test data point to a
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training data point based on the training data point’s class and the associated subset of features. Therefore,
it is also possible to develop a version of the k-nearest neighbors algorithm with disjoint subsets of features.

Another interesting direction to pursue is to consider different ways to obtain the k subsets of features
associated with the k classes. In this paper we used an adapted version of the k-means clustering algorithm
to find those k subsets of features, which is simple but also restrictive: the k subsets of features must be
disjoint. In general, our method could still work even if there is intersection between the k subsets of features.
As a result, instead of performing k-way clustering on the features, we could consider performing two-way
clustering on the features k times, each time obtaining one group of features for one class. In the end, we
would obtain k groups of features, and they are not required to be disjoint. In addition, they are also not
required to cover all the features, and the features that are not included in any of the k groups are not used
in prediction. This means that it could also perform feature selection, although controlling the number of
selected features would require additional work.
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