arXiv:2109.11519v1 [cs.SI] 21 Sep 2021

wsGAT: Weighted and Signed Graph Attention
Networks for Link Prediction

Marco Grassia' and Giuseppe Mangioni'

Department of Electric Electronic and Computer Engineering, University of Catania,
Catania 95100, ITALY
{marco.grassia, giuseppe.mangioni}@unict.it

Abstract. Graph Neural Networks (GNNs) have been widely used to
learn representations on graphs and tackle many real-world problems
from a wide range of domains. In this paper we propose wsGAT, an
extension of the Graph Attention Network (GAT) [24] layers, meant
to address the lack of GNNs that can handle graphs with signed and
weighted links, which are ubiquitous, for instance, in trust and corre-
lation networks. We first evaluate the performance of our proposal by
comparing against GCNII in the weighed link prediction task, and
against SGCN [8] in the link sign prediction task. After that, we com-
bine the two tasks and show their performance on predicting the signed
weight of links, and their existence. Our results on real-world networks
show that models with wsGAT layers outperform the ones with GCNII
and SGCN layers, and that there is no loss in performance when signed
weights are predicted.
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1 Introduction

Graphs (or networks) are a very flexible formalism that can be used to represent
many real-world systems made up of interacting entities [20]. In a network, nodes
represent entities and links model how they interact. For instance, in a social
network, nodes can be people while links among them represent some kind of
social interaction, such as friendship or acquaintance relations [3]. Depending on
the modeled system, links can be also directed [2] and/or weighted [21]. Direc-
tionality means there is an asymmetric relation among nodes, as it happens in a
social media, like Twitter, where a user Bob may follow Alice, while Alice is not
required to follow Bob’s Twitter account. Moreover, relations can be character-
ized by different strength levels, that are represented in a network by labelling
links with weights expressed in an appropriate scale.

Signed networks [16] are another class of networks, where links can be positive
or negative. They are especially used to model good or bad relations among
nodes. A notable example are trust networks [TI4lJ5], where nodes are users and
positive/negative links among them are used to model trust/distrust relations.
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In general, signed networks can also be weighted, so relations can be positive or
negative and with a given strength. Considering again trust networks, each link
can express more or less strong relationships of trust or distrust. Weighted and
signed networks are also commonly used to represent correlations networks [T9J7],
where links among entities express the level of correlation that, in general, can
be a positive or negative real number.

To solve many (hard) problems on networks, deep learn techniques have
recently been used [26l25/TTIT0]. In particular, they employed Graph Neural
Networks (GNNs) [22] to learn representations on graphs by abstracting from
the specific application domain. GNNs are powerful tools and their applicability
has been successfully demonstrated even to solve very complex problems, such
as link prediction in complex networks. Among different GNN layer model, the
Graph Attention Networks (GATs) [24] are one of the most promising, both in
terms of performance and flexibility in solving problems in different domains.
The original GAT formulation only took into account (un)directed un-weighted
networks. In this paper we propose wsGAT, an extension of the GAT to cope
with signed and weighted networks. We show wsGAT applicability to real-world
signed and weighted networks by solving the link prediction task.

We compare wsGAT performance by solving the same task with GCNII [6]
and SGCN [8] models, respectively used to perform weighted and signed link
prediction. Our results show that models with wsGAT layers outperform the
ones with GCNII and SGCN layers.

The paper is organized as in the following. Section [2] formally introduces
our proposed model and how it works, whereas Section [ illustrates the experi-
ments carried out on real-world datasets together with a comparison with other
approaches. Finally, Section @] provides some concluding remarks and ideas for
future developments.

2 Formulation

In this paper, we extend the Graph Attention Networks (GAT) [24] by modifying
the computation of the attention coefficient to also account for the (signed) link
weight.

As common in the literature, we indicate with hgﬁ) € R¥% the node embed-
ding of node i after the k-th GNN layer, where F} is the number of features.
According to this notation, h%o) are the node’s input features x,,.

In the original GAT formulation, the authors borrow the attention mecha-
nism [23], defined to handle variable length sequences and used successfully in
the Natural Language Processing (NLP) field, to assign a (relative) importance
score to each of the neighbors of the target node. Specifically, they compute the
attention coeflicient ay; of a node 7 for each neighboring node j as in equation [l

Oé?j = softmax(LeakyReLU(e})); (1)

¢ — al (Wh; || Why) (2)

)
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where W* € RFsxFr+1 is a learned weight matrix, al € R%Fr+1 is a learned
weight vector and || is the concatenation operator.

The attention coefficient is then used to scale the incoming node embedding
of the neighbours as in equation 3

BV = (0 alhg?) (3)
JEN;U{i}

where f is an activation function, N is the neighbourhood of node 4, and
may include the node i itself if self-loops are added to the network.

The main limitation of this formulation is that the same weight matrix W* is
applied independently to both of the embeddings of the target and neighbouring
nodes, i.e., they are combined linearly. To achieve better attention scores, other
approaches that use Multi-Layer Perceptrons have been proposed [12].

We follow this trend and also account for the (signed) link weight w;; in
the attention computation. In detail, we first modify the computation of efj as
follows:

k k
ef; = MLPF(b(™ | b || wi;) (4)

where M LP* is a Multi-Layer Perceptron with the only requirement that
the last layer can also produce negative values (e.g., a zero-centred activation
function is used) and w;; is the weight of the link.
The attention coefficients are then computed as:
k

af; = sign(e;;) - softmax(abs(el)), (5)

That is, in our formulation «;; € [—1, 1], meaning that the contribution of
each neighbouring node to equation 3] can be positive or negative.

The choice of a Multi-Layer Perceptron allows the network to learn the rela-
tive importance of the features of the neighbouring nodes j, with respect to the
ones of the target node 7, and is also affected by the weight and sign of the link
between them.

As in the original GAT formulation, wsGAT also support multi-head atten-
tion, meaning that multiple embeddings for a node can be computed — each
using a different set of parameters — and concatenated/sum together.

3 Results

To validate the proposed wsGAT layer, we test it in the link and weight predic-
tion task on real-world trust networks.

Since, to the best of our knowledge, no other GNN layer can handle both
signed and weighted links, we first decompose the final task of signed and
weighted link prediction in two sub-tasks and compare our proposal against the
state-of-the-art layers. Specifically, we first compare on the link sign prediction
with Signed Graph Convolutional (SGCN), and on the (unsigned) link weight
prediction with GCNII.
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3.1 Dataset

We test our proposal on 4 real-world trust networks. More in detail, we test
on the who-trusts-whom networks from the Advogato online community, where
trust 4 trust levels can be assigned (corresponding weights are from 0.4 to 1.0
with 0.2 step), from the Bitcoin Alpha and OTC platforms, where scores are on
a scale of -10 (total distrust) to +10 (total trust), and from the Epinions.com
community, where users can assign a positive or negative trust score to each
other. We summarize the networks used for the experiments in Table [0l

Network [V] |[E| [Positive Links|Min. Link Weight|Max. Link Weight|Refs
advogato 6,541| 51,127 100% 0 1 17
bitcoin-alpha| 3,783| 24,186 89.98% -10 10 14
bitcoin-otc 5,881| 35,592|  93.64% -10 10 14
epinions 131,828|841,372 85.29% -1 1 [18]

Table 1. Dataset. Details about the networks used in this paper.

3.2 Sign prediction

In the first sub-task, we perform sign prediction — i.e. prediction of the kind of
relationship (positive or negative) between two nodes in trust networks — and
compare against SGCN [§].

The SGCN layer, to the best of our knowledge, is the only one able to
handle signed links. In particular, they use balance theory and compute two
feature sets for each node by splitting the node neighbourhood into two sub-
neighbourhoods (i.e., one with all the positive links and the other with all the
negative ones). That is, each node has a positive and a negative feature sets. This
is a limitation from a Network Science perspective, as the two sub-networks
may have different characteristics w.r.t. the original network, or disconnected
components may emerge (e.g., in the case of unbalanced link signs). However,
authors mitigate this issue by influencing each feature set with the other: when
computing the positive node features, they also sum a function of the negative
ones, and vice-versa. Another limitation of SGCNs is that they do not support
link weights, which is useful in many contexts, like the trust one.

For a fair comparison with this approach, we use the same input spectral
features and the same train methodology proposed in their paper. In detail, we
provide the Signed Spectral Embedding (SSE) from [I5] as input node features,
and use a node classifier that predicts whether, given a pair of node embeddings,
the link between the two nodes is positive, negative or non-existent. During the
training phase, we provide 80% of existing links as train examples (and remove
the remaining ones from the network), plus the same number of non-existing
ones sampled randomly. However, in analogy to their methodology, we predict
only the sign of existent links during testing.
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We employ the Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) curve and the Fl-scores to evaluate the prediction performance.
According to sign prediction results, shown in Table Pl wsGAT outperform the
best SGCN algorithm on the three signed networks in our dataset. It is worth
noting that the SGCN results for the epinions network differ from the ones re-
ported by the authors in their paper as we do not filter low-degree nodes from
the graph.

GNN Layer | bitcoin-alpha bitcoin-trust epinions
SGCN2 0.796 | 0.917 | 0.823 | 0.925 | 0.842 | 0.946
wsGAT 0.832 | 0.967 | 0.845 | 0.953 | 0.839 | 0.949

Table 2. Sign prediction results (ROC AUC — F1).

3.3 Weight prediction

In the second sub-task, we perform link weight prediction — i.e., predict the (un-
signed) strength of the relationship between two nodes —. Here, we compare
against GCNII [6] that were proposed to simplify and improve the Graph Con-
volutional Networks (GCN) by Kipf et al. [13]. For both wsGAT and GCNII we
employ the same model architecture: after the GNN layers we use two Multi-
Layer Perceptrons; while both take a pair of node embeddings as input, one is
trained to predict if the existence of the link between the input nodes, the other
is trained to predict the weight. Both MLPs in our tests have fixed number of
layers (3) and neurons (100 neurons per layer, 1 output).

Regarding the training, we split the network links into training links (80%)
and test links (20%, removed before the training). In addition, for each set we
sample the same number of non-existing links to provide the negative examples,
and assign a 0 weight to them.

This time we use the ROC AUC and the F1 scores to evaluate the link
prediction performance, and we measure the error on the weight prediction (only
for existing links) with the Mean Absolute Error (MAE). The weight prediction
results are reported in Table Bl wsGAT outperform the GCNII not only in the
link prediction task, but also predict more accurate link weights.

3.4 Signed weight prediction

Finally, we merge the two sub-tasks discussed previously and predict the exis-
tence of links and of their signed weight.

As in the weight prediction sub-task, we use the AUC and the F1 to measure
the link prediction performance, and the MAE to measure the error on the weight
prediction.
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GNN Layer advogato bitcoin-alpha bitcoin-trust

GCNII 0.880 | 0.824 | 0.158 | 0.912 | 0.841 | 0.1470 | 0.909 | 0.830 | 0.179
wsGAT 0.910 | 0.839 | 0.142 | 0.923 | 0.851 | 0.130 | 0.929 | 0.860 | 0.154
Table 3. Absolute weight prediction results (ROC AUC — F1 — MAE).

Note that while the higher the AUC and F1 scores the better, MAE is an error score
and lower values represent smaller errors.

The results on the signed and weighted Bitcoin networks, reported in Table[d]
show that the link prediction performance is almost the same as the un-signed
case, and the mean absolute error (now on a scale from -10 to +10) drops sig-
nificantly.

GNN Layer bitcoin-alpha bitcoin-trust
wsGAT 0.922 | 0.839 | 0.069 | 0.921 | 0.852 | 0.079
Table 4. Signed weight prediction results (ROC AUC — F1 — MAE). Note
that while the higher the AUC and F1 scores the better, MAE is an error score and
lower values represent smaller errors.

3.5 Code availability

wsGAT were implemented on top of PyTorch Geometric [9] v1.6.3. Code will
be publicly available after the publication of the paper at the following URL
https://github.com/NetworkScienceLab/wsGAT.

4 Conclusions

In this paper we present wsGAT, an extension of Graph Attention Networks
(GAT) to signed and weighted networks. The results in link prediction tasks on
signed and weighted real-world trust networks and the comparison with state-
of-the-art algorithms confirm the validity of our approach, that provides a useful
tool for many research and application scenarios, not limited to link prediction.
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