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An embarrassingly simple comparison of machine

learning algorithms for indoor scene classification
Bhanuka Manesha Samarasekara Vitharana Gamage

Abstract—With the emergence of autonomous indoor robots,
the computer vision task of indoor scene recognition has gained
the spotlight. Indoor scene recognition is a challenging problem in
computer vision that relies on local and global features in a scene.
This study aims to compare the performance of five machine
learning algorithms on the task of indoor scene classification to
identify the pros and cons of each classifier. It also provides
a comparison of low latency feature extractors versus enormous
feature extractors to understand the performance effects. Finally,
a simple MnasNet based indoor classification system is proposed,
which can achieve 72% accuracy at 23 ms latency.

Index Terms—indoor scene classification, MnasNet, ResNext,
comparison, computer vision

I. INTRODUCTION

INDOOR scene recognition is a supervised machine learn-

ing problem that has its origins deeply rooted in image

classification. The complexity of this task is directly related to

the objects and features in the scene. It is a classification task,

that has many uses such as obstacle avoidance for the visually

impaired [1], autonomous flight drones [2] and autonomous

indoor robots such as service vacuums [3], [4]. These use cases

need the ability to localize in indoor locations in real-time with

minimal latency.

With the advancements in deep learning and transfer learn-

ing, indoor scene recognition algorithms increased in per-

formance. This is mainly due to the ability to transfer the

knowledge learnt in one domain where there exists a high

volume of data such as ImageNet with 14 million images and

apply the knowledge to domain similar problems. The process

of performing feature extraction is crucial to the performance

of the indoor scene classifiers.

This paper aims to perform a head to head comparison

between the machine learning classifiers when combined with

powerful pre-trained feature extractors. Two main feature

extractors are compared to identify the performance difference

between low latency MnasNet feature extractor and enormous

ResNext feature extractor. Both feature extractors are pre-

trained on the ImageNet dataset without any fine-tuning.

The main contributions of this work include the following:

• Comparison of two state-of-the-art feature extractors with

low latency vs enormous size on the MIT-67 dataset.

• Comparison of machine learning classifiers on the MIT-

67 dataset with pre-trained feature extractors.

• A novel yet simple architecture for indoor scene classi-

fication using MnasNet with very minimal latency and

decent performance.

Bhanuka M.S.V Gamage is with Monash University Malaysia, Jalan Lagoon
Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.

• Benchmark and code for future experiments with the

MIT-67 dataset.

The rest of this paper is organized as follows: Section II

dives into the related studies and formalizes the aim of the

study. In Section III, the feature extractors and machine learn-

ing classifiers used in the study are introduced. The high-level

architecture used in the study, along with the training process,

is explained in Section IV. Finally, the results obtained by

the experiments are compared extensively and summarized in

Section V and VI.

II. BACKGROUND

A. Indoor Scene Classification

Indoor Scene classification is considered a challenging task

in machine learning. This is mainly due to the combination

of spatial and objects patterns to describe a scene [5]. For

example, a corridor can easily be identified based on the

lines and walls, whereas a book store is identified using

books on shelves. Indoor scenes are comparatively harder to

classify compared to outdoor scenes due to the complexity

of the objects in indoor scenes [6]. The earlier methods that

used objects for classifying scenes struggled when classifying

indoor scenes compared to outside scenes [7].

Feature extraction is the most critical step in scene recog-

nition [8]. Having well-defined features containing global and

local features can improve the performance of the classifiers.

Many proposed methods exist that uses different features

to perform the classification. The methods can be classified

into two groups, traditional hand-crafted features and Neural

Network based features.

1) Traditional hand-crafted methods: A. Quattoni and A.

Torralb [5] established the baseline by their proposed model

that uses ROI with GIST features to obtain global and local

information. This model was tested on the MIT-67 indoor

scene dataset and was able to obtain 25% accuracy. The De-

formable part-based model (DPM) with latent SVM training,

captured salient objects and visual elements combined with

global image features was able to achieve 30.40% accuracy

[9]. The DPM model inspired both hand-crafted and neural

network based models. [10] proposed the CENsus TRansform

hISTogram (CENTRIST), a visual descriptor that is easier

to implement and is faster to evaluate while also perform-

ing better than the GIST and SIFT methods. They were

able to achieve 36.8% accuracy on the MIT-67 dataset. The

GBPWHGO model proposed by [11] uses visual descriptors

composed of a GBP (Gradient Binary Pattern) and a WHGO

(Weighted Histogram of Gradient Orientation). It helps the
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model capture structural and textural properties of images

effectively, which in turn provided a 42.9% accuracy. [12]

proposed a model that extends from the mean shift algorithm

to obtain an accuracy of 66.87%. The ISPR [13] method learns

important spatial pooling regions with an appearance which

allows them to achieve 50.10% on a single feature and 68.50%

on multi-feature. This model was state-of-the-art (SOTA) for

hand-crafted features with the performance on the MIT-67

dataset.

2) Neural Network based methods: Multiple methods have

been proposed that utilizes neural networks for feature extrac-

tion [14], [8], [6], [15]. The Restricted Boltzman Machines

based CCRBM model was proposed by [16], which reduces

sources of instabilities by using centred factors into the learn-

ing strategy. This method was able to achieve an accuracy

of 42.1% on the MIT-67 dataset. [17] proposed a method

that uses a well trained ConvNet using transfer learning to

extract mid-level features from the image to then perform

the classification. The extracted features were then used to

train a neural network and a linear SVM. Experiments were

not conducted on the MIT-67 dataset, but they were able to

achieve good results on other scene classification datasets. [6]

used the GoogLeNet model as a feature extractor and was able

to achieve 64.48% accuracy on the MIT-67 dataset by using

pre-trained weights on ImageNet [18] and Places205 [19].

Due to the domain similarity of the datasets, the features can

transfer well on to the indoor scene classification task. With

fine-tuning, they were able to achieve an accuracy of 79.63%,

which made this model SOTA at the time. Nevertheless, with

the advancements in deep learning architectures, the ResNet

model [20] has proven to be better than GoogLeNet for

image classification task on ImageNet dataset. [8] proposed

a novel ResNet based transfer learning model utilizing multi-

layer feature fusion and data augmentation which was able to

achieve an accuracy of 94.05% on the MIT-67 dataset. This

was, however, achieved by increasing the number of images

using data augmentation by 475%. The accuracy without

data augmentation was 74.53%, which is worse than [6].

[14] proposed an architecture which combines CNN, SVM

and random forest sequentially along with spectral cluster-

ing to obtain an accuracy of 80.75%. VSAD model [21]

used PatchNet, a patch-level end-to-end model for feature

extraction which then aggregates local features and patches

with global representation to achieve an accuracy of 86.2%.

Another method was proposed by [15], which introduces a

new semantic descriptor with objectness method for scene

recognition to exploit the correlation of object configurations

across scenes. It uses ImageNet based CNN to extract the local

representation and another CNN for global representation. This

method can achieve a final accuracy of 86.76%, which is the

current SOTA approach for the MIT-67 dataset without data

augmentation.

B. CNN as feature extractor

So taking into consideration the two groups, it can be

observed that in the pre-deep learning era, most of the features

were extracted using hand-crafted methods such as SIFT [22].

However, once the Convolutional Neural Network (CNN)

became popular, many models were trained to be used as

feature extractors. Nevertheless, the downside was the training

process needed high-end resources and more extended time.

To overcome this issue, many researchers have experimented

and analyzed the effect of transfer learning [6], [23], [17],

[8]. It was evident that if the model were trained on the

same domain as the transferred dataset, with a bit of fine-

tuning, the models could converge to better performance. So

off the shelf CNN features trained on ImageNet were used

for many recognition tasks as it produced better results. [23]

perform a series of experiments to observe the effect of transfer

learning on many recognition tasks such as Flower recognition

and Sculptures retrieval. For scene recognition, they obtained

an accuracy of 58.4% on the MIT-67 dataset and with data

augmentation, they were able to achieve 69% accuracy. This

led to many researchers using CNN features with transfer

learning for scene classification [17], [6], [8].

However, when selecting a feature extractor, it is also

essential to consider the latency of the model when performing

inference. With the age of IoT and embedded systems, the

importance of having the ability for scene recognition models

to make inference on low powered chips is evident. Currently,

most of the research focuses on using server-level hardware to

run and test the models. [24] compared multiple lightweight

deep learning models (ResNet-50 [20], MnasNet [25], Mo-

bileNetV2 [26]) on the action recognition task. They found that

the MnasNet model architecture [25] had the lowest latency

and the best accuracy for mobile devices. [3] proposed a

method that uses geometric and colour information to perform

scene recognition on robots. Currently, there exists a gap to

explore the effect of MnasNet model architecture on indoor

scene recognition.

In summary, Table I provides the accuracies obtained on

the MIT-67 dataset by prior research studies. Most studies

focus on Neural Networks and Support Vector Machines as

the classifiers, but is there a reason to consider these classifier

techniques over other methods such as K-Nearest Neighbour,

Naive-Bayes and Decision Trees. This can be identified as a

gap, to explore and understand the performance of different

classifiers when using SOTA feature extractors. Another gap

that exists is the performance comparison between SOTA

low latency feature extractors (MnasNet) vs enormous feature

extractors with millions of parameters (ResNeXt [27]) for

indoor scene classification.

Therefore this paper aims to answer these two questions,

1) What is the performance difference between machine

learning classifiers in indoor scene classification?

2) How well does a SOTA low latency feature extractor

compare to an enormous feature extractor in indoor

scene classification?

III. METHODOLOGY

This section discusses the dataset, classifiers and methodol-

ogy used to conduct the experiments.
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TABLE I: Accuracy on MIT-67 dataset

Category Method Accuracy (%)

Traditional Hand-crafted
features

ROI [5] 25.0

DPM [9] 30.40

CENTRIST [10] 36.8

GBPWHGO [11] 42.9

ModeSeeking+IFV [12] 66.87

ISPR [13] 50.10

ISPR+IFV [13] 68.50

Neural Network based
features

CCRBM [16] 42.1

TCoF [17] -

CNN-SVM [23] 58.4

CNNaug-SVM [23] 69.0

G-MS2F [6] 79.63

FTOTLM without data augmentation [8] 74.53

FTOTLM with data augmentation [8] 94.05

VSAD [21] 86.20

SDO [15] 86.76

A. Dataset

There are many datasets that focus on scene classification

such as SUN database [28], MIT-67 dataset [5], Places205

dataset [19] and Places365 dataset [29]. However, for indoor

scene classification, the MIT-67 dataset introduced in 2009 is

the de facto dataset. It contains 15620 images in 67 classes

with each class containing 101-734 images. Figure 1a shows

sample images from the dataset. The main challenge of the

dataset is that the classification depends on the intricate details

of the objects and scenes.

The dataset has a class imbalance problem, which is evident

in Figure 1b when plotting the frequency distribution of each

class. To overcome this, [5] selected 80 random images per

class for training and 20 images per class for testing. To

maintain the consistency in comparison, this study will use the

same train and test split resulting in 5360 training images and

1340 test images. In order to maximize the training samples,

the test split will be used as the validation split for all the

experiments.

B. Feature Extraction

Intending to compare the results between the light-weight

and high-end SOTA CNN models for feature extraction, the

ResNeXt and MnasNet architectures are the choices for the

experiments. In this study, pre-trained weights on ImageNet

[18] dataset is used by both models with no fine-tuning done

to the models. However, [6], [8] proved that there are perfor-

mance gains to be made by fine-tuning on scene classification

datasets such as Places205 [19]. The aim is to understand off

the shelf performance on indoor scene classifiers when used

as a feature extractor.

1) ResNeXt: The ResNeXt-101 is the current SOTA archi-

tecture for ImageNet classification with over 88M parameters.

The ResNeXt-101 (32x48d) version of the model contains

829M parameters and achieves an accuracy of 85.4% on

the ImageNet dataset [30]. For this study, the ResNeXt-

101 (32x8d) version pre-trained on ImageNet is used, which

contains 88M parameters. It can achieve 82.2% Top-1 accuracy

on the ImageNet dataset. In order to obtain the features, this

study extracts features before the global avgpool layer, which

is of shape 1x1x2048. This layer is then reshaped to a vector

of size 1x2048 to be used as input for the classifiers.

2) MnasNet: The current SOTA model for low latency

inference is the MnasNet architecture [25]. It contains 3.9M

parameters and achieves 75.2% Top-1 accuracy on the Im-

ageNet dataset. Similar to ResNeXt, this study extract the

features before the global avgpool layer, which is of shape

1x1x1280. This is then reshaped to a vector of size 1x1280 to

be used as input for the classifiers.

C. Algorithms

The following five main supervised learning classifiers are

tested in order to evaluate their performance.

1) K-Nearest Neighbour (KNN): A fundamental and

straightforward classifier that uses the proximity of the data

points to the neighbours to classify the data. Many distance

functions are available; however, the Euclidean distance is

used in this study to calculate the distance between the points.

The Euclidean distance between two points p and q is defined

as:

d(p, q) =
√

(p1 − q1)2 + (p2 − p2)2 + · · ·+ (pn − qn)2 (1)

2) Naive Bayes: This is a classification technique based

on the Bayes Theorem. It assumes that all the predictors are

independent of each other. Equation 2 is used to calculate

posterior probability. Even though the technique is simple, it is

known to have performance better than complicated classifiers.

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(2)

3) Decision Tree: This is a popular algorithm for classifi-

cation of both categorical and continuous variables. Decision

trees are beneficial as it provides the ability to interpret the

model. Due to this, decision trees are highly useful in mission-

critical application where black-box classifiers are not used.

Different techniques, such as Gini Impurity and Information

Gain, are used to divide the data into heterogeneous groups.

The downside to decision trees is that they can be highly

biased.

To reduce this, an ensemble of decision trees known as

a Random Forest is used. This study also experiment with

random forests to see whether there are any performance gains

compared to decision trees. The downside of a random forest

is that the interpretability of the model is lost.

4) Support Vector Machine (SVM): This is one of the robust

classifiers that is commonly used in scene classification. In

most cases, SVM models can match or outperform neural

networks. In the past, SVM was limited to linear classification.

Then, the kernel trick was proposed by [31] in 1992 that

allowed the SVM to create nonlinear classifiers. In this study

multiple kernels such as Linear kernel, Polynomial kernel and

Radial Basis Function (RBF) kernel are tested.

5) Neural Network (NN): This is the final type of classifier,

which is widely used in the last few years in indoor scene

classification. The current SOTA architecture also uses neural

networks as the classifier. In order to compare the difference

between the shallow and deep neural networks, an additional

set of experiments are performed with two different architec-

tures. Figure 3a and 3b shows the architectures used in the
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Fig. 1: MIT-67 dataset [5]

experiments. The LogSoftmax activation function (Equation 3)

is used at the final layer, where x vector is a of length j and i

is the index of the class. The Cross Entropy loss (Equation 4)

is used as the loss function, where y is the ground truth and

ŷ is the prediction and N is the number of items.

LogSoftmax(xi) = log
exi

∑

j e
x

(3)

CrossEntropyLoss = −
1

N

(

N
∑

i

yi log ŷi

)

(4)

A learning rate decay of 0.96 is done every ten epochs

to reduce the learning rate when achieving convergence. This

helps the model converge into the global minima quickly,

compared to having a higher learning rate which can stop the

model from reaching the optimal point.

When training the neural networks, the epoch is set to

500 with early stopping criterion. The stopping criterion is, if

the test accuracy does not increase for 25 epochs, the model

will stop training. For each neural network experiment, the

model with the best train accuracy, best test accuracy and the

lastest/last model checkpoints are saved. This allows for the

retrieval of the best version of the model for inference.

TABLE II: Parameters tested for each classifier

1024 512
67

(a) Shallow Neural
Network

1024 512 256 128 67

(b) Deep Neural Network

Fig. 3: Neural Network architectures used in the experiment

D. Evaluation methods

There are multiple evaluation metrics to compare the per-

formance of classifiers. The primary metric used on the MIT-

67 dataset is the accuracy (Equation 5) of the model. Since

the dataset is balanced, the accuracy of the model is a good

representation of the performance of the classifier. However,

the precision, recall and F1 score (Equation 8) is calculated for

each class which is then used to calculate the weighted average

for all the metrics. Precision and Recall are calculated using

Equation 6 and 7 respectively, using the True Positive (TP),

True Negative (TN), False Positive (FP) and False Negative

(FN) values. Finally, the Receiver Operating Characteristic

(ROC) curve is plotted for each class along with the confusion

matrix to visualize the performance easily. However, for this

study, the accuracy and inference time are the key metrics used

to analyze the performance of the classifiers.
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Fig. 2: High Level Architecture

Metrics















































Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score = 2×
Precision × Recall

Precision + Recall

(5)

(6)

(7)

(8)

In order to evaluate the speed, the stages of extracting

features, training and inference are timed and logged in

seconds. When calculating the total time taken T for the train

and test datasets, the feature extraction time FE is added to

the training time xtrain and testing time ytest and the inference

time is divided by the number of images n, as shown in

Equation 9 and 10.

Ttrain = FEtrain + xtrain

Ttest =
FEtest + xtest

ntest

(9)

(10)

IV. IMPLEMENTATION

A. Data Pre-processing

Before training the model, the data is preprocessed. First,

as the image sizes are not constant in the MIT-67 dataset,

the images are resized to 224x224 to be passed into the

feature extractors. Next, the images are converted to tensors

to be used by the machine learning frameworks. Finally, the

image is normalized to the mean and standard deviation of the

ImageNet dataset. This is done as the pre-trained weights of

the models are trained on the ImageNet dataset. This ensures

that the images are normalized to the same distribution as the

ImageNet.

All the image labels are converted into numerical values

between 0 and 66 using the sklearn LabelEncoder. Then the

numerical representation is converted to One Hot Encoding

when performing the training and evaluation process.

B. Training

All the experiments were done on a PC running Ubuntu

18.04.1 LTS with an Intel® Xeon(R) W-2145 CPU @ 3.70GHz

with 16 logical cores and 64GB RAM. A single Quadro P5000

GPU was used to perform the neural network training with a

7200RPM Seagate hard drive to store the data. Parallel training
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TABLE III: Parameters tested for each classifier1

Classifier Parameter Description Variables

KNN
Algorithm

Algorithm used to calculate the
nearest neighbours

• ball tree - Ball Tree

• kd tree - K Dimensional Tree

• brute - Brute Force Search

Weights Weight function used
• uniform - Uniform weights

• distance - Weight points by the inverse of their distance

Naive Bayes Var smoothing
Adds value to the distribution vari-
ance to widen the curve

• 1e-9

• 1e-6

• 1e-3

SVM
Kernel

The kernel type used in the algo-
rithm

• linear - Linear kernel

• poly - Polynomial kernel

• rbf - Radial Basis Function kernel

• sigmoid - Sigmoid kernel

C Regularization parameter

• 1e-4

• 1e-2

• 1

• 1e2

• 1e4

Decision Tree
Criterion

The function to measure the quality
of a split

• gini - Gini Impurity

• entropy - Information Gain

Max Depth The maximum depth of the tree

• 10

• 50

• 100

• None - All leaves are pure

Random Forest

Number of Estimators Number of trees in the forest

• 2

• 10

• 100

• 1000

Criterion
The function to measure the quality
of a split

• gini - Gini Impurity

• entropy - Information Gain

Max Depth The maximum depth of the tree

• 10

• 50

• 100

• None - All leaves are pure

Neural Network

Batch Size
The size of batch used in training
and inference

• 64

• 32

Learning Rate
The step size at each iteration while
moving toward a minimum of the
loss function

• 1e-7

• 1e-5

• 1e-3

Optimizer
Optimizer used to update the
weights to reduce the loss

• adamax - AdaMax optimizer [32]

• adam - Adam optimizer [32]

• sgd - Stochastic Gradient Descent optimizer [33]

Architecture Type
Shallow FCN architecture2vs Deep
FCN architecture3

• shallow - 3 layers

• deep - 5 layers

Learning Rate Decay [34] Decay the learning rate
• wd - Performs learning rate decay

• (no wd) - Do not perform learning rate decay

1 All the experiments are repeated for both the feature extractors.
2 Shallow FCN contains a Neural Network with three linear layers as shown in Figure 3a
3 Deep FCN contains a Neural Network with five linear layers as shown in Figure 3b]

is done on 16 threads on classifiers that support it, such as K-

NN and Random Forest.

Figure 2 shows the high-level architecture and flow of the

experiment. The feature extraction process is done separately

to extract the ResNeXt and MnasNet features. Next, the

classifiers are trained using these features. Finally, the test

features are used to infer and calculate the performance of the

models.

Multiple training experiments are performed with different

parameters. Table III shows all the combination of parameters

tested. The experiment name is used to display the parameters

used by the classifier. For example, the neural network with

the experiment name resnext101-shallow-32-adamax-1e-05-

wd was trained on the features extracted through the ResNeXt

feature extractor, with the shallow NN architecture, with

batch-size 32, using AdaMax optimizer with a learning rate

of 1e-05 and with learning rate decay. All the experiments

are repeated with the two feature extractors. In total, 281

tests were conducted with different parameters, classifiers and

feature extractors.
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TABLE IV: Top accuracy for each classifier and feature

extractor

Classifier Experiment Name Test
Acc.

Test
Time

KNN resnext101-brute-distance 0.6575 0.0923

mnasnet1 0-ball tree-distance 0.6037 0.0223

Naive Bayes resnext101-1e-09 0.7187 0.0926

mnasnet1 0-0.001 0.6515 0.0218

Decision Tree resnext101-gini-None 0.3786 0.0922

mnasnet1 0-gini-100 0.2448 0.0216

Random Forest resnext101-1000-entropy-100 0.7194 0.0926

mnasnet1 0-1000-gini-100 0.6903 0.0221

Support Vector
Machine

resnext101-poly-100.0 0.7672 0.1015

mnasnet1 0-linear-0.01 0.7276 0.0280

Neural
Network

resnext101-shallow-64-

adamax-1e-05-wd

0.7687 0.0933

mnasnet1 0-shallow-64-

adamax-0.001-wd

0.7299 0.0230

V. RESULTS AND DISCUSSIONS

All the features, results (log files, metric logs), plots (ROC

curves, confusion matrix) and trained models can be obtained

using this link. The results and discussions section focuses

on the key observations, however the results allow for more

comparisons in the future. Appendix A contains the Accuracy,

F1 Score, Time Taken for both train and test dataset on all 281

experiments.

A. ResNeXt vs MnasNet

The highest accuracy obtained by ResNeXt feature extrac-

tor based model is the neural network classifier resnext101-

shallow-64-adamax-1e-05-wd, with an accuracy of 76.87%

and an inference time of 0.0933 seconds per image. Similarly,

for the MnasNet feature extractor based model it is also

a neural network classifier mnasnet1 0-shallow-64-adamax-

0.001-wd, with an accuracy of 72.82% with an inference time

of 0.0231 seconds per image. Comparing the parameters, it is

evident that everything is the same except for the learning rate.

The best model for MnasNet was achieved by only training

the shallow neural network for three epochs compared to 470

epochs for the ResNeXt based classifier. This indicates that the

MnasNet features allowed the shallow network to converge to

its best accuracy quickly.

Comparing the inference times between the MnasNet and

ResNeXt, it is evident that there is, on average, 300% speed

increase when using the MnasNet feature extractor. However,

when comparing the accuracies, there is only a 15% per-

formance decrease in MnasNet compared to ResNeXt. This

shows that the lightweight, low latency network can achieve

decent performance, which maintaining low latency compared

to the 88M parameter ResNeXt. Figure 4 shows this gap in

the inference time between the MnasNet and ResNeXt based

classifiers.

B. All experiments

Analyzing all the classifiers, the performance can be ranked

based on the Test Accuracy and Inference Time, as shown in
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Test Accuracy vs Inference Time per Image
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SVM
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Decision Tree
Random Forest
K-Nearest Neighbour

Fig. 4: Comparison of Test Accuracy vs Inference time of all

classifiers

Appendix A. Table IV extracts the top results from each fea-

ture extractor and classifier. This indicates that some classifiers

tend to overfit on the training data, mainly the Decision Tree,

thus reducing the test performance.

The classifier performance can be separated into two groups;

Good Performance: Naive Bayes, Random Forest, Support

Vector Machines, Neural Network; Poor Performance: Deci-

sion Tree, KNN. Based on the training time, the faster and

simpler model is the Naive Bayes, with only a 7% drop in

performance compared to the neural network classifier. This

was explored by [35] where there was only a 4% drop in

performance. This also means that the training data of 5360

samples may not be enough for a neural network to learn the

data distribution thoroughly. [8] proved this by increasing the

accuracy from 74.63% to 94.05% by augmenting the sample

size to 74,149.

Inspecting Figure 4 it is evident that SVM models take more

time for inference compared to all the other classifiers. There

is an 8% increase in inference time compared to Naive Bayes,

which is also running on the CPU with no parallel execution.

Therefore, SVM may not be suitable for real-time inference

compared to the other classifiers.

Considering all the experiments, the fastest experiment

is mnasnet1 0-shallow-64-adamax-0.001-wd, which has an

accuracy of 72.9% with a 23ms latency.

C. Classifiers

Next, a comparison of performance based on different

parameters used to train the classifiers are explored. The top

six experiments for each classifier and feature extractors are

shown in Figure 5.

https://www.dropbox.com/s/uc99sliqhotsylh/Results%26Features.zip?dl=0
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Fig. 5: Top six experiments per classifier and feature extractor

1) K-Nearest Neighbour: Comparing the weight function

used to increase the impact of the distance, it is evident that

when points are weighted by the inverse of their distance,

it performs better by 1%. However, comparing the algorithm

used to calculate the nearest neighbours, the K-dimension tree

approach is 1.7% slower compared to the brute force approach

with the same accuracy.

2) Naive Bayes: The smoothing variable has minimal ef-

fect, with less than 0.5% performance gain.

3) Support Vector Machine: Out of the four kernels that

were tested, the polynomial kernel had the best performance

over RBF, Linear and Sigmoid kernels with a performance

gain of 0.7%, 1.5% and 2.7% respectively. The effect of the

degree of the polynomial can be explored further since it is

set to three for all the experiments. In terms of the inference

speed, the difference between the kernels is minimal.

Next, comparing the C (regularization) value, it can be

observed that the C value greater than 100 is the ideal for

polynomial, RBF and sigmoid compared to 0.01 for the linear

kernel. This is due to the generalization aspect of increasing

the C value.

4) Decision Tree: The Gini Impurity criterion performs

better than the Information Gain criterion. It can achieve

16.5% more accuracy while maintaining the same inference

time. Comparing the maximum depth, it is evident that at

a depth of 10, the model is underfitting, not even able to

obtain the excellent train accuracy. However, the performance

difference is minimal when the maximum depth is more than

50 .

The overall accuracy of the decision tree with model

interpretability is the lowest out of all the classifiers. So

performing a model ensemble to form a random forest, creates

a massive leap in performance. However, the Information Gain

criterion performs better than the Gini Impurity criterion, with

a performance difference of 2%. The maximum depth of

more than 50 has minimal effect on accuracy. Nevertheless,

the number of trees in the forest have a massive effect on

performance. A performance difference of 62% is obtained by

having 1000 trees compared to 2 trees. Having different trees

work on multiple subsets of the dataset along with majority
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voting allows more trees to perform and generalize better on

indoor scene classification.

5) Neural Network: Analyzing the effect of a shallow and

deep architecture, a 5.5% decrease in performance in the deep

architecture compared to shallow is evident. This is mainly

due to the deep architecture overfitting the data. The training

accuracy of the deep architecture is 0.9985 compared to

0.9868 of the shallow architecture. The increase in parameters

of the architecture causes the model to overfit, so having

fewer parameters in the neural network helps to increase the

performance.

Examining the effect of batch size, it is evident that there

is little to no effect on the inference time and accuracy. This

is due to the VRAM of the GPU being able to handle both

batch sizes easily. This can be different if the batch size is

larger than 64, but during inference, since the batch size is 1,

this can be ignored.

Out of the three optimizers compared in this study, Adam

optimizer performed the best followed by AdaMax and SGD.

The Adam optimizer was also reaching the optima at around

322 epochs on average compared to 325 and 336 of SGD

and AdaMax respectively. However, the AdaMax optimizer

was able to achieve the highest accuracy among all of the

experiments followed by Adam and SGD.

The learning rate also has a significant effect on how

long it takes to converge. The learning rate of 1e-03 can

achieve similar performance as 1e-05 with far fewer epochs.

Having 1e-07 as the learning rate creates a significant dip in

performance due to the model taking too long to converge,

thus capping at the 500 epoch limit. On the other hand, if the

model is stuck in a local minimum, the learning rate is too

small to come out of it.

Next, having the learning rate decay (lrDecay) increases

performance by 0.67%. This is not a significant increase,

but it can be understood that having the decay improves

the performance. On the deep architecture, the performance

decreased by 2.7%. This is due to the optimizer being stuck

in a local minimum, and the lrDecay reduced the chance of

recovering from it. So to improve this, trying different lrDecay

values is recommended. Also instead of stepping the lrDecay

every ten epochs, other values can be used.

Early stopping and model checkpointing allowed for much

better results compared to letting the neural network classifiers

train for a fixed number of epochs.

VI. CONCLUSION

It is evident that there exists a performance difference

among the machine learning classifiers in indoor scene clas-

sification. The neural network classifier has the best overall

performance, with the main downside of a long and tedious

training process. On the other hand, the SVM classifier can

be trained relatively fast and efficiently with the drawback

of increase in inference time. The decision tree classifier

with its model interpretability has the worst performance.

However, ensembling many trees to form a random forest

increases the performance with the downside of losing model

interpretability. Naive Bayes is the simplest classifier with

good performance, whereas the performance of the KNN

classifier is poor.

Comparing SOTA low latency feature extractors to enor-

mous feature extractor in indoor scene classification, it is

evident that the performance drop was only 15% where the

speed increase was more than 300%. Therefore, MnasNet

architecture would be suitable for real-time indoor scene

recognition.

In conclusion, this study performs an extensive comparison

into the performance of different machine learning algorithms

and feature extractors, while introducing a simple novel low

latency indoor scene classification system.

VII. FUTURE WORK

This research study opens up multiple research paths, espe-

cially to identify the effect of finetuning on scene classification

datasets such as Places365 [29]. As shown by [8], the effect of

data augmentation is powerful on indoor scene classification.

So, another path would be to introduce carefully curated data

augmentation. With the benchmark and codebase publicly

available, this study opens up the exploration for many future

studies.
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APPENDIX A

RESULTS

Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

nn resnext101-shallow-64-

adamax-1e-05-wd

0.9868 0.9868 1290.2530 0.7687 0.7665 0.0933

svm resnext101-poly-100.0 0.9991 0.9991 530.3962 0.7672 0.7658 0.1015

svm resnext101-poly-10000.0 0.9991 0.9991 530.4129 0.7672 0.7657 0.1014

nn resnext101-shallow-32-

adamax-1e-05-wd

0.9910 0.9910 1298.0639 0.7687 0.7657 0.0937

nn resnext101-shallow-64-

adam-1e-05-wd

0.9722 0.9722 615.4730 0.7679 0.7642 0.0934

nn resnext101-shallow-64-

adam-1e-05

0.9968 0.9968 642.8912 0.7634 0.7617 0.0934

svm resnext101-rbf-10000.0 0.9991 0.9991 530.9957 0.7612 0.7604 0.1023

svm resnext101-rbf-100.0 0.9991 0.9991 531.0885 0.7612 0.7604 0.1023

nn resnext101-shallow-32-sgd-

0.001

0.9634 0.9633 658.2545 0.7627 0.7596 0.0938

nn resnext101-shallow-64-

adamax-1e-05

0.9457 0.9456 776.2874 0.7612 0.7591 0.0934

svm resnext101-rbf-1 0.8629 0.8637 540.2303 0.7590 0.7586 0.1026

svm resnext101-linear-0.01 0.9935 0.9935 524.2890 0.7552 0.7545 0.1016

nn resnext101-shallow-64-sgd-

0.001-wd

0.9649 0.9649 801.3545 0.7560 0.7543 0.0935

nn resnext101-shallow-32-

adamax-1e-05

0.9854 0.9854 895.8429 0.7545 0.7521 0.0937

nn resnext101-shallow-32-

adam-1e-05-wd

0.9744 0.9745 607.6985 0.7515 0.7492 0.0936

svm resnext101-linear-10000.0 0.9991 0.9991 524.2180 0.7493 0.7485 0.1017

svm resnext101-linear-100.0 0.9991 0.9991 524.4187 0.7493 0.7485 0.1017

svm resnext101-linear-1 0.9991 0.9991 524.1753 0.7493 0.7485 0.1017

nn resnext101-shallow-64-

adamax-0.001

0.9382 0.9382 501.4016 0.7493 0.7484 0.0934

nn resnext101-shallow-64-

adamax-0.001-wd

0.9371 0.9371 501.3757 0.7500 0.7483 0.0934

svm resnext101-sigmoid-100.0 0.9985 0.9985 523.0545 0.7463 0.7469 0.1017

svm resnext101-sigmoid-10000.0 0.9991 0.9991 523.0373 0.7463 0.7468 0.1017

nn resnext101-shallow-64-sgd-

0.001

0.9474 0.9473 723.9333 0.7478 0.7451 0.0935

nn resnext101-shallow-32-

adam-1e-05

0.9976 0.9976 647.5013 0.7448 0.7422 0.0937

nn resnext101-shallow-32-

adamax-0.001

0.9543 0.9543 504.9757 0.7425 0.7396 0.0936

svm resnext101-sigmoid-1 0.7965 0.7980 544.6762 0.7388 0.7391 0.1027

nn resnext101-shallow-32-

adamax-0.001-wd

0.9981 0.9981 544.2368 0.7373 0.7361 0.0937

nn resnext101-shallow-64-

adam-0.001

0.8668 0.8651 497.9940 0.7410 0.7352 0.0934

Continued on next page
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

nn resnext101-shallow-32-sgd-

0.001-wd

0.9912 0.9912 799.2347 0.7328 0.7302 0.0937

nn mnasnet1 0-shallow-64-

adamax-0.001-wd

0.9713 0.9712 123.7619 0.7299 0.7282 0.0231

svm mnasnet1 0-linear-0.01 0.9688 0.9689 137.3875 0.7276 0.7269 0.0280

svm mnasnet1 0-rbf-100.0 0.9991 0.9991 140.7178 0.7261 0.7249 0.0283

svm mnasnet1 0-rbf-10000.0 0.9991 0.9991 140.7831 0.7261 0.7249 0.0283

nn mnasnet1 0-shallow-64-

adam-1e-05-wd

0.9965 0.9965 349.0961 0.7261 0.7238 0.0231

nn resnext101-deep-64-adam-

1e-05

0.9985 0.9985 1048.7318 0.7261 0.7238 0.0934

svm mnasnet1 0-poly-10000.0 0.9991 0.9991 150.7850 0.7231 0.7236 0.0279

nn mnasnet1 0-shallow-32-

adamax-1e-05

0.9731 0.9731 652.6965 0.7246 0.7216 0.0234

naive-

bayes

resnext101-1e-09 0.8254 0.8262 494.5109 0.7187 0.7204 0.0926

naive-

bayes

resnext101-1e-06 0.8254 0.8262 494.5124 0.7187 0.7204 0.0926

naive-

bayes

resnext101-0.001 0.8228 0.8234 494.5123 0.7179 0.7194 0.0926

svm mnasnet1 0-linear-10000.0 0.9991 0.9991 137.2108 0.7194 0.7191 0.0280

svm mnasnet1 0-linear-100.0 0.9991 0.9991 137.2341 0.7194 0.7191 0.0280

svm mnasnet1 0-linear-1 0.9991 0.9991 137.2027 0.7194 0.7191 0.0280

svm mnasnet1 0-sigmoid-100.0 0.9991 0.9991 137.4634 0.7187 0.7183 0.0280

svm mnasnet1 0-sigmoid-

10000.0

0.9991 0.9991 137.4820 0.7187 0.7183 0.0280

svm mnasnet1 0-rbf-1 0.8157 0.8164 151.9157 0.7172 0.7178 0.0287

nn resnext101-shallow-32-

adam-0.001-wd

0.9985 0.9985 1546.6470 0.7194 0.7175 0.0937

nn resnext101-shallow-64-

adam-0.001-wd

0.9849 0.9849 512.1320 0.7164 0.7163 0.0934

svm mnasnet1 0-poly-100.0 0.9537 0.9548 150.4568 0.7097 0.7155 0.0281

nn mnasnet1 0-shallow-32-

adam-1e-05-wd

0.9840 0.9840 269.5522 0.7194 0.7153 0.0234

nn mnasnet1 0-shallow-64-

adam-1e-05

0.9806 0.9806 277.5261 0.7179 0.7153 0.0231

nn mnasnet1 0-shallow-64-

adamax-0.001

0.9989 0.9989 154.8707 0.7187 0.7151 0.0230

nn mnasnet1 0-shallow-32-

adamax-0.001

0.9319 0.9319 122.9749 0.7187 0.7148 0.0233

nn mnasnet1 0-shallow-32-

adamax-1e-05-wd

0.9804 0.9804 1128.0963 0.7164 0.7132 0.0234

nn mnasnet1 0-shallow-64-

adamax-1e-05-wd

0.9636 0.9635 1118.9030 0.7157 0.7129 0.0230

nn mnasnet1 0-shallow-64-

adamax-1e-05

0.9953 0.9953 739.8007 0.7157 0.7127 0.0230
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

random-

forest

resnext101-1000-entropy-

100

0.9991 0.9991 697.4053 0.7194 0.7103 0.0926

nn mnasnet1 0-shallow-32-

adamax-0.001-wd

0.9293 0.9292 123.0034 0.7112 0.7083 0.0234

random-

forest

resnext101-1000-entropy-50 0.9991 0.9991 692.2018 0.7172 0.7079 0.0927

random-

forest

resnext101-1000-entropy-

None

0.9991 0.9991 694.0079 0.7172 0.7076 0.0926

nn resnext101-deep-64-adamax-

0.001-wd

0.9981 0.9981 1154.6321 0.7082 0.7072 0.0934

nn mnasnet1 0-shallow-32-

adam-1e-05

0.9937 0.9937 281.0097 0.7060 0.7039 0.0234

nn resnext101-deep-64-adam-

1e-05-wd

0.9991 0.9991 1320.0112 0.7060 0.7039 0.0934

random-

forest

resnext101-1000-entropy-10 0.9991 0.9991 691.2938 0.7134 0.7032 0.0927

nn resnext101-deep-64-adam-

0.001-wd

0.9976 0.9976 1332.0689 0.7052 0.7021 0.0934

nn resnext101-shallow-32-

adam-0.001

0.9944 0.9944 1132.8347 0.7052 0.7021 0.0937

nn mnasnet1 0-shallow-64-

adam-0.001-wd

0.8912 0.8908 119.7367 0.7037 0.7009 0.0231

nn resnext101-deep-64-adamax-

1e-05

0.9772 0.9772 1205.9989 0.7022 0.6997 0.0934

nn resnext101-deep-32-adam-

1e-05-wd

0.9987 0.9987 1050.7437 0.7015 0.6986 0.0937

nn mnasnet1 0-shallow-64-sgd-

0.001-wd

0.9746 0.9746 686.2455 0.7007 0.6963 0.0231

nn resnext101-deep-64-adamax-

0.001

0.9961 0.9961 777.3307 0.6985 0.6955 0.0934

nn mnasnet1 0-shallow-64-

adam-0.001

0.8942 0.8938 119.7749 0.6940 0.6939 0.0231

svm mnasnet1 0-sigmoid-1 0.7610 0.7626 157.3438 0.6903 0.6934 0.0286

nn resnext101-deep-32-adam-

1e-05

0.9972 0.9972 884.1581 0.6948 0.6926 0.0937

random-

forest

resnext101-1000-gini-None 0.9991 0.9991 552.9757 0.7030 0.6925 0.0926

random-

forest

resnext101-1000-gini-50 0.9991 0.9991 556.7797 0.7022 0.6906 0.0927

nn resnext101-deep-32-sgd-

0.001

0.9976 0.9976 1257.7591 0.6903 0.6901 0.0938

nn mnasnet1 0-shallow-32-sgd-

0.001

0.9994 0.9994 800.6678 0.6925 0.6899 0.0235

nn resnext101-deep-32-adamax-

0.001

0.9953 0.9953 1441.8088 0.6925 0.6894 0.0937

svm resnext101-poly-1 0.7541 0.7601 566.6230 0.6858 0.6894 0.1027

nn resnext101-deep-32-adamax-

1e-05

0.9924 0.9924 1451.3782 0.6866 0.6846 0.0937
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

nn mnasnet1 0-shallow-64-sgd-

0.001

0.9938 0.9938 604.3969 0.6881 0.6843 0.0232

nn mnasnet1 0-shallow-32-sgd-

0.001-wd

0.9681 0.9680 365.6768 0.6836 0.6835 0.0235

random-

forest

resnext101-1000-gini-100 0.9991 0.9991 554.3802 0.6933 0.6828 0.0927

nn resnext101-deep-32-adamax-

0.001-wd

0.9985 0.9985 1204.0463 0.6866 0.6828 0.0937

nn resnext101-deep-32-adam-

0.001-wd

0.9950 0.9950 1352.3992 0.6866 0.6826 0.0938

random-

forest

mnasnet1 0-1000-gini-100 0.9991 0.9991 146.6666 0.6903 0.6802 0.0221

random-

forest

mnasnet1 0-1000-entropy-

100

0.9991 0.9991 249.5366 0.6881 0.6801 0.0221

random-

forest

mnasnet1 0-1000-gini-50 0.9991 0.9991 147.3597 0.6873 0.6759 0.0221

random-

forest

mnasnet1 0-1000-entropy-

None

0.9991 0.9991 250.7377 0.6843 0.6752 0.0221

random-

forest

mnasnet1 0-1000-entropy-

50

0.9991 0.9991 248.7456 0.6851 0.6729 0.0221

random-

forest

mnasnet1 0-1000-gini-None 0.9991 0.9991 144.1507 0.6813 0.6724 0.0221

nn mnasnet1 0-shallow-32-

adam-0.001

0.9931 0.9931 273.2562 0.6776 0.6724 0.0234

nn mnasnet1 0-shallow-32-

adam-0.001-wd

0.9994 0.9994 1461.3441 0.6724 0.6685 0.0234

nn resnext101-deep-64-adam-

0.001

0.9912 0.9912 1397.2174 0.6731 0.6683 0.0934

nn resnext101-deep-32-adam-

0.001

0.9826 0.9827 1380.8360 0.6724 0.6670 0.0937

nn mnasnet1 0-deep-64-adam-

0.001-wd

0.9989 0.9989 1313.4450 0.6687 0.6668 0.0231

nn resnext101-deep-64-sgd-

0.001-wd

0.9739 0.9739 1319.4682 0.6679 0.6653 0.0935

nn resnext101-deep-32-sgd-

0.001-wd

0.9924 0.9923 1303.3129 0.6664 0.6644 0.0938

nn mnasnet1 0-deep-32-

adamax-0.001-wd

0.9989 0.9989 1356.6482 0.6642 0.6618 0.0234

nn resnext101-deep-64-sgd-

0.001

0.9276 0.9273 796.6236 0.6657 0.6613 0.0935

nn mnasnet1 0-deep-64-

adamax-0.001-wd

0.9991 0.9991 825.5003 0.6657 0.6612 0.0231

random-

forest

resnext101-100-gini-100 0.9991 0.9991 500.4926 0.6672 0.6562 0.0922

random-

forest

mnasnet1 0-1000-entropy-

10

0.9991 0.9991 249.0943 0.6679 0.6559 0.0221

naive-

bayes

mnasnet1 0-0.001 0.8409 0.8413 115.6235 0.6515 0.6542 0.0218
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

nn mnasnet1 0-deep-64-adam-

0.001

0.9933 0.9933 696.0314 0.6582 0.6519 0.0231

random-

forest

resnext101-100-entropy-100 0.9991 0.9991 514.8122 0.6612 0.6518 0.0922

random-

forest

resnext101-100-entropy-

None

0.9991 0.9991 515.0193 0.6590 0.6499 0.0922

naive-

bayes

mnasnet1 0-1e-06 0.8446 0.8450 115.6239 0.6448 0.6482 0.0218

naive-

bayes

mnasnet1 0-1e-09 0.8446 0.8450 115.6242 0.6448 0.6482 0.0218

nn mnasnet1 0-deep-32-

adamax-0.001

0.9970 0.9970 797.6790 0.6493 0.6466 0.0234

knn resnext101-brute-distance 0.9991 0.9991 494.4501 0.6575 0.6462 0.0923

knn resnext101-ball tree-distance 0.9991 0.9991 494.9604 0.6575 0.6462 0.0932

knn resnext101-kd tree-distance 0.9991 0.9991 494.9162 0.6575 0.6462 0.0940

random-

forest

resnext101-100-entropy-10 0.9989 0.9989 514.0149 0.6560 0.6460 0.0922

random-

forest

resnext101-100-gini-50 0.9991 0.9991 500.3930 0.6552 0.6454 0.0922

nn mnasnet1 0-deep-32-adam-

1e-05

0.9991 0.9991 1097.4465 0.6485 0.6446 0.0235

random-

forest

resnext101-100-gini-None 0.9991 0.9991 500.2921 0.6515 0.6439 0.0922

nn resnext101-deep-64-adamax-

1e-05-wd

0.8647 0.8617 1333.3698 0.6545 0.6436 0.0934

nn mnasnet1 0-deep-64-

adamax-0.001

0.9981 0.9981 829.4137 0.6463 0.6417 0.0231

nn mnasnet1 0-deep-64-adam-

1e-05-wd

0.9979 0.9979 998.7173 0.6455 0.6404 0.0231

knn resnext101-brute-uniform 0.6647 0.6594 494.4509 0.6507 0.6399 0.0923

knn resnext101-ball tree-uniform 0.6647 0.6594 495.0360 0.6507 0.6399 0.0932

knn resnext101-kd tree-uniform 0.6647 0.6594 494.9103 0.6507 0.6399 0.0940

random-

forest

resnext101-100-entropy-50 0.9991 0.9991 515.1205 0.6463 0.6357 0.0922

nn mnasnet1 0-deep-64-adam-

1e-05

0.9991 0.9991 1052.5357 0.6381 0.6355 0.0231

nn resnext101-deep-32-adamax-

1e-05-wd

0.8696 0.8667 1524.0322 0.6440 0.6338 0.0936

nn mnasnet1 0-deep-32-adam-

1e-05-wd

0.9981 0.9981 1155.9426 0.6351 0.6319 0.0234

nn mnasnet1 0-deep-32-adam-

0.001-wd

0.9966 0.9966 1103.7082 0.6306 0.6272 0.0235

nn mnasnet1 0-deep-64-

adamax-1e-05

0.9720 0.9718 1079.1000 0.6284 0.6247 0.0231

nn mnasnet1 0-deep-32-adam-

0.001

0.9899 0.9899 1255.6537 0.6291 0.6242 0.0234

nn mnasnet1 0-deep-64-sgd-

0.001

0.9968 0.9968 1153.4391 0.6231 0.6241 0.0232
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

random-

forest

mnasnet1 0-100-gini-None 0.9991 0.9991 118.9210 0.6224 0.6138 0.0217

nn mnasnet1 0-deep-32-

adamax-1e-05

0.9509 0.9508 1146.0586 0.6194 0.6115 0.0234

random-

forest

mnasnet1 0-1000-gini-10 0.9957 0.9957 132.5350 0.6299 0.6099 0.0221

nn mnasnet1 0-deep-32-sgd-

0.001

0.9920 0.9920 725.7567 0.6060 0.6062 0.0235

knn mnasnet1 0-ball tree-

distance

0.9991 0.9991 115.8433 0.6037 0.6059 0.0223

knn mnasnet1 0-kd tree-distance 0.9991 0.9991 115.8088 0.6037 0.6059 0.0229

knn mnasnet1 0-brute-distance 0.9991 0.9991 115.5803 0.6037 0.6058 0.0217

random-

forest

mnasnet1 0-100-gini-100 0.9991 0.9991 118.6196 0.6075 0.5988 0.0217

knn mnasnet1 0-brute-uniform 0.6241 0.6237 115.5802 0.5881 0.5896 0.0217

knn mnasnet1 0-ball tree-

uniform

0.6241 0.6237 115.8442 0.5881 0.5896 0.0223

knn mnasnet1 0-kd tree-uniform 0.6241 0.6237 115.7899 0.5881 0.5896 0.0229

random-

forest

mnasnet1 0-100-gini-50 0.9991 0.9991 118.5203 0.5925 0.5825 0.0217

nn mnasnet1 0-deep-64-sgd-

0.001-wd

0.9416 0.9415 867.3524 0.5843 0.5804 0.0232

nn mnasnet1 0-deep-32-sgd-

0.001-wd

0.9853 0.9853 971.4710 0.5828 0.5777 0.0235

random-

forest

resnext101-1000-gini-10 0.9547 0.9549 520.8756 0.5955 0.5694 0.0927

random-

forest

mnasnet1 0-100-entropy-10 0.9991 0.9991 128.9397 0.5806 0.5646 0.0217

random-

forest

mnasnet1 0-100-entropy-

None

0.9991 0.9991 129.1390 0.5739 0.5600 0.0217

random-

forest

mnasnet1 0-100-entropy-50 0.9991 0.9991 129.2369 0.5731 0.5595 0.0217

random-

forest

mnasnet1 0-100-entropy-

100

0.9991 0.9991 129.2396 0.5657 0.5535 0.0217

nn mnasnet1 0-deep-32-

adamax-1e-05-wd

0.7886 0.7749 1435.5942 0.5694 0.5487 0.0234

svm resnext101-linear-0.0001 0.5950 0.5845 581.5421 0.5522 0.5418 0.1033

nn mnasnet1 0-deep-64-

adamax-1e-05-wd

0.7511 0.7401 1228.4915 0.5627 0.5400 0.0231

random-

forest

mnasnet1 0-100-gini-10 0.9832 0.9832 117.4183 0.5515 0.5263 0.0217

nn resnext101-shallow-32-

adam-1e-07

0.6343 0.6137 1604.6319 0.5545 0.5180 0.0937

random-

forest

resnext101-100-gini-10 0.8888 0.8875 497.2872 0.5254 0.4933 0.0922

nn resnext101-shallow-64-

adam-1e-07

0.5840 0.5555 1362.7278 0.5187 0.4804 0.0934
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

random-

forest

resnext101-10-gini-None 0.9966 0.9966 495.3587 0.4813 0.4788 0.0922

random-

forest

resnext101-10-gini-100 0.9972 0.9972 495.3571 0.4784 0.4746 0.0922

random-

forest

resnext101-10-gini-50 0.9966 0.9966 495.5603 0.4724 0.4670 0.0922

nn resnext101-shallow-32-sgd-

1e-05

0.5715 0.5375 1603.1219 0.5052 0.4577 0.0937

nn mnasnet1 0-shallow-32-

adam-1e-07

0.5405 0.5169 1456.5810 0.4597 0.4286 0.0234

random-

forest

resnext101-10-entropy-10 0.9806 0.9806 496.9616 0.4306 0.4190 0.0922

random-

forest

resnext101-10-entropy-100 0.9961 0.9961 497.0622 0.4157 0.4175 0.0922

random-

forest

resnext101-10-entropy-None 0.9976 0.9976 497.1645 0.4201 0.4173 0.0922

random-

forest

resnext101-10-entropy-50 0.9968 0.9968 497.1622 0.4104 0.4104 0.0922

nn resnext101-shallow-32-

adam-1e-07-wd

0.4785 0.4471 1605.7025 0.4194 0.3882 0.0937

decision-

tree

resnext101-gini-None 0.9991 0.9991 538.5621 0.3784 0.3790 0.0922

decision-

tree

resnext101-gini-50 0.9493 0.9554 537.6535 0.3791 0.3777 0.0922

decision-

tree

resnext101-gini-100 0.9991 0.9991 538.5325 0.3776 0.3769 0.0922

random-

forest

resnext101-10-gini-10 0.5882 0.5784 494.8573 0.3858 0.3623 0.0922

nn mnasnet1 0-shallow-32-sgd-

1e-05

0.4651 0.4397 1411.0009 0.3896 0.3569 0.0235

nn resnext101-shallow-64-sgd-

1e-05

0.4547 0.4191 1388.2858 0.3903 0.3523 0.0935

nn mnasnet1 0-shallow-64-

adam-1e-07

0.4666 0.4433 1239.2570 0.3739 0.3469 0.0231

random-

forest

mnasnet1 0-10-gini-50 0.9974 0.9974 116.0882 0.3351 0.3371 0.0217

nn resnext101-shallow-32-sgd-

1e-05-wd

0.4174 0.3776 1574.2232 0.3739 0.3314 0.0937

random-

forest

mnasnet1 0-10-gini-100 0.9961 0.9961 116.0896 0.3306 0.3313 0.0217

nn resnext101-shallow-64-

adam-1e-07-wd

0.3864 0.3544 1300.7596 0.3560 0.3264 0.0934

decision-

tree

resnext101-entropy-None 0.9991 0.9991 619.9747 0.3157 0.3147 0.0922

random-

forest

mnasnet1 0-10-gini-10 0.6993 0.6914 115.8886 0.3291 0.3130 0.0217

decision-

tree

resnext101-entropy-100 0.9991 0.9991 621.3826 0.3097 0.3081 0.0922
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

random-

forest

mnasnet1 0-10-entropy-10 0.9793 0.9793 117.3922 0.3157 0.3054 0.0217

decision-

tree

resnext101-entropy-10 0.7440 0.7451 619.0062 0.3045 0.3020 0.0922

random-

forest

mnasnet1 0-10-gini-None 0.9965 0.9965 116.0889 0.3045 0.2984 0.0217

decision-

tree

resnext101-entropy-50 0.9991 0.9991 621.8744 0.2985 0.2965 0.0922

random-

forest

mnasnet1 0-10-entropy-50 0.9970 0.9970 117.3913 0.2896 0.2906 0.0217

random-

forest

mnasnet1 0-10-entropy-100 0.9963 0.9963 117.3825 0.2866 0.2827 0.0217

random-

forest

mnasnet1 0-10-entropy-

None

0.9976 0.9976 117.3932 0.2672 0.2673 0.0217

nn resnext101-shallow-32-

adamax-1e-07

0.3297 0.3042 1498.7338 0.2866 0.2613 0.0939

random-

forest

resnext101-2-gini-50 0.7226 0.7199 495.1562 0.2709 0.2609 0.0922

random-

forest

resnext101-2-gini-None 0.7228 0.7201 495.0546 0.2716 0.2590 0.0922

decision-

tree

mnasnet1 0-gini-100 0.9991 0.9991 135.8964 0.2448 0.2453 0.0216

random-

forest

resnext101-2-gini-100 0.7254 0.7227 495.0547 0.2672 0.2445 0.0922

random-

forest

resnext101-2-entropy-10 0.6265 0.6234 496.3626 0.2545 0.2430 0.0922

nn resnext101-deep-32-sgd-1e-

05

0.2890 0.2563 1671.6346 0.2672 0.2404 0.0938

decision-

tree

mnasnet1 0-gini-None 0.9991 0.9991 135.6716 0.2403 0.2362 0.0216

decision-

tree

mnasnet1 0-gini-50 0.9696 0.9741 135.5417 0.2328 0.2327 0.0216

nn mnasnet1 0-shallow-32-

adam-1e-07-wd

0.2937 0.2754 1451.7953 0.2485 0.2310 0.0234

random-

forest

resnext101-2-gini-10 0.3401 0.3600 494.7537 0.2306 0.2278 0.0922

nn mnasnet1 0-shallow-64-sgd-

1e-05

0.2812 0.2572 1305.2016 0.2530 0.2263 0.0231

nn resnext101-shallow-64-

adamax-1e-07

0.2741 0.2492 1308.5121 0.2396 0.2120 0.0934

decision-

tree

mnasnet1 0-entropy-10 0.6864 0.6876 185.3211 0.2052 0.2056 0.0216

decision-

tree

mnasnet1 0-entropy-50 0.9991 0.9991 186.6609 0.2045 0.2052 0.0216

nn resnext101-shallow-64-sgd-

1e-05-wd

0.2580 0.2358 1431.9030 0.2269 0.2047 0.0935

random-

forest

resnext101-2-entropy-50 0.7088 0.7049 496.4548 0.2149 0.2046 0.0922
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

decision-

tree

mnasnet1 0-entropy-None 0.9991 0.9991 186.7215 0.2052 0.2040 0.0216

decision-

tree

mnasnet1 0-entropy-100 0.9991 0.9991 186.8131 0.2015 0.2028 0.0216

random-

forest

resnext101-2-entropy-100 0.7063 0.7032 496.4634 0.2045 0.2010 0.0922

random-

forest

resnext101-2-entropy-None 0.7132 0.7111 496.3619 0.2067 0.1968 0.0922

nn mnasnet1 0-shallow-32-sgd-

1e-05-wd

0.2541 0.2349 1422.3452 0.2119 0.1899 0.0235

random-

forest

mnasnet1 0-2-gini-10 0.3771 0.3852 115.7830 0.1821 0.1795 0.0217

random-

forest

mnasnet1 0-2-entropy-10 0.6075 0.6063 116.7892 0.1739 0.1732 0.0217

decision-

tree

resnext101-gini-10 0.2416 0.2639 511.9497 0.1701 0.1726 0.0922

nn resnext101-deep-32-adam-

1e-07

0.2188 0.2012 1522.4011 0.1761 0.1562 0.0937

nn mnasnet1 0-shallow-64-

adam-1e-07-wd

0.2065 0.1953 1266.9201 0.1634 0.1558 0.0231

random-

forest

mnasnet1 0-2-gini-100 0.6925 0.6873 115.9856 0.1672 0.1548 0.0217

nn resnext101-deep-64-adam-

1e-07

0.1823 0.1694 1404.9960 0.1590 0.1448 0.0934

random-

forest

mnasnet1 0-2-gini-50 0.6806 0.6767 115.8844 0.1522 0.1444 0.0217

decision-

tree

mnasnet1 0-gini-10 0.2687 0.3021 124.7518 0.1485 0.1410 0.0216

random-

forest

mnasnet1 0-2-gini-None 0.6903 0.6854 115.9854 0.1515 0.1406 0.0217

nn resnext101-deep-64-sgd-1e-

05

0.1715 0.1517 1419.4391 0.1545 0.1402 0.0935

random-

forest

mnasnet1 0-2-entropy-None 0.6853 0.6806 116.8872 0.1493 0.1397 0.0217

random-

forest

mnasnet1 0-2-entropy-100 0.6808 0.6779 116.8906 0.1470 0.1339 0.0217

nn mnasnet1 0-deep-32-sgd-1e-

05

0.1649 0.1504 1509.5415 0.1455 0.1268 0.0235

nn mnasnet1 0-shallow-32-

adamax-1e-07

0.1528 0.1390 1325.1360 0.1388 0.1263 0.0233

random-

forest

mnasnet1 0-2-entropy-50 0.6761 0.6728 116.8896 0.1284 0.1233 0.0217

nn resnext101-deep-32-sgd-1e-

05-wd

0.1358 0.1226 1616.5724 0.1209 0.1109 0.0938

nn resnext101-shallow-32-

adamax-1e-07-wd

0.1388 0.1286 1542.3052 0.1104 0.1010 0.0936

nn mnasnet1 0-shallow-64-

adamax-1e-07

0.1093 0.1020 1230.3000 0.0985 0.0921 0.0230
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

nn mnasnet1 0-shallow-64-sgd-

1e-05-wd

0.1112 0.1032 1156.6570 0.0940 0.0878 0.0232

nn mnasnet1 0-deep-32-adam-

1e-07

0.1149 0.1046 1325.7920 0.0925 0.0871 0.0234

nn mnasnet1 0-deep-64-adam-

1e-07

0.0937 0.0880 1285.1960 0.0813 0.0745 0.0231

nn resnext101-shallow-64-

adamax-1e-07-wd

0.0942 0.0910 1301.9637 0.0784 0.0743 0.0933

nn resnext101-deep-32-adam-

1e-07-wd

0.0858 0.0797 1618.0272 0.0806 0.0726 0.0937

nn mnasnet1 0-deep-64-sgd-1e-

05

0.0701 0.0643 1347.3848 0.0672 0.0582 0.0232

nn mnasnet1 0-shallow-32-

adamax-1e-07-wd

0.0576 0.0547 1299.5256 0.0597 0.0557 0.0233

nn resnext101-deep-64-adam-

1e-07-wd

0.0728 0.0670 1342.2672 0.0597 0.0532 0.0934

nn mnasnet1 0-deep-32-sgd-1e-

05-wd

0.0603 0.0566 1505.4828 0.0537 0.0512 0.0235

nn resnext101-deep-64-sgd-1e-

05-wd

0.0593 0.0554 1232.4259 0.0537 0.0493 0.0935

nn mnasnet1 0-shallow-64-

adamax-1e-07-wd

0.0461 0.0435 1106.0471 0.0433 0.0398 0.0230

nn resnext101-deep-32-adamax-

1e-07

0.0534 0.0491 1424.1569 0.0425 0.0393 0.0937

nn mnasnet1 0-deep-32-adam-

1e-07-wd

0.0369 0.0349 1082.5452 0.0381 0.0365 0.0234

svm mnasnet1 0-linear-0.0001 0.0500 0.0492 181.0784 0.0381 0.0345 0.0287

nn resnext101-deep-64-adamax-

1e-07

0.0386 0.0357 1251.9877 0.0366 0.0326 0.0934

nn resnext101-deep-32-adamax-

1e-07-wd

0.0271 0.0255 1233.7407 0.0321 0.0300 0.0936

nn mnasnet1 0-deep-64-

adamax-1e-07

0.0257 0.0239 1118.7943 0.0291 0.0282 0.0230

nn mnasnet1 0-deep-64-sgd-1e-

05-wd

0.0338 0.0324 933.3751 0.0299 0.0272 0.0232

nn mnasnet1 0-deep-64-adam-

1e-07-wd

0.0282 0.0265 722.2695 0.0261 0.0251 0.0231

nn mnasnet1 0-deep-32-

adamax-1e-07

0.0256 0.0246 1265.8049 0.0216 0.0213 0.0233

nn resnext101-shallow-64-sgd-

1e-07-wd

0.0183 0.0176 1077.6604 0.0194 0.0192 0.0934

nn mnasnet1 0-deep-64-sgd-1e-

07

0.0159 0.0156 1113.0549 0.0187 0.0182 0.0231

nn mnasnet1 0-deep-64-

adamax-1e-07-wd

0.0166 0.0155 1114.8170 0.0187 0.0181 0.0230

nn resnext101-deep-64-adamax-

1e-07-wd

0.0248 0.0228 1025.0829 0.0201 0.0179 0.0933
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Classifier Experiment Name Train

Acc.

Train F1

Score

Train

Time

Test

Acc.

Test F1

Score

Test

Time

nn resnext101-shallow-32-sgd-

1e-07-wd

0.0179 0.0174 659.7547 0.0179 0.0177 0.0938

nn mnasnet1 0-shallow-64-sgd-

1e-07-wd

0.0159 0.0156 303.7959 0.0164 0.0168 0.0231

nn mnasnet1 0-shallow-32-sgd-

1e-07-wd

0.0159 0.0163 507.9781 0.0172 0.0167 0.0234

nn resnext101-deep-32-sgd-1e-

07

0.0190 0.0176 1669.1323 0.0179 0.0165 0.0938

nn resnext101-deep-64-sgd-1e-

07

0.0146 0.0147 663.6759 0.0164 0.0162 0.0935

nn mnasnet1 0-shallow-32-sgd-

1e-07

0.0138 0.0132 994.2681 0.0179 0.0161 0.0235

nn resnext101-deep-64-sgd-1e-

07-wd

0.0114 0.0104 975.8959 0.0179 0.0159 0.0934

nn mnasnet1 0-deep-32-

adamax-1e-07-wd

0.0177 0.0170 943.2605 0.0149 0.0146 0.0234

nn resnext101-shallow-32-sgd-

1e-07

0.0174 0.0170 1529.6792 0.0149 0.0145 0.0937

nn mnasnet1 0-shallow-64-sgd-

1e-07

0.0123 0.0127 605.4862 0.0149 0.0140 0.0231

nn mnasnet1 0-deep-32-sgd-1e-

07-wd

0.0131 0.0127 287.0596 0.0134 0.0124 0.0235

nn resnext101-deep-32-sgd-1e-

07-wd

0.0159 0.0150 1612.6127 0.0134 0.0120 0.0937

nn resnext101-shallow-64-sgd-

1e-07

0.0136 0.0139 1245.5499 0.0112 0.0108 0.0934

nn mnasnet1 0-deep-32-sgd-1e-

07

0.0177 0.0163 180.1698 0.0112 0.0107 0.0235

nn mnasnet1 0-deep-64-sgd-1e-

07-wd

0.0159 0.0149 882.6261 0.0097 0.0075 0.0231

svm mnasnet1 0-poly-1 0.0155 0.0005 181.6799 0.0149 0.0045 0.0287

svm mnasnet1 0-poly-0.01 0.0155 0.0005 181.1806 0.0127 0.0003 0.0287

svm mnasnet1 0-sigmoid-0.01 0.0155 0.0005 182.6480 0.0127 0.0003 0.0287

svm mnasnet1 0-poly-0.0001 0.0155 0.0005 181.1163 0.0127 0.0003 0.0287

svm mnasnet1 0-sigmoid-0.0001 0.0155 0.0005 182.4645 0.0127 0.0003 0.0287

svm mnasnet1 0-rbf-0.01 0.0155 0.0005 183.7749 0.0127 0.0003 0.0289

svm mnasnet1 0-rbf-0.0001 0.0155 0.0005 183.5261 0.0127 0.0003 0.0290

svm resnext101-poly-0.01 0.0155 0.0005 600.1181 0.0127 0.0003 0.1033

svm resnext101-sigmoid-0.01 0.0155 0.0005 601.0287 0.0127 0.0003 0.1034

svm resnext101-poly-0.0001 0.0155 0.0005 599.4391 0.0127 0.0003 0.1034

svm resnext101-rbf-0.01 0.0155 0.0005 602.0599 0.0127 0.0003 0.1037

svm resnext101-rbf-0.0001 0.0155 0.0005 601.5051 0.0127 0.0003 0.1038

svm resnext101-sigmoid-0.0001 0.0155 0.0005 600.7526 0.0127 0.0003 0.1039
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