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Efficient Partial Rewind of
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Abstract—Successive cancellation (SC) process is an essential
component of various decoding algorithms used for polar codes
and their variants. Rewinding this process seems trivial if we have
access to all intermediate log-likelihood ratios (LLRs) and partial
sums. However, as the block length increases, retaining all of
the intermediate information becomes inefficient and impractical.
Rewinding the SC process in a memory-efficient way is a problem
that we address in this paper. We first explore the properties of
the SC process based on the binary representation of the bit
indices by introducing a new operator used for grouping the bit
indices. This special grouping helps us in finding the closest bit
index to the target index for rewinding. We also analytically prove
that this approach gives access to the untouched intermediate
information stored in the memory which is essential in resuming
the SC process. Then, we adapt the proposed approach to
multiple rewinds, and apply it on SC-flip decoding and shifted-
pruning based list decoding. The numerical evaluation of the
proposed solution shows a significant reduction of ≥ 50% in
the complexity of the additional decoding attempts at medium
and high SNR regimes for SC-flip decoding and less for shifted-
pruning based list decoding.

Index Terms—Polar codes, successive cancellation, re-decoding,
bit-flipping, shifted-pruning, Fano algorithm, rewind, complexity.

I. INTRODUCTION

Polar codes [1] are the first class of constructive channel

codes that was proven to achieve the symmetric (Shannon)

capacity of a binary-input discrete memoryless channel (BI-

DMC) using a low-complexity successive cancellation (SC)

decoder. Decoding of polar codes and their variants requires

passing the channel log-likelihood ratios (LLRs) through a

factor graph shown in 1. The evolved information at the output

of the factor graph is used to make a hard decision or to

calculate a metric in the SC-based decoders. The evolved

LLR, a.k.a decision LLR, is obtained for each bit-channel

successively. To calculate each decision LLR, we need to

access the intermediate information on the factor graph. There

are two ways to access them: 1) We can store all N · log2N
intermediate values, including LLRs and partial sums on the

factor graph. This approach is acceptable for short codes

under SC decoder or Fano decoder. However, as the code gets

longer, in particular under list decoding or stack decoding, this

approach will be expensive in terms of memory requirement.
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2) We can store a portion of the intermediate values. It was

observed in [2] that for calculating every decision LLR, we

need at most N − 1 intermediate LLRs (excluding channel

LLRs) and N − 1 partial sums at any decoding step.

Some decoding schemes rely on additional decoding at-

tempts when the decoding process fails in the first attempt.

These schemes are as follows: 1) SC-flip decoding: In this

scheme, when SC decoding fails, the decoding is repeated

from scratch, while in the additional attempts, the value of a

single or multiple bits are flipped throughout the SC decoding

process to correct the error caused by the channel noise and

avoid propagation of this error [3]. 2) Shifted-pruning based

list decoding: In this scheme [4], [5], [6], when SC list

decoding fails, additional decoding attempts may correct the

error given we shift the path pruning window at the position

where the correct path was pruned from the list in the first

decoding attempt. Note that a special case of this scheme

is also called SCL flip scheme, bit-flipping for SCL, or by

other names. 3) Fano decoding: In this scheme [7], [8], the

decoder may have a back-tracking or backward movement to

explore the other paths on the decoding tree. Unlike the first

two schemes where the decoding of a codeword is completed,

and then the additional decoding is repeated from the first

bit, in the Fano algorithm, the backward movement occurs

frequently somewhere between the first bit and the last bit.

It might be better to use N logN memory for intermediate

information in Fano decoding of very short codes rather than

N−1 memory elements. This way, we the complexity reduces

significantly at the cost of a larger memory requirement.

In [7] and [8], we proposed a sophisticated algorithm to

do the partial rewinding in Fano decoding. In this work, we

propose a simple analytically-proved approach to efficiently

rewind the SC algorithm to the position that we need to

flip the value of a bit in SC-flip decoding or to shift the

pruning window in the shifted-pruning scheme. This approach

is designed based on the scheduling properties of the SC

process and an operator that we introduce in this paper. The

approach relies on a special grouping of the bit indices in

[0, N−1] based on the introduced operator. We also prove that

the suggested bit index to resume the SC process utilizes the

untouched intermediate information in the memory left from

the previous decoding stages. The grouping of bit indices eases

the job of finding the closest bit index to the target bit index

for rewinding. This closeness contributes to the significant

reduction of the time and computational complexity of the
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underlying decoding scheme while it does retain the error

correction performance. We also adapt the proposed approach

for multiple rewinds, which is a bit different with a single

rewind, and we apply it on SC-flip decoding and shifted-

pruning scheme for list decoding.

Paper Outline: The rest of the paper is organized as

follows. Section II introduces the notation for the polar codes

and describes the intermediate information of the SC process.

Section III review the details of updating schedule for inter-

mediate information based on the binary representation of the

bit indices. In Section IV, the properties of the SC process

by introducing an operator and a special grouping scheme are

explored. Section V proposes a simple approach for single

and multiple rewinds of the SC process. In Section VI, we

evaluate the complexity reduction of the proposed approach

by applying it on the SC-flip and shifted-pruning sachems.

Finally, Section VII makes concluding remarks.

II. PRELIMINARIES

A polar code of length N = 2n with K information

bits is constructed by choosing K good bit-channels in the

polarized vector channel for transmitting the information bits

and optional auxiliary CRC or parity bits. The indices of

these bit-channels are collected in the set A. The rest of the

N − K bit-channels are used for transmitting known values

as redundancy. Polar codes are encoded by xN−1
0 =uN−1

0 GN

where uN−1
0 =(u0, ..., uN−1) is the input vector, and GN =

BNG
⊗n
2 , where G2

∆
=

[

1 0

1 1

]

, BN is an N ×N bit-reversal

permutation matrix, and (·)⊗n denotes the n-th Kronecker

power [1]. Let yN−1
0 = (y0, ..., yN−1) denote the output vector

of a noisy channel, and λ = (λ0, ..., λN−2) vector indicates the

long likelihood ratios (LLRs). The channel LLRs are computed

based on the received signals from the physical channel, yN−1
0 .

We also have intermediate LLRs as shown in Fig. 1. The

intermediate LLRs are computed based on the type of node

in the factor graph. f and g nodes are shown by circles and

rectangles, respectively, in the factor graph. The output of these

nodes can be computed from right to left by

f(λa, λb) ≈ sgn(λa) · sgn(λb) ·min(|λa|, |λb|) (1)

g(λa, λb, β̂) = (−1)β̂λa + λb (2)

where λa and λb are the input LLRs to a node and β̂ is the

partial sum of previously decided bits corresponding to feed

the estimated bits ûi backward into the factor graph.

In the SC decoding, the non-frozen bits are estimated

successively based on the evolved LLRs via a one-time pass

through the factor graph. When decoding the i-th bit, if i /∈ A,

then ûi = 0 since ui is a frozen bit. Otherwise, bit ui is

decided by a maximum likelihood (ML) rule h(λ0). Unlike

the SC decoding which makes a final decision for i-th bit,

SC list decoding considers both possible values ui = 0 and

ui = 1. In SC list decoding, the L most reliable paths are

preserved at each decoding step to limit growing of the number

of paths. The solution for decoding is chosen at the lest bit

based on the likelihood or the cyclic redundancy check (CRC)

u0

u1

u2

u3

u4

u5

u6

u7

Fig. 1. An illustrative example for updating LLRs for decoding bit u3. λ0

is computed based on λ1, λ2 and β0 = û2 (see Fig. 2).

approach. The cyclic redundancy check (CRC) is also used

in the re-decoding schemes such as SC-flip and the shifted-

pruning based list decoding.

III. UPDATING THE INTERMEDIATE INFORMATION

A. Intermediate LLRs

The factor graph shown in Fig. 1 has N log2N nodes

however, as it was shown in [2], it is sufficient to update/access

at most N − 1 intermediate LLRs out of N log2N LLRs for

decoding any bit ui, 0 ≤ i ≤ N − 1. Fig. 1 illustrates the

LLRs associated with decoding bit u3 in a tree form on the

factor graph. As can be seen, there are 2s LLRs in stage s
for s = 0, ..., n. Hence, according to the geometric series, we

need a total memory space of

n
∑

s=0

2s = 2n+1 − 1 = 2N − 1 (3)

Suppose ui is the bit that was just decoded and bin(i) =
in−1...i0 is the binary representation of index i where the least

significant bit is indexed 0 and most significant bit is indexed

n−1. . The stages are updated from right to left (where s = 0).

The first stage to be updated is obtained by finding the first

one, ffo, or the position of the least significant bit set to one

as

η(i) = ffo(in−1...i0) =

{

min
it=1

(t) i > 0

n− 1 i = 0
. (4)

Note that in the semi-parallel hardware architecture [2],

since the LLRs are stored in blocks, memory usage

is inefficient such that there will be some unused memory

space. In fact, the reduction in the number of processing
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Fig. 2. An illustrative example for updating partial sums of stage s = 2 after
decoding u3.

elements is traded with slightly higher clock cycles and larger

memory space.

B. Partial Sums

The Partial sums are the other set of intermediate informa-

tion needed for the SC process. It turns out that we need the

same memory space for the partial sums as well, i.e., at most

N − 1 memory elements. It was observed in [2] that we need

to store 2s bits corresponding to 2s nodes of type g at stage

s, which are waiting to be summed with the next decoded bit.

Here, let us define an operator that indicates the last stage to

be updated. The last stage that its partial sums to be updated

is obtained by finding the first zero, ffz, or the position of the

least significant bit set to zero as

ψ(i) = ffz(in−1...i0) = min
it=0

(t). (5)

It turns out that this is the only stage that consists of G nodes

in the process of updating LLRs from stage s = ffo(bin(i)) up

to s = 0. Clearly, after decoding the last bit where there is no

zero in the binary representation of the index, bin(N − 1) =
11...1, there is no need to update partial sums.

Fig. 2 shows N − 1 = 8 − 1 = 7 partial sums (β0 to β6)

associated to u3. The β values in orange are updated after

decoding bit u3 as β6 = u3, β5 = u3⊕β0, β4 = u3⊕β2, and

β3 = u3 ⊕ β1 ⊕ β3.

There are methods proposed in [9], [10] for hardware

implementation that require slightly less memory space for

updating the partial sums.

You may notice that for i ∈ [0, N − 2], we have

ψ(i) = η(i+ 1) (6)

That is the reason why at any bit i ∈ [1, N−1], the stage η(i)
where its LLRs needs to be updated consists of only g nodes.

Therefore, after decoding bit i − 1, the partial sums of this

stage are updated to be used for the g nodes at stage η(i).

IV. PROPERTIES OF THE SC PROCESS

We discover some properties of the SC algorithm that can

help us to rewind the process efficiently. The goal is not storing

all the N log2N values for LLRs and partial sums or restarting

the SC process from bit 0 in the SC-based decoding when a

re-decoding attempt is required. First, let us define an operator

that helps us in the upcoming analysis.

Definition 1. The operator φ(j) finds the last zero, flz, or the

position of the most significant bit set to zero in the binary

representation of j = (jn−1...j0)2 indexed in reverse order as

φ(j) = flz(jn−1...j0) =

{

n− 1−max
jt=0

(t) j < 2n − 1,

n− 1 j = 2n − 1
(7)

for every t ∈ [0, n− 1]. We denote the output of the operator

φ(j) by parameter p.

Note that since the indexing is in the opposite direction

when the most significant bit is set to zero, i.e., jn−1 = 0,

then we get p = 0, and when the only zero bit is j0 = 0 or

there is no 0-value bit, then p = n− 1.

Definition 2 (Set Zp). We group the bit indices j ∈
[0, 1, ..., 2n − 1] based on the identical p = φ(j) into n sets

denoted by set Zp with order p = 0, 1, ..., n− 1, or

Zp = {j ∈ [0, 2n − 1] : φ(j) = p} (8)

Example 1. For n = 3, we can group the indices 0 to 7

into the following sets: Z0 = {0, 1, 2, 3}, Z1 = {4, 5}, and

Z2 = {6, 7}.

Remark 1. The distribution of non-frozen indices in set A
among sets Zp, p ∈ [0, n − 1] depends on the code rate. As

the code rate reduces, a fewer non-frozen indices will exist in

low order Zp, i.e., Zp with small p.

Lemma 1 (Properties of Zp). For any n > 0 and p ∈ [0, n−1],
set Zp has the following properties:

a. The boundaries of set Zp are

Zp =

{

[2n−2n−p, 2n−2n−(p+1)−1] 0 ≤ p < n− 1,

[2n−2n−p, 2n−1] p = n− 1
(9)

b. The size of set Zp is

|Zp| =

{

2n−p−1 0 ≤ p < n− 1,

2 p = n− 1
(10)

c. The smallest element in set Zp is

zp = min(Zp) =

n−1
∑

x=n−p

2x = 2n − 2n−p (11)



Proof. Let us first introduce a notation for the binary repre-

sentation of a positive integer with length n. Given {0, 1}x

indicates a mixed string of 0 and 1, and {b}x, b ∈ {0, 1}
denotes a uniform string of either 0 or 1, both with length x.

In set Zp, p < n−1, observe that the elements are in the form

of {1}p + {0}+ {0, 1}n−(p+1) where the operator ’+’ is used

for concatenation and {1}p is/are the most significant bits.

a. The smallest element of set Zp in binary is

{1}p + {0}+ {0}n−(p+1) = {1}p + {0}n−p

which is equivalent to

n−1
∑

x=n−p

2x = 2n − 2n−p

in decimal. Similarly, one can see that the largest ele-

ment in set Zp, p < n− 1 is

{1}p+{0}+{1}n−(p+2) =
(

{1}n
)

2
−
(

{1}+{0}n−(p+2)
)

2

which is equivalent to (2n − 1)− 2n−(p+1) in decimal.

Note that the largest element in set Zp, p = n − 1 is
(

{1}n
)

2
= 2n−1 while the smallest element follows the

relationship discussed above.

b. Given the interval [min(Zp),max(Zp)] in part a of this

lemma, we can find the size of set Zp by max(Zp) −
min(Zp) + 1.

c. It follows from part a of this lemma that the lower bound

of the values in set Zp in binary is {1}p+{0}n−p which

is equivalent to
∑n−1

x=n−p 2
x = 2n − 2n−p in decimal.

�

Example 2. For n = 4, we have zp for p = 0, 1, ..., n− 1 as

z0 = (0000)2 = 0, z1 = (1000)2 = 8

z2 = (1100)2 = 12, and z3 = (1110)2 = 14

or based on the lower bound of Zp in Lemma 1 as

z0 = 2n − 2n−0 = 16− 24 = 0, z1 = 16− 23 = 8

z2 = 16− 22 = 12, and z3 = 16− 2 = 14

Let us find the deepest updated stage while decoding any

bit i within set Zp in the following lemma.

Lemma 2. For any i ∈ Zp, p ∈ [0, n− 1], and zp = min(Zp)
we have

max
i∈Zp

(η(i)) = η(zp) (12)

Proof. Let us recall the notation {1}p + {0}+ {0, 1}n−(p+1)

for i ∈ Zp, p < n − 1 where the operator ’+’ is used

for concatenation and {1}p is/are the most significant bits.

According to (4), the maximum value for η(i), i.e., the largest

index for the least significant bit set to one for i ∈ Zp, is

obtained when we have

bin(i) = {1}p + {0}+ {0}n−(p+1) = {1}p + {0}n−p

which is the smallest element in set i ∈ Zp, p < n − 1, i.e.,

zp = min(Zp).
For p = n − 1, although the notation is in the form of

{1}n−1+{0, 1}1, the largest index for the least significant bit

set to one is similarly obtained from {1}n−1 + {0} which is

the smallest in set Zn−1 �

Clearly, when p = 0, we have max(η(i)) = η(0) = n − 1
for any i ∈ Z0.

Remark 2. From Lemma 2 we conclude that the deepest stage

that the intermediate LLRs are overwritten/updated is when

decoding the smallest bit index in set Zp. Recall that the partial

sums used at stage η(zp) are provided after decoding bit with

index zp − 1 according to (6).

Now we consider updating intermediate information for i
in different sets of Zp.

Lemma 3. For any p, p′ ∈ [0, n− 1], p < p′, we have

η(zp) > η(zp′) (13)

Proof. It follows directly from (4) and part c of Lemma 1.

Note that zp is in the form of {1}p+{0}n−p. It can be observed

that for the smaller p, the position of the least significant bit

set to one has a larger index. Therefore, η(zp) is larger. �

Corollary 1. For any p, p′ ∈ [0, n− 1], p < p′, we have

ψ(zp − 1) > ψ(zp′ − 1) (14)

Proof. As η(zp) = ψ(zp − 1) according to (6), then based on

Lemma 3, it follows that ψ(zp − 1) > ψ(zp′ − 1). �

Remark 3. From Lemma 3 and Corollary 1, we conclude

that intermediate LLRs and partial sums of stage η(zp) are

not overwritten/updated when we are decoding any bit with

index i ∈ Zp′ , p < p′.

Remark 4. As per Remark 3 and the fact that updating the

intermediate information is performed from stage η(zp) to

stage 0, rewinding the SC algorithm from bit i ∈ Zp′ to

bit zp, p < p′ does not require any additional update of the

intermediate LLRs or partial sums.

We will use remarks 3 and 4 in the proposed approach later.

V. EFFICIENT PARTIAL REWIND

We learned in Section III that we could save memory

significantly by knowing the required intermediate LLRs and

partial sums needed for decoding each bit. However, there

is a drawback to this efficiency. Since we use limited space

for intermediate information instead of N log2N memory

elements, we have to overwrite the current values we no

longer need to proceed with decoding. In the normal decoding

process, the overwriting operation does not cause any data

corruption. However, if we need to move backward like in

SC-flip, shifted-pruning, or Fano decoding, we may no longer

access the intermediate information as it may have been lost

due to overwriting.



In this section, based on the properties of the SC process we

studied in Section IV, a scheme is proposed such that rewind-

ing the SC algorithm is performed efficiently by significantly

fewer computations comparing with restarting the algorithm.

Suppose the SC algorithm is decoding bit i and needs to

rewind the SC process to bit j, j < i, and i, j ∈ A. In SC-

flip scheme and shifted-pruning-scheme, we have i = 2n − 1
however, in Fano decoding, i ≤ 2n − 1, i ∈ A. Since the

required intermediate information for decoding bit j may

partially be overwritten, we may need to rewind further to

a position denoted by jp. From jp, the SC algorithm proceeds

with the normal decoding up to position j. We shift the pruning

window at this position, or we flip the bit uj and then continue

the normal SC-based decoding.

Now, the question is what the position jp is? Let us assume

i ∈ Zp′ and j ∈ Zp. Then,

jp =

{

zp if zp < zp′

zp′ if zp = zp′

(15)

Example 3. Suppose N = 25 and we need to rewind

the SC algorithm from position i = 31 = (11111)2 to

j = 19 = (10011)2. We know that i ∈ Z4 and j ∈ Z1.

Therefore, according to (15), jp = zp = 16 = (10000)2.

Recursion for Case zp = zp′ : For the case zp = zp′ in (15),

we may choose a position k, jp < k ≤ j for rewinding, which

is more efficient. To this end, let us k ← j and m← n, then

while φ(k) 6= 0:

• first, truncate the binary representation of k =
(kn−1...k1k0)2 by removing the bits from position m−
1−φ(k) to the most significant bit (inclusive), i.e. position

m−1. Note that after truncation, we have a binary number

with length m = m− (φ(k) + 1).
• secondly, find the new set Zp′′ such that k ∈ Zp′′ for

k =
∑n−1

t=m−(φ(k)+1) jt · 2
t − k.

• then, jp =
∑n−1

t=m−(φ(k)+1) jt · 2
t + zp′′ .

We can continue the above procedure recursively to minimize

zp′′−j. Note that in this recursion, k and m are being replaced

with new values at each iteration.

Example 4. Suppose N = 25 and we need to rewind

the SC algorithm from position i = 22 = (10110)2 to

j = 19 = (10011)2. We know that i, j ∈ Z1 and therefore

jp = zp = 16 = (10000)2. We truncate j = (10011)2 as

mentioned above. We get k = (011)2, k ∈ Z0, and zp′′ = 0.

Hence, the new jp is jp = zp + zp′′ = 16 which is the same

as before.

Example 5. Suppose N = 25 and we need to rewind the SC

algorithm from position i = 22 = (10110)2 to j = 20 =
(10100)2. We know that i, j ∈ Z1 and therefore jp = zp =
16 = (10000)2. However, if we truncate j = (10100)2 as

mentioned above, we get t = (100)2, t ∈ Z1, and zp′′ = 4.

Hence, the new jp is jp = zp + zp′′ = 16 + 4 = 20.

One can observe that the recursion is not used in the

schemes that the rewind is performed from the last bit index.

Fig. 3. An illustrative example comparing the target position j and update
position jp

The reason is that bit index 2n − 1 ∈ Zn and this set has

only one other element which is 2n− 2 = zn−1. On the other

hand, if we need to rewind the SC process to a bit index

smaller than zn−1, the target bit index will fall into another

set Zp with different zp. Hence, this may be used for Fano

decoding where the case zp = zp′ is possible. Note that we do

not numerically evaluate this approach for Fano decoding as

we do not have any other approach to compare with. We can

either use this approach or simply we can store all N log2N
intermediate LLRs and partial sums and trade a significant

complexity reduction with the memory efficiency.

Now, let us adapt the proposed approach for rewinding more

than once. In the shifted-pruning scheme (and in the SC-

flip scheme), we may need to repeat the rewind of the SC

process up to T times. Therefore, we need to take this into

our consideration. Assuming t ∈ [1, T ] indicates the current

iteration, and j(t) and jp(t) denotes the j and jp of iteration

t, then jp of the current iteration is obtained by considering

jp(t− 1) as follows:

jp =

{

jp(t− 1) if jp(t) > jp(t− 1)

jp(t) otherwise
(16)

As (16) shows, if the destination position of the current

iteration j(t) is larger than the destination position of the

previous iteration, the intermediate information is not valid.

The reason is that some modification (bit-flipping or shifted-

pruning) occurred at position j(t − 1) that affects not only

the intermediate information but also the decoded data. In

other words, we need to go to position j(t− 1) and undo the

modification and proceed with the decoding up to the position

j(t) and then perform the modification of the current iteration.

Note that if both j(t) and j(t − 1) are in the same Zp, then

jp(t) = jp(t− 1), hence there will be no difference.

Fig. 3 compares j and jp for an example where 5 iterations

are occurring.

Furthermore, when rewinding the list decoder from the

last bit position, N − 1, to position jp, some of the paths

that existed at position jp in the previous iteration might be



eliminated in between and be replaced with other paths. This

potential replacement should be addressed when we have a list

of paths/candidates, such as in the shifted-pruning scheme, not

in the SC-flip scheme. To simplify the problem, we can limit

the positions jp to jp = 2n−1. Because all the computations of

the intermediate LLRs from this position, 2n−1, up to the last

position, 2n − 1, are performed solely based on the channel

LLRs and partial sums of stage ψ(2n−1− 1). Hence, we need

to store the decoded data, u[0 : 2n−1−1], and the path metric

of all the paths at position 2n−1−1. Partials sums can be stored

as well or can be computed simply by u[0 : 2n−1 − 1]GN/2.

VI. NUMERICAL RESULTS

We show that in the additional decoding attempts in SC list

decoding and SC decoding, the average complexity (in terms

of required time-steps and node visits) can be significantly

reduced by partial rewinding instead of full rewinding of SC-

based decoder. Note that taking average over all the decoding

attempts including the successful attempts in the first run does

not give a good insight and a fair comparison in particular

at medium and high SNR regimes. The reason is that only

a small portion of the total attempts fail requiring additional

attempts, e.g., less than 10 failures in 104 decoding attempts

in the FER range of 10−4. Hence, the impact of this small

portion becomes negligible on the average number of total

attempts per codeword at high SNR regimes.

Figures 4 and 5 compare the average computational com-

plexity of shifted-pruning scheme with and without partial

rewinding for two different codes. In Fig. 4, the FER and

time complexity of polar code of (512,256+12) constructed

with DEGA (2dB) [11] and concatenated with CRC12 with

polynomial 0xC06 under SC list decoding with list size L = 8
with shifted-pruning (SP) are shown. The FER before and after

using the efficient partial rewind (PR) scheme clearly shows

that the proposed efficient partial rewind scheme does not

degrade the decoder’s performance as we expected. However,

it reduces the average time-steps over additional iterations

(when the decoding fails) by over 30% (from 2N − 2 = 1022
time-steps (or clock cycles) [2] down to about 700 time-steps).

The average time steps over all the iterations also reduce, but

at high SNRs, it approaches 1022. The reason is that at high

SNR regimes, the number of errors, FER, is low. Compared

with the total number of codewords decoded successfully, just

a small number of codewords are failed to be decoded in the

first attempt and need additional attempts/iterations.

As Fig. 5 shows, the reduction in the average time com-

plexity for efficient partial rewind scheme improves for polar

code P(512,128+12) constructed with DEGA (1 dB). The

average time-steps over additional iterations by about 45%

(from 2N − 2 = 1022 time-steps down to about 570 time-

steps). The reason is that at a low code rate of R = 1/4,

the positions j for shifting the pruning window are mostly

located in the interval [N/2, N−1] where the partial rewinding

can be effective in reducing the complexity. Recall that if

j ∈ [0, N/2 − 1] = Z0, then jp = zp = 0. That means a

full rewind is needed. One can guess that the reduction in the
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complexity would be less at high code rates where the position

j for shifting are dominantly located in [0, N/2− 1] = Z0 as

the reliability of these bit-positions are less relative to the ones

in [N/2, N − 1].

Similarly, we can show a significant reduction in the com-

plexity of the additional attempts in the SC-flip decoding

algorithm. Fig. 6, 7, and 8 illustrate the reduction in the node

visits on average for CRC-polar codes of length N = 512
at rates R = 1/4, 1/2, 3/4. The metric used in the SC-flip
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Fig. 6. Comparison of FER and average node visits of P(512,128+12) under
SC decoding without and with (w/) bit-flipping, and with partial rewinding
(PR). ’all’ and ’add’ indicate averaging over all the decoding iterations and
averaging only over additional iterations, respectively.

implementation is similar to the one in [3] as our purpose

in this work is not the performance of SC-flip but to show

the reduction in the complexity. Hence, a similar result can

be obtained by applying the partial rewind on any variant

of the SC-flip decoder. As can be seen, the FER remains

unchanged by partial rewind, while the additional decoding

attempts are performed with significantly lower node visits on

average. This reduction increases at high SNR regimes as the

targeted positions for bit-flipping become more accurate and

their number decreases. The main contribution to this decrease

is related to 16 where jp = jp(t) in the fewer additional

attempts, mostly one attempt.

Fig. 9 compares the time complexity at at rates R =
1/4, 1/2, 3/4. By recalling Remark 1, one can observe that at

low code rates, (N−1)−jp on average decreases significantly

comparing with high rates, therefore, we expect to visit a fewer

nodes in the additional decoding attempts and consequently the

time complexity reduces more than high code rates. Similar to

node visits, this reduction increases at high SNR regimes as the

targeted positions for bit-flipping become more accurate and

their number decreases. Note that the average time complexity

over additional iterations does not depend on the code rate if

we don’t use partial rewinding as we start redecoding from bit

0 for any code rate.

VII. CONCLUSION

When decoding fails in the first decoding attempt, a partial

rewind of the SC process for additional attempts is needed

in the memory-efficient SC-based decoders. In this paper, an

efficient partial rewinding approach based on the properties

of the SC algorithm is proposed. This approach relies on the

properties of the SC process and its updating schedule. Then,

this scheme is adapted to multiple rewinds, and to SC list
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Fig. 7. Comparison of FER and average node visits of P(512,256+12) under
SC decoding without and with (w/) bit-flipping, and with partial rewinding
(PR). ’all’ and ’add’ indicate averaging over all the decoding iterations and
averaging only over additional iterations, respectively.
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Fig. 8. Comparison of FER and average node visits of P(512,388+12) under
SC decoding without and with (w/) bit-flipping, and with partial rewinding
(PR). ’all’ and ’add’ indicate averaging over all the decoding iterations and
averaging only over additional iterations, respectively.

decoding, where there exists more than one path comparing

with SC decoding. The numerical results show a significant

reduction in the average time and computational complexity

of additional decoding attempts in the SC-flip decoding and

SC list decoding under the shifted-pruning scheme while the

performance remains the same.
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