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Complex nonlinear dynamics are ubiquitous in many fields. Moreover, we rarely have access to all
of the relevant state variables governing the dynamics. Delay embedding allows us, in principle, to
account for unobserved state variables. Here we provide an algebraic approach to delay embedding
that permits explicit approximation of error. We also provide the asymptotic dependence of the first
order approximation error on the system size. More importantly, this formulation of delay embedding
can be directly implemented using a Recurrent Neural Network (RNN). This observation expands
the interpretability of both delay embedding and RNN and facilitates principled incorporation of
structure and other constraints into these approaches.

I. INTRODUCTION

Forecasting dynamical systems is important in many
disciplines. Weather and climate [1], ecology [2, 3], bi-
ology, [4, 5], fluid dynamics [6] etc. are generally mod-
eled with nonlinear, discrete time equations or contin-
uous time differential equations. In many cases, these
non-linear systems are chaotic and subject to stochastic
drivers. However, the empirical data available are often
incomplete; It is common to observe only a subset of the
state variables or measure some coarse-grained statistic
of the underlying state. In such a situation, all hope
is not lost; Takens embedding theorem [7] shows that
time-delayed versions of a single observable can be used
in place of the unobserved dimensions to reconstruct the
attractor manifold permitting accurate short- and mid-
term forecasts [8].

Takens theorem shows that any universal function ap-
proximator (given enough data) would be able to infer
the function mapping the delay state vector to its future
value. However, the proof of Takens’ theorem is topo-
logical and non-constructive. Therefore, one approach to
reconstruct dynamics using partial state variables is ac-
complished by using off-the-shelf function approximation
methods to infer the function mapping the delay vector
to its future values from time series data.

Due to the recent developments in machine learning,
there are abundant choices for tools to perform nonlinear
regression. The common candidates are local linear re-
gressions, neural networks and Gaussian processes [9–13].
Recurrent Neural Networks (RNN) and its variants are
some of the most widely used tools for time series predic-
tion. Although RNNs have been successfully applied to
forecasting in a wide range of problems, literature on the
mathematical reasons why they work so well is largely
lacking [14, 15]. Early justifications for using a recurrent
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architecture include 1) being able to store temporal in-
formation [16], 2) neural networks with feedback capture
time dependencies better, 3) are natural candidates for
nonlinear autoregressive models [17], 4) leads to reduced
number of parameters due to weight sharing [18]. RNNs
were also used for time series prediction due to their abil-
ity to be continually trained [19]

Neural network architectures for nonlinear dynamics
are generally benchmarked on large data applications.
Although there are asymptotic results proving the effi-
cacy of some of these architectures, these results are not
useful in many real world use cases where data can be
limiting. Neural networks are also known to require a
high-degree of application-specific hyperparameter tun-
ing [18]. This makes it hard to use neural networks
where there isn’t sufficient data for a dedicated valida-
tion dataset. Progress can be made by assuming smooth-
ness of the underlying functions to obtain less stringent
requirements on the size of data needed to embed high-
dimensional dynamics [20, 21].

Here we present a new approach to delay embedding
through simple algebraic manipulation of the dynami-
cal equations. We derive an approximation to the delay
dynamics in terms of the original dynamics. We hypoth-
esize that this approximation allows us to infer the delay
map more efficiently with less data due to two reasons -
1) the original dynamics will be smoother than the de-
lay function due to the distortions introduced by folding
of the attractor manifold [22], and 2) the original dy-
namics are generally of smaller dimensionality than the
delay function. We also discuss how our approximation is
amenable to mechanistic interpretation unlike traditional
delay-embedding and nonlinear autoregressive models.

We use this approximation to encode a Recurrent Neu-
ral Network (RNN) to accomplish forecasting chaotic
dynamics. Connections between dynamical system and
RNN have been made in the past [23–25]. However, these
connections do not take advantage of the recurrent na-
ture of partially observed dynamics.

In general data-driven function approximation meth-
ods work well when the time series data has a wide cov-
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erage across the domains of the functions. This is truly
achieved when the dynamics are ergodic. In a practi-
cal setting, chaos or stochasticity too can be sufficient to
achieve this.

In the next section, we calculate the first order error
due to partial observation of a system. We then develop
a recursive approximation of the dynamics using only the
observed states, and calculate the first-order expansion of
the covariance of the recursion error. In section III, we
develop a recurrent neural network architecture that uses
the recursive structure of the dynamics of the observed
states. In section IV, we illustrate the effects of partial
observation on the delay dynamics using both an ana-
lytically solvable example and more complex dynamics
commonly used in biophysical systems. We use short sim-
ulated time-series as the effectiveness of the RNN struc-
ture over feed-forward networks is most evident when
the number of training points is less than a hundred.
Finally, we discuss the potential for using other function
approximators to take advantage of the general structure
of dynamics to achieve more efficient representations of
data.

II. RECURSIVE EXPANSION OF DYNAMICS

Assume the dynamics are completely represented
with a system of M state variables, say zt =

{z1,t, z2,t, ..., zM,t}T and the dynamics are given by

dz1
dt

= f1 (zt) (1)

...

dzM
dt

= fM (zt)

However, the subsequent arguments are more transparent
in discrete time, so we work with the corresponding flow
map integrated on a unit time step, z1,t = F1 (zt−1),...
zM,t = FM (zt−1) which we write compactly as zt =
F (zt−1)

Since our focus is on partially observed systems, we
split the state variables zt into two subsets: xt =

{z1,t, z2,t, . . . , zn,t}T representing the observed state

variables and yt = {zn+1,t, . . . , zM,t}T containing the
remaining, unobserved state variables. We re-write the
dynamics as

xt = F (xt−1,yt−1)

yt = G (xt−1,yt−1) (2)

where F represents the maps for the n observed states
and G represents the maps for the M − n unobserved
states.

There are several ways to proceed, including (i) implic-
itly accounting for the unobserved states using time lags

([26, 27]), or (ii) modeling the complete dynamics and
imputing the unobserved states using a hidden Markov
approach (e.g. [28]). However, (ii) requires that we have
a reasonable model for the complete state dynamics and
significant problems arise when the model is inaccurate.
Since we assume the complete dynamics are unknown,
we focus on (i).

As a first step to doing this, we shift the map for the
unobserved states back by one time step and substitute
this into the dynamics for the observed states.

xt = F (xt−1,yt−1)

= F (xt−1,G [xt−2,yt−2])

= Eyt−2
[F (xt−1,G [xt−2,yt−2]) |xt−1,xt−2] + εt

≈ F
(
xt−1,G

[
xt−2, ȳ

t−2
])

+ εt

(3)

where ȳt−2 = E [y|xt−1,xt−2] is the conditional expec-
tation for y given the current and previous observa-
tion for x. The apparent process noise εt is given by
εt = F [xt−1,G (xt−2,yt−2)] − F

[
xt−1,G

(
xt−2, ȳ

t−2
)]

.
The approximation in line 4 of eq. (3) assumes F and G
are almost linear for simplicity.

We can continue along this path an arbitrary num-
ber of times, each iteration adding another lag of x and
pushing back the dependence on y. Doing so d times we
get,

xt = F
(
xt−1,G

[
xt−2, . . .G

{
xt−d, ȳ

t−d} . . .])+ εt (4)

= F̃d (xt−1, . . . ,xt−d) + εt (5)

where, in keeping with the previous nota-
tion, ȳt−d = E [yt−d|xt−1, . . . ,xt−d] and
εt = F (xt−1,G [xt−2, . . .G {xt−d,yt−d} . . .]) −
F
(
xt−1,G

[
xt−2, . . .G

{
xt−d, ȳ

t−d} . . .]). As we
show in the illustrative example in section IV, we expect
the dependence of function F̂ on F and G to be com-
plicated. Therefore it is hard to connect the function F̂
with the parameters of the generators of the dynamics,
F and G. With our recursive approximation (4), we can
retain the identity of the ground-truth dynamics F and
G using our approximation (4).

To provide a benchmark for our approximation, we
estimate ε in the limit of large data. We simulate the
exact dynamics for 30000 time steps with sampling in-
tervals matching the data generated in the next sec-
tion. We discard the first 10000 points to remove tran-
sients. We use the next 10000 points to fit ȳt−d =
E [yt−n|xt−1, . . . ,xt−d]. We calculate the recursion er-
ror,

εt = xt − F
(
xt−1,G

[
xt−2, . . .G

{
xt−d, ȳ

t−d} . . .]) (6)

We can also use a first order approximation to estimate
the covariance, Σt of the apparent process noise εt,
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Σt ≈ Pt−1Qt−2 . . .Qt−dCt−dQ
T
t−d . . .Q

T
t−2P

T
t−1 (7)

where Pt−1 is the matrix of partial derivatives of F with
respect to y evaluated at xt−1 and ȳt−1, Qt−n is the ma-
trix of partial derivatives of G with respect to y evaluated
at xt−n and E [yt−n|xt−1, . . . ,xt−d], and Ct−d is the co-
variance matrix for yt−d conditional on xt−1, . . . ,xt−d,

i.e. Ct−d = E
[(

y − ȳt−d
) (

y − ȳt−d
)T |xt−1, . . . ,xt−d

]
.

Similar to the numerical estimation of the recur-
sion error above, we can evaluate the first order ap-
proximation numerically from time series data by fit-

ting Ct−d = E
[(

y − ȳt−d
) (

y − ȳt−d
)T |xt−1, . . . ,xt−d

]
from time series data. The first order approximation is
accurate for maps that are almost linear. For continuous
time nonlinear dynamics, this would correspond to short
sampling intervals.

Note that neither of these should be treated as strict
bounds on practical accuracy. However, these can pro-
vide a baseline for the expected performance independent
of the specifics of the forecast model.

III. RECURRENT NEURAL NETWORK

In a practical setting, the dynamics given by eq. (2)
can be learned from time-series data using delay vectors
by fitting the function,

xt = F̂ (xt−1, . . . ,xt−d) (8)

This can be implemented directly using standard ma-
chine learning methods [16, 21]. We implement a feed-

forward neural network (FNN) to approximate F̂ as a
benchmark. The recursive form of eq. (4) suggests that
the function approximator should be restricted among
the space of functions that can be written as a recur-
sive composition of lower dimensional functions F and
G. This can be achieved by constructing a Recurrent
Neural Network (RNN) that imitates the recursive form
in eq. (4),

x̂t = Wxft + bx

ft = af (Wf (xt−1 ⊕ ŷt−1) + bf )

ŷt−1 = Wygt−1 + by

gt−1 = ag (Wg(xt−2 ⊕ ŷt−2) + bg)

...

ŷt−d+1 = Wygt−d+1 + by

gt−d+1 = ag (Wg(xt−d ⊕ ŷt−d) + bg) (9)

Where the functions F and G are approximated as
single layer neural networks with hidden layer f and g.
af and ag are the non-linear activation functions. In this
study, af = ag = tanh . As ŷt is just a linear function of

gt, it can be absorbed into the parameters Wf , bf , Wg,
and bg to obtain a simpler neural network,

x̂t = Wxft + bx

ft = af (Wf (xt−1 ⊕ gt−1) + bf )

gt−1 = ag (Wg(xt−2 ⊕ gt−2) + bg)

...

gt−d+1 = ag (Wg(xt−d ⊕ gt−d) + bg) (10)

The model parameters, Wα and bα are chosen to mini-
mize the loss function,

L =
∑
t

‖x̂t − xt
(data)‖2 (11)

Note, since we don’t observe y, we can’t compute gt−d.
In this work, we choose gt−d randomly for simplicity
of setting up the backpropagation step. Alternatively,
gt−d can be included in the training parameters. We
train the parameters using backpropagation with RM-
Sprop optimizer [29], and use early stopping [30] to avoid
over-fitting the training data. Note, since this is a proof-
of-concept demonstration, we did not regularize using a
penalty term in the loss function, as this would make
it difficult to explicitly compare the FNN and RNN in
terms of the NN complexity. In the following sections,
we use simulated time series from popular nonlinear dy-
namics models namely, A) Discrete Lotka-Volterra model
(2D), B) Lorenz 63 model [31] (3D), C) the Duffing os-
cillator [32] (4D), and D) the Lorenz 96 model [33] (5D).
In each of these cases, we use just the first variable to
train the RNN (i.e., we only observe one variable). We
train the RNN using training time-series of length 30,
50 and 100 data points. We specifically focus on small
training datasets as the advantage of the RNN over an
FNN is larger in the data-poor regime. We expect this
to be the case as the data rich cases will be equivalently
fit with any function approximator, and systematic dif-
ferences in performance would be hard to detect due to
stochastic differences in training performance. We divide
the training data further into ‘train’ and ‘validation’ sets
that contain 75% and 25% of the data respectively for
the datasets of size 50 and 100. The early stopping pa-
rameter is chosen to minimize validation loss. The errors
reported are measured on out-of-sample ‘test’ data of the
same size as the training datasets. The errors were av-
eraged across 100 different realizations of the model in
each case.

IV. NUMERICAL EXAMPLES

A. Discrete Lotka Volterra model

To illustrate the effectiveness of the recursive approx-
imation eq. (4), we first examine a simple two-species
system, where the state variables xt (observed) and yt
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Model parameters LE Autocorrelation at dta RMSE ‘previous-value’ predictorb

Lotka Volterra r = [0.933, 1.293], A = [0.758, 1.420] 0.15 0.632 0.858
Lorenz63 ρ = 28,σ = 10,β = 8/3 0.91 0.869 0.512

Duffing Oscillator [1.,−1., 0.3, 0.5, 1.2] 0.17 0.667 0.816
Lorenz96 N = 5, F = 8 0.47 0.866 0.518

TABLE I. Descriptions of the datasets. a. Autocorrelation at the time-step used for predictions of the observed variable b.
Normalized RMSE values from predicting using the previous value. Normalized such that using mean of the time-series leads
to an RMSE= 1.

(unobserved) are quadratic functions of xt−1 and yt−1.
This is also known as a discrete Lotka-Volterra model in
ecology literature [34].

xt = rxxt−1(1− xt−1) +Axyxt−1yt−1 (12a)

yt = ryyt−1(1− yt−1) +Ayxxt−1yt−1 (12b)

Solving for yt−1 using (12a) and substituting in (12b),
we get the evolution of yt as a function of x alone,

yt = ryY(x) (1− Y(x)) +Ayxxt−1Y(x) (13)

where,

Y(x) =

(
xt − rxxt−1(1− xt−1)

Axyxt−1

)
Substituting (13) back in (12a), we obtain the dynamical
equation only in terms of x

xt = rxxt−1(1− xt−1) +

[
ry

(
x2t−1

xt−2
− rxxt−1(1− xt−2)

)
×
(

1− xt−1 − rxxt−2(1− xt−2)

Axyxt−2

)
+Ayxxt−1(xt−1 − rxxt−2(1− xt−2))

]
(14)

which is highly nonlinear. Note the resulting single-
variable dynamics is no longer quadratic and has arbi-
trarily higher-order non-zero derivatives. However the
recursive approximation (4) has a simpler functional form
and ensures that higher derivatives are bounded. Specif-
ically,

xt ≈ rxxt−1(1− xt−1)+

Axyxt−1

[
ryyt−2(1− y∗t−2) +Ayxxt−2y

∗
t−2

]
(15)

has non-zero derivatives only up to second order in x (and
in general up to order d) considering yts are constants,
thus requiring less data to reconstruct the approximate
dynamics. We calculate the theoretical recursion error ε
given by Eq. (6) and its first order approximation, Eq. (7)
in the limit of large data. We see that the errors go to
zero when the number of delays is two or greater consis-
tent with Eq. (14). We generate time-series of length 50
and 100 data points and compare the performance of the
RNN architecture (10) vs. FNN across different hidden
layer sizes. The hidden layer size limits the expressivity

of a neural network. For example, a neural network with
one-dimensional input and two hidden neurons can only
fit a function with a single peak. We see a significant im-
provement in performance of RNN over FNN for small
hidden layer sizes as expected due to the simpler func-
tions F and G required to be fit by the RNN (see Fig. 1)

as against the more complex delay function F̃. The small
number of hidden neurons forces the neural networks to
fit a function with less features, thereby making it diffi-
cult to fit the highly nonlinear function in (14). We also
see that the difference in performance between the RNN
and FNN widens with increasing number of delays due to
the increasing complexity F̃. We also compare multi-step
ahead predictions using the single-step neural networks
and iteratively applying the function on the delay vec-
tor to produce the next state. We hypothesize that the
RNN functions f and g should be better in producing
the multi-step forecast. This is because the iteration of
the more complex F̂ can lead to a larger variance at the
locations in state space not seen by the one-step training
data, compared to iterating the lower dimensional func-
tion f . We see that the RNN indeed performs better than
FNN in two- and three-step ahead prediction. The FNN
errors increase significantly more than the RNN as we
increase the number of steps hinting at the robustness
of the recurrent structure of RNN for dynamical systems
prediction.

We next look at some popular continuous chaotic dy-
namics in higher dimensions.

B. Lorenz 63 model

Lorenz 63 is one of the most popular chaotic models. It
is a first order differential equation modeling a simplified
version of atmospheric convection [31].

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz (16)

We chose a sampling rate of 10 Hz so that the prediction
problem was sufficiently non-trivial, but not impossible
(see Table I for details). The observed variable is x. We
compute training and validation loss for the neural net-
works with 2-20 hidden neurons (same number of hidden
neurons for both f and g in case of RNN), and choose the
one with the minimum validation loss. We also use the
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FIG. 1. Normalized RMSE as a function of number of delays from a FNN (blue) vs RNN (orange) for the discrete Lotka-Volterra
model (12). The top, middle, and bottom panels correspond to one-, two-, and three-steps ahead forecast error from a model
trained on one-step ahead data. The left, middle, and right panels correspond to neural networks with hidden-layers with two,
five and ten neurons each. The green dashed (dotted) lines in the top panel are numerical evaluations of the one-step ahead
recursion error (4) (and its first-order approximation (7)). Dark (light) colors are results for with a training size of 50 (100)
data points

validation loss for ‘early stopping’ the training. The re-
cursion error (6), and its approximation (7) tend to zero
with three or more delays.

The optimal number of delays for both the FNN and
the RNN is three (see Fig. 2). The optimal RMSE
is statistically indistinguishable between the FNN and
the RNN. However, the RNN has a robust performance
across all number of delays (especially for the smaller
dataset), which may be desirable for automated applica-
tions.

We also plot the hidden-layer size-specific results (see
Appendix Fig. 3). We see a similar trend as the discrete
Lotka-Volterra model for the smallest hidden layer size
(h = 2), but there is no systematic advantage to RNN
with larger hidden layers.

C. Duffing oscillator

The Duffing oscillator is a second order differential
equation with periodic forcing,

ẍ+ δẋ+ βx+ αx3 = γ cos (ωt) (17)

This can be re-written as a first-order autonomous sys-
tem by introducing the variables y = ẋ, v = cos (ωt) and
z = sin (ωt),

ẋ = y

ẏ = γv − δy − βx− αx3

v̇ = −ωz
ż = ωv (18)

We chose a sampling rate of 1 Hz, as this model has
a Lyapunov horizon that is roughly an order of magni-
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tude larger than the Lorenz63 model (see Table I). The
observed variable is x. The recursion error (6), and is
approximation (7) go to zero with four or more delays.
The optimal number of delays in this case is four (see
Fig. 2). The results for this model are qualitatively sim-
ilar to the Lorenz 63 model, that is, at optimal number
of delays, the performance is indistinguishable for the
two neural networks, but RNN is more robust across the
number of delays. This trend is similar even when we
restrict the neural networks to have small hidden layers
(see Appendix Fig. 4).

D. Lorenz 96 model

Lorenz 96 is a popular model to test tools for chaotic
time series prediction in a high dimensional setting [35,
36]. We generated time series data using the Lorenz 96
model [33]

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, 1 ≤ i ≤ N (19)

where it is assumed that x−1 = xN−1, x0 = xN and
xN+1 = x1. We use the parameters N = 5, F = 8.
The dynamics are chaotic with Lyapunov exponent =
0.472 ± 0.002. Sampling rate is 10 Hz. The observed
variable is x1. The recursion error (6), and is approxi-
mation (7) tends to zero with roughly six or more delays.
The optimal number of delays is six and eight for the
RNN and FNN respectively (see Fig. 2).

The RNN shows significantly better performance as
measured by the average RMSE in the case of the smaller
dataset. There is also a significant difference between
the optimal number of hidden neurons between the two
NNs, with the RNN opting for lower number of hidden
neurons indicating that the function to be fit is of a lower
complexity. However there is no significant difference in
performance when the neural networks are restricted to
small sizes (see Appendix Fig. 5).

V. DISCUSSION

In this study, we explore the possibility that choos-
ing the neural network architecture that is derived from
the structure of generating dynamics can lead to more
efficient recovery of the dynamics from data. We see evi-
dence for this by a significantly better prediction perfor-
mance by the Recurrent Neural Network as compared
to the Feedforward Neural Network in the small-data
regime for the discrete Lotka-Volterra model. We also
see that the RNN increasingly outperforms FNN in mul-
tistep prediction tasks when the dynamics are trained

on singlestep data. The systematic advantage RNN has
over FNN when trained with small hidden layers suggest
that the smoothness of F and G functions compared to
the delay vector F̃ can be leveraged by manipulating the
structure of neural networks.

In this study, we see that the structural advantage of
RNN comes into play when the attractor dimension is
small and the manifold is smooth. The advantage of
RNN seems to systematically diminish with increasing
dimensionality of dynamics. This is consistent with the
interpretation that the RNN is exposed to smoother func-
tional forms than the FNN which is directly fit to the
more nonlinear delay map. More work needs to be done
to fully characterize the regime where incorporating the
dynamical structure in the neural network will yield bet-
ter predictions.

Having dynamically meaningful units within the neural
networks is useful in applications where it is important to
learn the mechanistic relationships between variables. It
also makes incorporating auxiliary information straight-
forward. For example, information about interactions
between states can be implemented by conditioning the
model to constrain the partial derivatives ∂Hi/∂zj = 0
(where H ∈ {F,G} and z ∈ {x, y}) that correspond to
non-interacting states. This can be achieved through reg-
ularization or constraint optimization of neural networks.
Our methods can be extended to take advantage of the
structure of spatial dynamics as well. Since we expect
the spatial interaction structure to be sparse, we expect
F and G to have a much lower dimensionality compared
to fitting the full delay-embedding function.

In the field of statistical mechanics, the problem
of unobserved states has been addressed by the Mori
Zwanzig formulation where the Zwanzig operator is used
to project the dynamics onto the linear subspace of the
observed dynamics, where the ignored degrees of freedom
appear as a memory term and a noise term. Calculating
the memory term for nonlinear dynamics is non-trivial,
and requires the expansion of the basis to lift the dy-
namics to a linear space. This can lead to an unbounded
expansion of the state space in chaotic systems. In con-
trast, our approximation provides a straightforward way
to incorporate the induced memory from partial obser-
vations.

In summary, we address the gap in the theoretical lit-
erature on the efficacy of recurrent neural networks. We
show how partially observed dynamics can be restruc-
tured to reveal a recurrent structure, which can be learnt
by fitting recurrent neural networks on time series data.
We also provide a connection to time-delay embedding
and discuss the potential applications of this methodol-
ogy.

This work was supported by NOAA’s HPCC incuba-
tor.
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FIG. 3. Normalized RMSE as a function of number of delays from a FNN (blue) vs RNN (orange) for the Lorenz63 model
(16). The top, middle, and bottom panels correspond to one-, two-, and three-steps ahead forecast error from a model trained
on one-step ahead data. The left, middle, and right panels correspond to neural networks with hidden-layers with two, five and
ten neurons each. The green dashed (dotted) lines in the top panel are numerical evaluations of the one-step ahead recursion
error (4) (and its first-order approximation (7)). Dark (light) colors are results for with a training size of 50 (100) data points
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FIG. 4. Normalized RMSE as a function of number of delays from a FNN (blue) vs RNN (orange) for the Lorenz63 model
(18). The top, middle, and bottom panels correspond to one-, two-, and three-steps ahead forecast error from a model trained
on one-step ahead data. The left, middle, and right panels correspond to neural networks with hidden-layers with two, five and
ten neurons each. The green dashed (dotted) lines in the top panel are numerical evaluations of the one-step ahead recursion
error (4) (and its first-order approximation (7)). Dark (light) colors are results for with a training size of 50 (100) data points
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FIG. 5. Normalized RMSE as a function of number of delays from a FNN (blue) vs RNN (orange) for the Lorenz63 model
(19). The top, middle, and bottom panels correspond to one-, two-, and three-steps ahead forecast error from a model trained
on one-step ahead data. The left, middle, and right panels correspond to neural networks with hidden-layers with two, five and
ten neurons each. The green dashed (dotted) lines in the top panel are numerical evaluations of the one-step ahead recursion
error (4) (and its first-order approximation (7)). Dark (light) colors are results for with a training size of 50 (100) data points
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