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Abstract—Robustness is key to engineering, automation, and
science as a whole. However, the property of robustness is often
underpinned by costly requirements such as over-provisioning,
known uncertainty and predictive models, and known adver-
saries. These conditions are idealistic, and often not satisfiable.
Resilience on the other hand is the capability to endure unex-
pected disruptions, to recover swiftly from negative events, and
bounce back to normality. In this survey article, we analyze
how resilience is achieved in networks of agents and multi-
robot systems that are able to overcome adversity by leveraging
system-wide complementarity, diversity, and redundancy—often
involving a reconfiguration of robotic capabilities to provide some
key ability that was not present in the system a priori. As
society increasingly depends on connected automated systems
to provide key infrastructure services (e.g., logistics, transport,
and precision agriculture), providing the means to achieving
resilient multi-robot systems is paramount. By enumerating the
consequences of a system that is not resilient (fragile), we
argue that resilience must become a central engineering design
consideration. Towards this goal, the community needs to gain
clarity on how it is defined, measured, and maintained. We
address these questions across foundational robotics domains,
spanning perception, control, planning, and learning. One of our
key contributions is a formal taxonomy of approaches, which
also helps us discuss the defining factors and stressors for a
resilient system. Finally, this survey article gives insight as to
how resilience may be achieved. Importantly, we highlight open
problems that remain to be tackled in order to reap the benefits
of resilient robotic systems.

Index Terms—resilience, robustness, networked robotic sys-
tems, multi-agent systems.

I. INTRODUCTION

Robustness is one of the most important topics within the
fields of control [1]], statistics [2], [3]], engineering [4], [5],
and, admittedly, science at large [6], [7]. Not surprisingly,
robustness has also been a key objective in the design and
deployment of modern multi-robot systems, from service
robots for factory automation to autonomous transportation
systems, where a lack of robustness at a single agent may
disrupt operation for the entire system or even put human
lives at risk [8]. However, more is needed to incorporate ideas
triggered by advances in networking technology, which has
facilitated the design of connected, interdependent multi-agent
systems [9]. Redundancy and over-provisioning have long
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Figure 1: Robust methods (fop) aim to maintain efficiency of functionality
in the presence stochastic disturbances. However, unmodeled disruptions
may lead to system-wide catastrophic failures. On the other hand, various
manifestations of resilience (bottom) can handle unexpected disturbances such
as through (A) anticipatory policies that aim for sustained sufficiency, (B)
adaption to recoup performance, or (C) system-wide reorganization to recover
from loss of functionality. This dichotomy is further elaborated in Section

been used to provide a degree of safety and robustness [10],
[11]]; these methods, however, may lead to fragility in the face
of unmodeled disruptions (see Fig. E], top) 5], [12]. Carefully
orchestrated coordination, cooperation, and collaboration in
a team of (possibly loosely) connected agents provides new
opportunities [[13]].

In this article, we argue that resilience might be a property
uniquely achieved through networks of agents that are able
to overcome adversity by leveraging system-wide comple-
mentarity, diversity, and redundancy to preserve the existence
of functionality or minimize the time-lapses in which the
existence of functionality is compromised. Fig. [I| (bottom)
illustrates various manifestations of resilience; such behaviors
might include anticipatory policies that aim for a course
of action that is ‘good enough’ [14], real-time adaption to
recoup performance loss [15], or system-wide reorganization
to recover from failure [16]. In the following, we go about
defining the central notions of resilience, give insight as to how
it may be achieved, and, importantly, highlight open problems
that remain to be tackled in order to reap the benefits of
resilient robotic systems.

A. The Need for Resilient Multi-Robot Systems

With progress we also face new challenges. We now depend
on connected automated systems to provide key infrastructural
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Figure 2: Publication trends reveal the rapid increase in the study of resilience,
plotted as the percent difference of resilience and robustness relative to their
respective number of publications in year 2000.

services, such as logistics [[17], [[18]], resource distribution [[19],
[20], transport systems [21]—[23], manufacturing [24]], and
agriculture [25]], [26].

The usage of multiple connected robots over a single robot
provides evident gains (e.g., work distribution, spatial cover-
age, specialization). However, as connections are established,
information is shared, and dependencies are created, these
systems give rise to new vulnerabilities and threats. Rodin’s
book on resilience provides ample real-world evidence that
shows how the failure of a single entity can disrupt operations
to leave dependencies unanswered and fundamental neces-
sities unfulfilled [|16]. The book argues that principles such
as readiness, responsiveness, and revitalization would lead to
resilience, but it is not always clear how such principles can
be transformed into actionable plans. Also, while such general
guidelines hold in social systems, it is not clear how the field
of automation and robotics would be able to leverage them to
increase system resilience.

We focus on the domain of networked robotic systems—
multi-robot systems, in short—wherein individual autonomous
machines work together in pursuit of higher-order missions
and goals. The virtue we seek to characterize and acquire is
resilience. Yet, how is it defined, how may it be measured?
How do we build automated resilient systems? This survey
article aims at providing answers to these questions. By doing
so0, our argument develops to state that resilience must become
a central engineering paradigm.

B. From Robustness to Resilience

While robustness is a classic theme in systems engineering,
resilience has emerged as an important new paradigm, and
publications trends reveal this shift in focus towards resilience.
Figure |2| plots annual publications from IEEExplor here
showing the percentage difference (relative to the year 2000) of
papers with keywords ‘resilient’ or ‘resilience’ and of papers
with keywords ‘robustness’ or ‘robust’. Papers addressing
robustness grew from just under 5,000 in 2000 to over 17,000
in 2021 (a three-fold increase), while publications considering
resilience grew from 150 in 2000 to over 2,200 in 2021 (a
fifteen-fold increase).

Robustness is central to robotics. One of robotics’ most
influential papers, published by R. Brooks in 1985 (with more
than 100,000 citations), is concerned with a robust robot
control architecture [27]. While robustness is not explicitly
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tested for nor measured, given an adequate amount of over-
provisioning in the robot’s design, Brooks’ architecture allows
for real-time adjustments to internal robot component failures.
Other early work on robustness was heavily inspired by the
influence of control theorists [28]]. The domain of robust robot
manipulators enjoyed significant attention early on, e.g., [29]-
[31]], yet provided a very narrow lens on robustness through
the consideration of parametric uncertainty alone. Later work
began to generalize robust measures to address causes such
as imperfect motion, environmental dynamics [32], and ad-
versarial attacks [33]]. The commonality of these methods is
their reliance on models of uncertainty and adversity, with
solutions often shown to be robust under the action of bounded
disturbance. These conditions are idealistic; real-world stories
abound [34]]. While the field of adaptive control aims at pro-
viding better ways of adapting to changing process dynamics
through online tuning of model parameters, these methods, too,
are burdened by design assumptions (e.g., gain scheduling)
that restrict operations to well-defined conditions [35].

In a series of papers, Doyle and collaborators argue that
any attempt to maximize robustness leads to fragility [12],
[36]. This is best seen through the simple example of a linear
system with a feedback loop, in which any attempt to reduce
error within a range of frequencies results in an increase of
error in another frequency range [37]. These effects are more
prominent in networked systems including cellular/molecular
networks in biology [38] and the internet [12]. The best
designed complex networked systems are robust to random
component failures, but remarkably fragile to targeted out-of-
distribution attacks.

This ‘robust-yet-fragile’ behavior is typical of the multi-
robot domain: the failure of just one robot may cascade and
consequently undermine the performance of the system as a
whole (e.g., see [8]). A solution to this problem was first
proposed by Parker through the ALLIANCE architecture [[39]
that solves multi-task problems through a distributed program
that allows robots to select their actions as a function of their
own internal state as well as environmental conditions. This
notion of fault-tolerant multi-robot systems was refined in
a subsequent body of literature, considering specific compo-
nents in the autonomy pipeline, i.e., perception, planning, and
control—each of which are reviewed in depth in Sec.

The realization of diverse failure modes in the multi-
robot domain instigates a delineation between robustness and
resilience. We understand robustness to be the ability to
withstand or overcome adverse conditions or rigorous testing
without any structural changes in the multi-robot system.
Robustness accommodates uncertainty and risk, but refers
to the sensitivity of a particular desirable system output in
response to parametric changes or bounded disturbances. In
contrast, resilience refers to the capability of withstanding
or overcoming adverse conditions or shocks, and unknown,
unmodeled disturbances. Quintessentially, resilient systems
relax assumptions on expected conditions. Robust behaviors
are mitigating, whereby actions or design choices are taken in
advance of disruption (e.g., through pre-planned methods for
the rejection of disturbances). During disruption, the system
remains in the same state, as no structural transformations take
place. Resilient behaviors, instead, incorporate agile policies
that allow the system to transform itself, to adapt to newly
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perceived conditions. Hence, providing resilience often in-
volves system-wide re-organization, adaptation and growth.
The following definition summarizes this:

Definition 1 (Resilient multi-robot system). A resilient multi-
robot system is capable of withstanding or overcoming unex-
pected adverse conditions or shocks, and unknown, unmodeled
disturbances. The property of resilience is associated with a
system-wide transformation (e.g., reconfiguration, adaptation,
or growth), and refers to the contingent nature of the robots’
behaviors that is aimed at preserving the existence of func-
tionality or minimizing the time-lapses in which the existence
of functionality is compromised.

This definition of resilience highlights the relevance of
interaction between robots so that the system as a whole
can leverage emanating capabilities with the goal of retaining
some task-level performance. These three concepts are dealt
with in more detail in Sections [[I-A] [[I-B] and [[I-C

C. Problem Domains

In this survey, we consider three classical application do-
mains within robotics research: perception, planning, control.
Perception is the creation of an internal model of the world
given sensor data and priors. Planning uses the robot’s internal
world model to plan a course of action to achieve a desired
goal. Control ensures that the course of action is correctly
executed. These domains constitute three key robotic research
areas and form the building blocks of modern autonomous
systems. In this context, we use the term ‘perception’ in
a broad sense, encompassing both 2D vision (e.g., object
detection and pose estimation), 3D localization and mapping,
sensor fusion, and high-level scene understanding. Similarly,
‘planning’ includes both motion and task planning, as well as
task allocation, while ‘control’ spans topics from traditional
control theory to networked control and consensus.

D. Contributions of this Survey

This article aims not only to delineate robustness vs.
resilience and to contextualize this within the multi-robot
domain, but also to provide actionable open problems that
define directions where, we believe, we should be heading
next. Our contributions are listed as follows:

o We provide new definitions and terminology that consti-
tute the resilience problem.

o We provide the first formal model of resilience engineer-
ing. We introduce notation to support the model.

o We provide a taxonomy of approaches towards resilience
in multi-robot systems.

o We introduce key labels that facilitate an analysis of the
body of existing work and review existing papers with
respect to our taxonomy and formalization.

o« We provide an enumeration of open problems that en-
compass key challenges and areas of future work.

Following an early seminal work surveying multi-robot
systems [40]], several recent surveys on multi-robot systems
have been released [41]-[45], while none of them share our
focus on resilience. Halsted, et al., [41] focus on distributed
optimization techniques for multi-robot systems. Kegeleirs,
et al., [42] focus on SLAM and point out the importance
of decentralized approaches as opposed to more traditional

centralized multi-robot SLAM. Lajoie, et al., [44] provide
a more in-depth discussion on multi-robot SLAM, including
mathematical formulations and discussion about open prob-
lems. Dorigo, et al., [43]] complement this survey by reviewing
history and new applications of swarm robotics. Finally, a
recent survey provided in [45] has similar interests, yet focuses
on a narrower segment of multi-robot approaches (i.e., mainly
coordination), and does not provide formal taxonomies.

II. PROBLEM STATEMENT

This survey deals with the problem of designing multi-robot
systems that are tasked to solve a given problem. Almost
two decades ago, in one of the first editorials dedicated to
multi-robot systems, Arai, et al., posed the following open
problem [46]: “How does the complexity of the task and of
the environment affect the design of multi-robot systems?”
While posed rather broadly, this is arguably still the key
question that drives this research community. Although not
explicit, the question of how to design resilient multi-robot
systems is intrinsic to the original phrasing. We are interested
in solutions to this design problem through an optimization
approach which, ultimately, must be able to deal with stressors
(e.g., disruptions, attacks), while striving to meet performance
requirements. In the following, we elaborate the three factors
that compose our design problem, i.e., (i) robot capabilities
and constraints, (ii) the form of robot interaction, and (iii),
performance measures.

A. Capabilities and Constraints

In robotics, there are four fundamental capability classes:
(i) sensing, (ii) computation, (iii) actuation, (iv) communi-
cation [47]. While sensors, actuators, and computation are
well-studied components that underpin an individual robot’s
perception-action loop, in a multi-robot system, the action loop
needs to be closed over a communication channel. Explicit
communication (e.g., via narrowband communication chan-
nels) facilitates robot interaction through the dissemination
of hidden and unobservable values, giving rise to perception-
action-communication loops that provide feedback to local
agent controllers [9]], [48]. Critical parameters include con-
nectivity and range [49], [50], topology-dependent delay [S1]],
and bandwidth [52], [53].

While tempted to design-in capabilities based on what they
can do, instead, we often find ourselves limited by what
they cannot do, i.e., what their constraints are. Constraints
are most commonly formulated as energy budgets [54], [55],
but specific formulations can vary: the work in [56], [57]
includes budgets on the number of redundant robots; [|58]], [|59]]
considers monitoring battery levels; [60] considers maximum
travel time budgets; [61]], [62] considers computing budgets;
and [|63] considers budgets that represent affordable ‘prices’
in multi-robot auctions. Accurately modeling constraints is
reminiscent of the problem at hand, i.e., resilience engineering.
If constraints are characterized a priori, we can design our
systems to operate accordingly. The challenge, however, lies
in discovering, adapting to, and overcoming new constraints.
B. Types of Robot Interaction

The strength of multi-robot systems lies in the robots’
ability to work together. Networks of agents provide key in-
frastructural services successfully by leveraging their system-
wide complementarity, diversity, and redundancy. However,
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species’ capabilities.

not all systems interact in the same way, as dependencies
arise from a variety of conditions (i.e., spatial, temporal or
functional relationships). Different types of interaction may
create different vulnerabilities or lead to different capabilities
at a systems level. Here, we classify various types of multi-
robot interactions into three main groups: coordination, co-
operation, collaboration. We refer to these as the three Cs of
robot interaction, illustrated in Fig. E}

Coordination seeks additive performance gains by minimiz-
ing interference within a system, such as avoiding collisions
(e.g., in multi-robot path planning) or avoiding duplicate work
(e.g., in multi-robot coverage). For example, in a warehouse
setting, the number of boxes that a team of robots can move
per hour increases linearly as more robots join the team,
as long as the team coordinates their actions. Similarly, in
distributed coverage tasks, the amount of time it takes for a
team of robots to cover the full area decreases linearly as
more robots join the team, as long as the team coordinates
their motion. Coordinating agents need not share goals (though
they often do) because agents are awarded for their individual
local performance. However, team performance may at times
only exhibit subadditive gains as the number of coordinating
agents increases, in particular when considering cooperation
among an increasingly redundant set of robots (e.g., [S6]).

Cooperation considers teamwork where the system can
achieve superadditive improvement, i.e., where the ‘whole is
greater than the sum of its parts.” Cooperating agents share
goals and leverage teammates’ help to improve task perfor-
mance as a system, rather than just minimizing interference
among agents as seen in coordination. Cooperation, however,
may depend on threshold numbers. Consider a multi-agent
search and tracking problem in which sensed information
needs to be communicated to a base-station. In addition to
coordinating to enable coverage, it may be necessary for some
agents to relay information using multi-hop communications.
Even if more agents are recruited for the task, the performance
may not increase until a communication network can be
established, which may require a threshold to be exceeded.
Thus, the performance in a team of cooperative agents may
not change significantly with an increase in team size until
a threshold is reached, upon which, there can be a dramatic
improvement in performance. Similarly, in cooperative driving,
a single vehicle gains no benefits on its own. As surrounding
vehicles participate in a shared cooperative driving style, each
vehicle gains efficiency with the help of the cooperating agents
as well as gains from the increased traffic throughput that

results from the reduced system-wide congestion. On the other
hand, tasks like cooperative manipulation and object transport
can exhibit superadditive gains with increasing team size.

Collaboration involves heterogeneous team interaction
where agents leverage complementary capabilities, also lead-
ing to superadditive performance gains. This differs from
cooperation in that there is a need for specific types of
agents to work together due to task requirements and inherent
agent constraints [64]. The resulting performance is a step
function: task performance only reaches a satisfactory level
when all capabilities are present. For example, a team of agents
searching for targets in a forest might leverage teamwork
between aerial as well as ground vehicles. The aerial vehicles’
capabilities are used to map large areas from a birds-eye
view and inform exploration strategies, whereas the ground
vehicles collect close-up first-person view information, or
retrieve targets.

C. Performance

There is abundant literature within the multi-robot field that
deals with the development of methods that strive to reach
and maintain efficiency (e.g., stability around an equilibrium),
across a vast variety of target functionalities [47]]. Yet, while
evidence suggests that efficiency-driven objectives lead to
brittle performance under perturbation [65]], [[66], there is a
dearth of work that discusses how to maintain existence instead
of efficiency of functionality.

Classically, robustness is measured by how much the system
loses in terms of performance during disruptions. In many
cases, it measures how well stability is maintained near an
equilibrium state, through either the speed of return to that
equilibrium or through the resistance to disturbance. Anal-
ogously, resilience could be measured by the magnitude of
disturbance that can be absorbed before the system needs to
change its structure by changing the variables and processes
that control behavior. But, as pointed out by Holling [67],
there are systems that are able to maintain functionality by
transitioning between multi-stable states—if there is more than
one objective function, then where is the optimum, and what
methods should we use to reach it? The tension between
efficiency of functionality (e.g., thriving) and existence of
functionality (e.g., surviving) is still poorly understood, and
few measures exist to quantify it. The dichotomy between
robustness and resilience is illustrated in Fig.

A few recent works propose domain-specific measures of
resilience. For example, in transport engineering, resilience is



estimated as the change in efficiency resulting from roadway
disruptions [|68[]. Areas such as biology [69], health [70],
[71]], and the built environment [[15] have also dedicated a
decade of research into this broad question; but tying together
formalisms in a cross-disciplinary manner proves hard, if not
impossible, due to incompatible quantities of interest. While
preceding ideas may, at the very least, inspire resilience mea-
sures in the multi-robot systems domain, further dimensions
must be considered: e.g., the various behavioral changes that
occur over time to stymie a disruption, or the time it takes
for the system to reach a new steady state, or the performance
of the system at the equilibrium after disruption, or even the
number of possible equilibria that ensure system functionality.

Open Problem 1 (Measurement of Resilience). If the property
of resilience is associated with a system-wide transformation
(e.g., reconfiguration, adaptation, or growth), then new multi-
dimensional measures need to be developed that account for
these changes holistically.

ITI. TAXONOMY OF APPROACHES

We posit that resilience in multi-robot systems is achieved
through the joint execution of a strategy that aims to over-
come the adverse effects of undesirable disturbances. Because
there exist multiple types of disturbances (i.e., stressors) and
multiple means to addressing each stressor, work in multi-
robot resilience can vary greatly. This section outlines the key
variables defining each stressor type, the approach types for
tuning the key variables, and the relationship between stressors
and approaches.

A. Stressors and Key Variables

Networked robotic systems encounter myriad adverse con-
ditions, such as distributional noise whose instantiation is a
priori unknown [[72f], [[73]], and disturbances outside the robots’
world model [65]. We also consider targeted disturbances, such
as adversaries intent on disrupting the system (e.g., [74], [75])
and non-cooperative agents competing for resources [[76]], [[77].
Resilience is achieved by withstanding and overcoming such
adverse conditions. We identify two main stressor dimensions
that delineate whether the stressor is stochastic or out-of-
distribution, and whether the stressor is targeted or not. Each
stressor type is defined by key variables, i.e., the models and
parameters that characterize it.

Stochastic stressors entail the noise and uncertainty that
is present throughout robotics systems. The key variables
of stochastic stressors are hyper-parameters of a disturbance
model. For example, the key variables of a Gaussian stochastic
stressor are mean and standard deviation. When dealing with
stochastic stressors, the system may possess a priori knowl-
edge of the type of model that characterizes the disturbance,
but may also be capable of adapting or updating the model pa-
rameters in-situ, during operation. Even with a perfect model
and well-tuned key variables, robotic systems are challenged
because the exact, true instantiation of such stressors is rarely
known a priori.

Out-of-distribution stressors are disturbances that are not
captured by the robot systems’ model. Similar to stochastic
stressors, the exact, true instantiation of an out-of-distribution
stressor is rarely known a priori. However, out-of-distribution
stressors are more challenging because the disturbance is not

Stochastic Out-of-distribution has Out-of-distribution

Targeted Targeted Un-targeted Un-targeted

Figure 4: The classification of stressor types, showing that the stressors can
be either targeted or un-targeted. Further, the stressors can be classified as
stochastic, if the robots have a model of the stressor, or out-of-distribution
otherwise.

even probabilistically known beforehand; in other words, the
disturbance is unknown to the model. Therefore, the key
variable of out-of-distribution stressors is the model itself,
together with its hyper-parameters (which may change when
the model changes).

Targeted stressors are distinguished by the existence of an
intent: targeted stressors are goal-oriented and are therefore
often functions of the robotic system itself, capable of adapting
to changes in the robotic system. A common example of
targeted stressors are adversarial disturbances, which are intent
on disrupting the robotic system. But not all targeted stressors
are adversarial—external agents (that have their own goals and
are therefore non-cooperative) compete for the resources that
are shared with the robotic system in question. For example,
connected autonomous multi-vehicle systems that share road-
space with human drivers must deal with their potentially non-
cooperative driving behavior. The humans’ behavior is targeted
(i.e., through egocentric driving goals), yet non-adversarial.

The distinction of targeted and untargeted stressors does
not impact the key variables. As seen in Fig. [ targeted and
untargeted stressors are both further categorized as stochastic
versus out-of-distribution stressors which in turn define the
key variables (as seen above).

B. Approaches

There are multiple types of approaches by which a robotic
system can withstand or overcome stressors. Stressor types, as
described above, are defined by their key variables. Similarly,
approach types are defined by how robotic systems interact
with key stressors variables. Specifically, a stressor type de-
fines what the key variables are, whereas an approach type
defines how the key variables are tuned. In the following,
we introduce three approach types, pre-, intra-, and post-
operative, which are agnostic to the stressor type.

To help define these approaches, we make use of some
notation. In robotics applications ranging from estimation to
planning, the goal is to optimize an objective functiorﬂ (e.g.,
localization accuracy or coverage) over some time horizon. Let
f represent the objective function, which takes a general form
here to encapsulate the various manifestations of resilience
seen in Figl[l| and the problem domains considered in this
survey. Let x represent the system decision variable over
which this function is optimized, and 7" be the time horizon (in
non-sequential optimization 7' is unit step). Resilience in these
systems is concerned with the impact of the key variables of

2We illustrate this optimization with the max function, though any opti-
mization function can be used.



the stressors, denoted ¢, on the system performance, i.e., the
existence of functionality.

Pre-operative approaches pre-determine the key variables
of the stressor a priori, and provide resilience by design. In
the context of the robotics system, this means the objective
function is optimized with respect to the decision variable
assuming given (or pre-calculated) key variables.

Definition 2 (Pre-operative). Pre-operative approaches opti-
mize the system objective function, f, over the system decision
variables, x, with respect to given key variable values, ¢:

max f(x | 9).

TQ...TT

Because these approaches are offline with respect to the
stressor, they often provide resilience against an expected or
worst-case disturbance [’} One trait of pre-operative approaches
is that their resilient actions are taken regardless of the
presence of the stressor. For example, a system that is designed
to be resilient to five adversaries will take the same actions no
matter how many adversaries are present. Another common
aim of pre-operative approaches is to achieve robustness or
resilience through over-provisioning and redundancy.

Intra-operative approaches are online with respect to the
key variables of the stressor, and provide resilience through
adaptation. During operation, changes to the key variables are
made, therefore, the stressor key variables ¢ become decision
variables in the optimization.

Definition 3 (Intra-operative). Intra-operative approaches op-
timize the system objective function, f, over both the system
decision variables, x, and stressor key variable values, ¢, such
that the stressor is addressed online:

[z, ).

max
¢, Ti...TigpT
Intra-operative approaches often use online algorithms with
respect to the decision variable x (i.e., both the system decision
variable and the stressor key variables are updated online), but
note that the opposite is not necessarily true. Some algorithms
may be online with respect to the system variable, x, but
assume a fixed key variable, ¢, throughout; therefore, they
are pre-operative because they are offline with respect to
the stressor. In contrast to pre-operative approaches, intra-
operative approaches will not take resilient actions when there
is no stressor present.

Post-operative approaches update the key variables of the
stressor using past data (often in batch), and provide resilience
through learning. Therefore, the system variable x is no longer
a decision variable. Rather, the optimization seeks the best key
variables given a set of data.

Definition 4 (Post-operative). Post-operative approaches op-
timize the stressor key variables, ¢, given past data of the
system objective function, f, and system decision variables,
x:

argmax, f(¢ | zi—7...7;).

Similar to pre-operative approaches, post-operative ap-
proaches are offline with respect to the stressor, with the
difference that tuning is executed post-factum. In other words,

3This definition of pre-operative approaches is reminiscent of robustness

Approach Stochastic  Out of Dist
Pre-operative | Offline 6 N/A
Intra-operative | Online &  Online g, 6
Post-operative | Update §  Update g, 0

Figure 5: The relationship between approach types and stressor types, showing
how each approach changes or uses the key variables for each stressor type.

post-operative approaches seek improvement in future trials,
after the robot system’s performance on relevant tasks has
been experienced and measured. The unique feature of post-
operative approaches is that they facilitate the discovery of
out-of-distribution stressors. Examples of post-operative ap-
proaches include co-design, evolutionary optimization, and
learning techniques (e.g., off-policy, lifelong, reinforcement
learning).

Remark 1 (Objective function notation). The general no-
tation used for the objective functions f in Definitions
can represent the many manifestations of resilience seen in
Fig. [I| Current work, and many of the citations in Table
often interpret these objective functions in the form of
optimization objectives where resilience is scalarized, as is
the case with measures of efficiency. However, the general
notation of f encapsulates a broad class of functions, with the
ability to incorporate constraints, model hybrid systems and
indicator functions; capture system survival, such as defining
a survival threshold fy and an objective function of the form
flx,¢) > fo; and represent the measures of resilience that
may result by future research addressing Open Problem [I}

C. Stressor and Approach Relationship

The relationship between stressor types and approach types
is straightforward: the approach type defines how the key
variables are updated while the stressor type defines the key
variables of interest. To add clarity and comprehensiveness,
we build on the above notation used to define the approach
types and introduce new notation for the stressors. While ¢
abstractly represents any stressor, we introduce more specific
notation in order to distinguish between the different stressor
types. Let 6 be the hyper-parameters of the stressor and g be
the model of the stressor, both of which apply to targeted and
untargeted stressors.

Fig. 5] shows that stochastic stressors are defined and tuned
by their hyper-parameters 6 while out-of-distribution stressors
are governed by their model g as well as the hyper-parameters.
Furthermore, out-of-distribution stressors cannot be addressed
by pre-operative approaches. To be pre-operative, the stressor
model would need to encompass the disturbance; if the model
does contain the disturbance, then the stressor is stochastic
rather than out-of-distribution, whereas if the model does not
contain the disturbance, then no resilience has been achieved
and the disturbance must be handled in an intra- or post-
operative manner.

IV. APPLICATION DOMAINS

This section tailors the notion of resilience to three key
application domains in robotics: perception (Section [[V-A),
planning (Section [[V-B)), and control (Section [V-C). In each
subsection, (i) we discuss typical stressors and multi-robot in-
teractions, (ii) classify existing approaches into pre-operative,



intra-operative, and post-operative, and (iii) highlight open
problems. We conclude the section with a short review of other
domains (Section [IV-DJ), including robot co-design.

A. Perception and Estimation

Perception —the robot’s ability to sense and understand the
surrounding environment— is a key enabler for autonomous
systems’ operation in complex environments, and provides
functionalities such as estimating the location of the robot,
building a map of obstacles in its surroundings, detecting,
classifying, and tracking objects. This capability is even more
crucial for multi-robot systems, where a shared understanding
of the world is a key requirement for successful interaction.

However, multi-robot systems pose new challenges to per-
ception: (i) the sensor data is collected independently by
multiple robots, possibly equipped with different sensor suites
and with limited onboard compute, (ii) the team needs to form
a shared world model in the face of communication constraints
(e.g., bandwidth, communication range, privacy), and (iii)
the scale of multi-robot perception problems exacerbates the
limitations that already arise in single-robot perception (e.g.,
scalability, noisy and out-of-distribution measurements).

In the following, we review perception problems arising
in multi-robot systems, spanning several subdomains (e.g.,
low-level perception and 2D vision, localization and mapping,
and high-level scene understanding). Note that we restrict our
focus to spatial perception (i.e., we are mainly concerned
with estimating quantities that live in 3D space), and do not
cover other perception problems (e.g., action and emotion
recognition) nor prediction problems.

Pre-operative approaches. We review pre-operative ap-
proaches for (i) low-level perception, (ii) localization, map-
ping, and estimation, and (iii) describe open problems in high-
level multi-robot learning and real-time scene understanding.

1) Low-level Perception and 2D Vision: Low-level percep-
tion focuses on image —or more generally sensor’s signal—
processing and is typically finalized to detecting features or
objects, performing pixel-wise semantic segmentation, and
recognizing known places, among other problems. Low-level
perception methods are often referred to as the perception
front-end [78]]. In these problems, common stressors include
illumination and viewpoint changes, presence of unexpected
dynamic elements in the scene, and in general the presence
of nuisances that are irrelevant for the perception task. The
following approaches are classified as pre-operative since they
do not adapt during operation, are often designed for the worst
case, or do not explicitly deal with stressors.

Multi-robot research has extensively investigated distributed
place recognition, where robots in a team have to detect
whether they are observing the same place; place recogni-
tion enables re-localization, and loop closure detection in
Simultaneous Localization and Mapping (SLAM) [78]. In a
centralized setup, a common way to obtain loop closures is to
use visual place recognition methods, which compare compact
image descriptors to find potential loop closures. This is tradi-
tionally done with global visual features [[79], or local visual
features which can be quantized in a bag-of-word model [80].
The feature descriptors are designed to gain robustness to the
stressors (e.g., viewpoint changes). Distributed loop closure
detection aims at detecting loop closures without exchanging

raw data, a desirable feature when the robots operate under
range and bandwidth constraints. Tardioli, et al., [81] use
visual vocabulary indexes instead of descriptors to reduce the
required bandwidth. Cieslewski and Scaramuzza [82] propose
distributed and scalable solutions for place recognition in a
fully connected team of robots, using bag-of-words of visual
features [83] or full-image NETVLAD descriptors [[84f]. Tian,
et al., [85], Lajoie, et al., [86]], and Giamou, et al., [87]]
propose approaches to coordinate the data exchange during
the geometric verification step.

Recent effort in computer vision has focused on segmenta-
tion and recognition problems. Liu, et al., [88|] learn to con-
struct communication groups and decide when to communicate
for multi-agent semantic segmentation and 3D shape recog-
nition tasks. Wu, et al., [89] use multi-agent reinforcement
learning to sample frames that maximize the accuracy of video
recognition. Mousavi, et al., [90]] propose a multi-agent image
classification approach based on generalized policy gradient.

Low-level perception problems are often performed using
learning-based techniques, including descriptor learning for
place recognition [[79]. While currently less used in robotics,
the growing field of federated learning investigates how to
train machine learning models in a distributed fashion, with the
goal of preserving privacy of the agents in the team and sharing
computational resources [91]]. This field is still in its infancy,
with recent effort being devoted to dealing with unreliable
agents or unreliable connectivity [92]. While most approaches
listed in this section do not formally address the presence
of stressors, the literature on adversarial learning attempts
to quantify and improve the robustness of a neural network to
perturbations, see e.g., [93]]. Most of these approaches consider
simple perturbations (e.g., additive pixel-wise noise on an im-
age) that lead the network to produce incorrect classifications.

2) Localization, Mapping, and Estimation: Here we briefly
review distributed estimation techniques and then focus on
their applications in multi-robot teams. Estimation techniques
typically constitute the perception back-end |[78|], in that
they take intermediate representations produced by low-level
perception processes (the perception front-end) and use them
to estimate the state of the system (e.g., the pose of the robots,
the 3D location and velocity of objects in the environment). In
these problems, typical stressors include measurement noise,
out-of-distribution data (typically produced by incorrect pro-
cessing at the front-end or by off-nominal sensor behavior),
as well as intermittent communication.

Early work focuses on estimation with Gaussian noise,
a setup that builds on well-established estimation-theoretic
methods [94], [95]. Distributed estimation in multi-agent sys-
tems has also been extensively investigated in robotics and
sensor networks, with the goal of developing methods that
converge to optimal estimates while only requiring local com-
munication [96] and are possibly robust to unreliable commu-
nication channels [97]]. Multi-robot research investigates multi-
robot localization with different estimation techniques, includ-
ing Extended Kalman filters [98]], information filters [99],
and particle filters [[100], [101]]. Maximum a posteriori and
maximum likelihood estimation have recently been adopted
as a general and accurate framework for robotics; in SLAM
problems, these frameworks lead to well-studied optimization
problems, including pose graph optimization (PGO) [78] or



factor graph optimization [93]). Early literature on multi-robot
PGO focused on centralized approaches, where measurements
are collected at a central station, which computes the trajectory
estimates for all the robots [[102]-[106]. Since the computation
workload and the communication bandwidth of a centralized
approach grow with the number of robots, related work has
explored distributed techniques, in which robots perform local
communication and share the computational workload [[107]-
[110]; these techniques leverage problem structure and dis-
tributed optimization methods to obtain optimal estimates from
partial information exchange. The works [[111]], [[112] consider
a collaborative setup with ground and aerial robots.

Recent work on multi-robot localization, mapping, and
estimation has focused on the realistic case where some of
the measurements used by the back-end are outliers (i.e.,
they are affected by severe unmodeled noise). The funda-
mental problem of robust estimation has a long history and
there are well established frameworks to model estimation
problems with outliers, including M-estimation and consen-
sus maximization [113|], [114]. However, these frameworks
typically lead to hard optimization problems [113], [114],
and developing fast and effective solvers is still an active
research area [115]-[118]]. We remark that these approaches
are still pre-operative (according to Definition [2): for instance
M-estimators can be understood as maximum-likelihood es-
timators over heavy-tailed (but known) noise models. Robust
estimation is particularly important in multi-robot localization
and mapping where incorrect measurements among the robots
are more difficult to detect when the robots do not share a
common reference frame. Centralized outlier rejection tech-
niques for multi-robot SLAM include voting schemes [119]]
and graph-theoretic methods [73]]; the Pairwise Consistency
Maximization approach of [73|] has been particularly suc-
cessful, with a field deployment reported in [120], and a
distributed implementation proposed in [86]. More recently,
Tian, et al., [121]] propose a distributed M-estimation approach
based on graduated non-convexity [[116] which is shown to
lead to more accurate trajectory and map estimates.

Open Problem 2 (Learning in teams). Federated and ad-
versarial learning have the potential to enhance multi-robot
operation but have found limited use in robotics. Open chal-
lenges in federated learning for multi-robot systems include
improving communication bandwidth, energy efficiency, and
security [[22|]. Regarding adversarial learning, robotics and
computer vision applications require going beyond simple
additive perturbation models, which are not well-suited to
capture nuisances arising in real perception problems [123]].

Open Problem 3 (Distributed real-time scene understanding).
While multi-robot SLAM can be considered a mature field
of research, the goal of achieving human-level understanding
of the environment is still out of reach for a robot. Despite
the growing literature on single-robot metric-semantic un-
derstanding (e.g., [[124], [|[25]]) and 3D scene graph repre-
sentations [126|], [|[I127], few papers have considered metric-
semantic multi-robot mapping [121)], [128], [129]. Infusing
semantic and high-level understanding in localization and
mapping problems creates novel opportunities to improve
resilience since a team of robots can dynamically adjust
depending on the external context or the semantic elements

in the scene (e.g., presence of a threat). Moreover, it allows
creating a distributed spatial knowledge base, which can
support several tasks from human-robot interaction to long-
term autonomy.

Intra-operative approaches. The literature on intra-
operative approaches to perception is more sparse but growing.

3) Low-level Perception and 2D Vision: Learning-based
approaches for low-level perception (e.g., object detection)
are challenged by (i) a potential shift between the training
and testing distributions, and (ii) test instances that belong to
the tails of the distribution (e.g., rare examples) for which
little training data is available. Intra-operative approaches
include methods that deal with these challenges online during
operation. The survey by Abass, et al., [130] provides an
extensive review of online learning for visual tracking.

Recent work in robotics and autonomous vehicles uses
learning-based methods to detect out-of-distribution examples
online during operation. Rahman, et al., [I131]] process the
hidden layer outputs of a neural network to predict when a
traffic sign detection network outputs false negatives. Hen-
zinger, et al., [132] observe neuron activation patterns to
monitor when the network is operating on inputs unlike the
data seen during training. Hendrycks, et al., [133]] develop a
method of monitoring network confidence based on softmax
probabilities. Gupta and Carlone [|134]] propose Adversarially-
Trained Online Monitor (ATOM) to flag incorrect detections
of pedestrians in self-driving applications. System-level mon-
itoring approach are studied in [135] to detect off-nominal
behaviors of perception modules.

4) Localization, Mapping, and Estimation: We start by
remarking that several approaches for robust estimation ad-
mit an alternative interpretation as intra-operative approaches.
For instance, approaches based on graduated non-convexity,
reweighted least squares, and dynamic covariance scal-
ing [114], [116]], [[136], [137] can be understood as approaches
to adjust the measurement covariances (a key stressor vari-
able, see Table @ online, to down-weight out-of-distribution
measurements. The connection between robust estimation and
measurement weighting is a well-understood one and goes
back to the seminal work from Black and Rangarajan [138]],
with more recent multi-robot applications in [121].

More recent work on robust estimation for robust localiza-
tion, mapping, and learning goes further and explicitly tackles
online adaptation. Antonante, et al., [[114] propose minimally
tuned robust estimation algorithms that can learn the inlier
noise statistics online. Barron [[117]] and Chebrolu, et al., [[118]
adjust the choice of robust loss function (within a parametric
family) using an automatic online tuning procedure.

Other potential stressors include sensor mis-calibrations
and sensor failures. Online calibration has been extensively
investigated in the context of kinematic odometry [139],
visual-inertial [140] and lidar-inertial odometry [141]], and
SLAM [142]. System-integration efforts have also investigated
system reconfiguration in response to sensor failures [143]].
A general framework for sensor selection based on resilient
submodular maximization is investigated in [144].

Open Problem 4 (Resilience and reasoning over failures). At
the algorithmic level, resilient perception is still in its infancy:
most perception frameworks are “rigid” and target robustness



rather than resilience and online adaptability. It is desirable
for future perception algorithms to perform automatic parame-
ter tuning to adjust to heterogeneous environmental conditions.
At the system level, monitoring of perception systems is also a
largely unexplored topic: how to detect failures of perception
algorithms? how to detect that the world models built by
different robots in a team are inconsistent with each other?
More importantly, robot perception currently aims at detecting
and isolating off-nominal data (e.g., outliers, sensor failures,
algorithmic failures) rather than reasoning on the cause of
those failures and learning how to avoid them in the future.

Open Problem 5 (Task-dependent perception and active
perception). As already stressed in [|78|], an open-challenge
is to develop a tractable and general framework for task-
driven perception, which can guide sensing and perception
processes to maximize a task-driven performance metric (e.g.,
obstacle avoidance) while minimizing computation, sensing,
or communication. This is particularly important in multi-
robot teams, where —under communication constraints— it is
desired for the robots to exchange the minimum amount of
information to guarantee successful completion of a task.
Conversely, resilience also requires active perception, i.e., how
to actively plan and control the robot to minimize the impact
of environmental stressors.

Post-operative approaches. Postoperative approaches use
batch training data collected by a robot over multiple de-
ployments to identify stressors. Approaches for offline system
identification and sensor calibration fall in this category, see,
e.g., [145]; in this case, the training is often augmented
with external sensors (e.g., a vicon system) to increase the
observability of the resulting parameter estimation problem.

More recently, post-operative approaches have focused on
learning-based methods that can improve and adapt after
multiple executions. In this sense, post-operative approaches
are related to domain adaptation and transfer learning in
machine learning, where the goal is to allow a network —
trained on a given training distribution— to transfer to a differ-
ent test distribution. Domain adaptation can rely on external
supervision, but can also be semi-supervised or unsupervised.

For future operation of multi-robot teams, the unsupervised
(or self-supervised) setup is particularly appealing since it
avoids massive human annotations [146]. Self-supervision
has been proven useful to learn depth, optical flow, visual
odometry, and feature descriptors for scan matching.

Open Problem 6 (Tuning and reconfiguration). While offline
calibration is well understood, currently there are no effi-
cient and automatic ways to automatically tune parameters
and potentially reconfigure components in complex perception
pipelines. For instance, modern SLAM and VIO pipelines
include tens to hundreds of tunable configuration parameters
(e.g., number of features, type of feature descriptors, etc.)
that impact performance, are scenario-dependent, and rely on
manual tuning from an expert. The large number of parameters
(and the potential lack of ground-truth information) quickly
makes brute-force and black-box approaches for tuning (e.g.,
Bayesian optimization) impractical. This adds to the com-
binatorial complexity of choosing how to combine different
algorithmic blocks comprising the robot perception system:
which object detector? which 3D object pose estimation and

tracking approach? which SLAM pipeline?

B. Planning and Task Assignment

Planning and task assignment are fundamental problems
in multi-robot systems. Teams of robots must collectively
optimize the assignment of mobile robots to tasks [[147]], plan
schedules and action sequences that are conflict-free [[148]], and
route individual agents along collision-free paths [[149]]. These
planning problems arise in many applications, including prod-
uct pickup and delivery [[150], [[151f], item retrieval in ware-
houses [19]], [152], and mobility-on-demand services [153]],
[154].

Planning entails optimizing higher level goals, such as
minimizing the cost of an assignment [155]] or the average
travel time among agents [156]. To orchestrate this coordi-
nation, centralized communication architectures have become
the norm in various instances; a centralized unit collects all
costs (e.g., expected travel times) to determine the optimal
plan or assignment (e.g., through search algorithms such as
RRT or the Hungarian algorithm). However, the optimality of
this assignment hinges on the accuracy of the assignment cost
estimates.

Despite best efforts to model any uncertainties, discrep-
ancies between model assumptions and real-life dynamics
may arise [[157]]. For example, in transport scenarios, a robot
may encounter an unexpectedly blocked path, and conse-
quently takes significantly longer to reach its destination than
anticipated [56]]. Travel time uncertainty also arises due to
the deterioration of positioning accuracy (e.g., GNSS ser-
vice deterioration). Furthermore, recent methods consider it
desirable to actively obfuscate true robot state information
(e.g., robot positioning), to ensure privacy across a variety of
applications [158]]. Irrespective of the source of uncertainty, it
follows that any discrepancies around true robot states cause a
degradation in the system’s overall performance, and can lead
to cascading effects. Furthermore, multi-robot systems have
uncertainties beyond individual robot states. The strengths of
multi-robot collaboration are juxtaposed with added disrup-
tions. To achieve resilient performance, networked robotic sys-
tems must not only cope with a higher likelihood of individual
robots among a large team failing, but also with compounding
uncertainties among team members, second order effects, and
the impact of real world complexities on collective planning.

Pre-operative approaches. Multi-agent planning can gen-
erally be categorized into assignment [159], routing [160], or
path planning [161]. In each of these categories, pre-operative
approaches create team plans offline, making decisions about
the whole team’s actions a priori. Although these pre-operative
approaches create plans before the existence of any distur-
bance, they can still plan for disturbances that they modeled.
Take for example the multi-agent path planning problem.
Following the notation in Section the planning algorithm
seeks to optimize the average travel time f given a model of
uncertainty due to traffic ¢ by searching over the space of
paths z.

1) Assignment: Assignments under random costs have
gained a considerable amount of attention [162]]-[165]. The
focus has primarily been on providing analyses of the perfor-
mance under noisy conditions. Prorok and Kumar consider
privacy in mobility on demand by obfuscating passenger



destination locations. Because there exists unused supply even
at peak demand, multiple vehicles with noisy origin locations
are assigned to passengers through an iterative Hungarian algo-
rithm [[166]]. In other work, authors provide a complementary
method that provides robustness to noisy travel time estimates
by making use of robot redundancy [56], [57], [167]. In other
words, the core idea of those works is to exploit redundancy
to counter uncertainty and redeem performance. Although the
idea of engineering robust systems with redundant resources
is not new in a broad sense [10], [11]], these works con-
sider redundant mechanisms for the problem of mobile robot
assignment under uncertainty, with arbitrary and potentially
correlated probability distributions.

2) Routing: The quintessential routing problem is the Multi
Traveling Salesperson Problem, where a team of agents must
collectively visit a set of locations while minimizing the total
amount of travel time [[168]], [169]. Traditional approaches that
assume a known fixed time of travel between any two cities,
i.e., the graph edges have fixed costs, are fragile in scenarios
that involve stochasticity, partial information, and modeling
errors [170]. Pre-operative approaches to routing explicitly
consider uncertainties such as robot failures, environmental
dynamics, and changing task definitions when solving the
Multiple Traveling Robot Problem [171].

A closely related routing problem is the Orienteering Prob-
lem, where the robot team seeks to maximize reward that can
be collected at different nodes but are not required to visit
all nodes (whereas traveling salespersons problems require all
locations are covered) [172]]. In the Multiple-Path Orienteering
Problem, an adversary is capable of attacking a subset of
the robot team which plans to maximize their reward under
this threat [173]]. In the Team Surviving Orienteers Problem,
edge weights represent the probability of a robot surviving the
traversal of that edge and there are constraints on each agents
probability of survival over their full path [151].

3) Path-planning: Recent works in resilient multi-agent
path planning include planning under uncertain costs or times
[174], [[175], privacy [176]], and disruptions or attacks [177],
[178]]. In these pre-operative approaches, there is a known
disturbance model and the plan is created with respect to this
model such that the impact of the disturbance on the multi-
robot system is minimized.

Wagner and Choset [179] model agents with dilated sizes
according to the uncertainty in their poses and then plan
conflict free trajectories for these dilated agents. Whilst this
work models uncertainty in the pose of the robots (which
impact travel time), others directly model stochastic travel
times by representing delays as either gamma distributions
[152] or number of time steps [[180].

In these pre-operative approaches, incorporating uncertainty
creates more expressive models than deterministic approaches,
but there are still limits because these models are assumed
to fully and correctly model disturbances. Additionally, pre-
operative planning approaches create changes to the system
even without the presence of a disruption. This more conser-
vative approach readies the system for disruption and thus may
perform suboptimally when disruptions do not occur.

Open Problem 7 (Planning over uncertainty). Pre-operative
approaches to planning handle stochastic stressors through
redundancy and risk-averse measures (e.g., conditional value

at risk). While these methods provide robustness, and are
complementary to each other in handling risk, they are con-
servative. More work is required to understand how best to
plan under modeled uncertainty, e.g., recent works have only
just begun studying risk adaptive approaches [|181)].

Intra-operative approaches. Multi-agent planning algo-
rithms that adapt when a disturbance occurs are considered
intra-operative approaches. Some intra-operative methods can
identify disturbances and respond accordingly [182] while
others identify degradation in system performance and adapt
without knowledge of the source or type of disturbance [183],
[[184].

4) Assignment: Assignment algorithms that are able to
adapt to real-time disturbances have received recent attention
[185], [186]. The high computational cost of calculating
optimal assignments prevents the continuous calculation of
assignments during runtime, therefore, intra-operative assign-
ment methods often work to identify when re-assignment
is worth the expense. Zhou et al. [[I87] present an event-
driven algorithm that recomputes an assignment only when
certain conditions are met, e.g., there exists a path that is
both shorter and has less uncertainty in travel time. Mayya
et al. [188] measure the degradation of robot capabilities due
to disturbances such as fog or mud and re-assign robots to
tasks that have experienced performance drops due to these
degraded capabilities. In the language of our Section [MI|
notation, this work measures capabilities ¢ (which capture
unmodeled disturbances) and re-assigns agent-task pairings x
to maximize the average task performance f. Similarly, [189]
reconfigure their heterogeneous team when failures occur to
maintain a communication graph.

In mobility on demand applications, it is expected that new
demand is continuously added. To address the uncertainty in
both future demand and vehicle supply, He et al. [[185]] present
a receding horizon algorithm that solves a distributionally
robust optimization problem at each time step to calculate ve-
hicle load balancing while Alonso-Mora et al. [190] decouple
vehicle routing and passenger to account for uncertain future
demand.

5) Path-planning: Similar to some pre-operative planning
approaches, Zhou et al. [191] assume the worst case ad-
versarial attack is known to have at most « adversaries.
However, instead of using fixed pre-planned routes, this intra-
operative approach considers the worst-case attack at each time
step when re-planning. Other intra-operative planning methods
include navigation in human workspaces [[192] and warehouses
[193].

Open Problem 8 (Off-task planning). Many homogeneous
and heterogeneous planning applications involve extent of
redundancy, whether explicitly in the number of robots, or
implicitly in robots with capabilities that are not in current
use, or capability-complementarities that are not currently
exploited. These redundant resources often lie dormant until
needed. Rather, researchers should be asking how to account
for these unused resources with respect to possible future
use. For example, in mobility on demand, agents that are
currently not assigned to riders can move to locations that
decrease the uncertainty or wait times of possible future
riders. Or in assignment, how do current coalitions impact



the space of complementary resources available for possible
future coalitions?

Post-operative approaches. Current work in multi-agent
planning addresses planning for single instances/missions.
However, future applications will involve robot teams com-
pleting repeated or continual missions (e.g., agricultural
robotics or automated construction teams). The resilience
needed for the long-term success of these teams could be
achieved through post-operative multi-agent planning. Rather
than adapting the plan when encountering disturbance, as in an
intra-operative approach, post-operative planning would adapt
the algorithm over the long term based on the experience of
repeated episodes of missions. For example, after servicing a
single farm, a team could optimize ¢, its model of environ-
mental disturbances (e.g., mud), given the data from the plan x
that the team followed and the performance f that it achieved.

A stream of pickup and delivery tasks creates a nearly
endless multi-agent planning sequence. While pre- and intra-
operative planning can adapt to disturbance during a given
trip or day, these systems may be fragile over the long term
as disturbance characteristics change. For example, robotic
systems in agricultural settings must adapt to seasonal changes
in disturbance as well as longer-term changes due to climate
change. While post-operative planning methods are just begin-
ning to receive attention (e.g., lifelong path planning [[194]),
this nascent literature is far from creating the long-term
autonomous robotic systems required to solve complex contin-
uous missions across industries like transportation, manufac-
turing, and agriculture. To bridge this gap, new tools must be
brought into multi-agent planning for such life-long learning,
which has been identified by others as an open challenge in
this space [154].

Open Problem 9 (Long-term survival). Current planning
approaches focus on optimizing an objective function such as
efficiency. However, for long duration applications such as
oceanic and extraterrestrial exploration, survival is a more
important objective than efficiency. While constraint based
approaches consider single agent survival [195|], researchers
must study the ‘survival’ of multi-agent teams, with questions
such as: How do you define a multi-agent optimization objec-
tive for planning for survival? and how do individual agents’
actions harm or benefit the survival of its teammates, and the
survival of the team?

Open Problem 10 (Reliance on a world model). Planning
algorithms rely on a model of the world and its uncertain-
ties. However, these approaches still fail because of model
inaccuracies, such as black swan events. Researchers should
investigate whether it is possible to create an accurate world
model that captures black swan events and captures the ways
the world model changes with respect to the robot system’s
actions. Or, if this model is not possible, how to be resilient
to such unknowns despite having no model of them. If it is the
latter, this planning problem is related to determining what it
means for the robot system to be resilient (Open Problem 1).

C. Control

Multi-robot control strategies facilitate the organization of
multiple robots to solve team-level, global tasks using local

interaction rules. In this section, we review methods across
control applications, including motion coordination, coverage
control, formation control, and control for information gath-
ering and surveillance. This section also includes the general
problem of ensuring cooperative computation in multi-robot
networks—a problem to which consensus-based approaches
are often the answer [196f, [197]. We focus on failure-
prone or adversarial environments that lead to malfunctioning
robots, or compromised communication channels, resulting
in disruptions to the collective task. In other words, the
stressors ¢ are typically misbehaving or adversarial robots,
and protective (resilient) mechanisms are required to deal with
(mis-)information being disseminated by these robots.

Pre-operative approaches. Cooperative control algorithms
for robot teams are underpinned by the general assumption
that all entities are indeed cooperative. This, however, cannot
be generally guaranteed, as robots break, are compromised, or
fail to process and interpret sensor information. As such, the
robots themselves become the stressors (¢) of the system.

1) Robot formations for resilient consensus: Building re-
silient formations (x) provides a precautionary means of
overcoming such non-cooperative or faulty robots. This line
of work borrows from seminal results in network science that
define the notion of resilient communication graphs through a
property widely referred to as r-robustness [198]], [199]. Pre-
operative approaches apply these concepts to the domain of
robotics by considering physically embedded multi-agent sys-
tems, with constrained communication and dynamic behaviors.
The challenge is that testing these networks for r-robustness is
computationally demanding, and requires global knowledge of
the topology. By constructing resilient robot formations, au-
thors have demonstrated that distributed consensus algorithms
converge safely, regardless of what non-cooperative robots are
communicating [200]-[202]]. One of the earliest works in this
domain demonstrates that the most basic resilient formation
can be built via triangular networks [200]. This topology has
the attractive property that it can be constructed incrementally
and verified in a decentralized manner, in polynomial time.
Further work builds on this foundation: [202] accounts for any
number of non-cooperative robots, [203|] presents sufficient
conditions on the robot communication range to guarantee
resilient consensus, and [204] addresses three-dimensional
space through cubic lattice-based formations.

2) Pre-planned consensus policies: Mobile robot teams
have communication graphs that, generally, vary over time,
and as a consequence, the (rigid) resilient formations in-
troduced in the prior paragraph are not necessarily main-
tained. By implementing connectivity management policies,
one can ensure that resilience is guaranteed as the network
topologies undergo change. To address this problem, authors
use measures of the resilience of the communication graph,
characterized by the algebraic connectivity [[74f], [201]], and
by Tverberg partitions [205]. Resilience in the sense of r-
robustness has also been quantified probabilistically, as shown
in [206], assuming that robot communication is subject to
random failures that can be modeled using a probability dis-
tribution. Robots with access to such an estimate can evaluate
how their future actions may affect the system’s resilience.

When connectivity constraints cannot be satisfied due to
hard physical constraints, we need to resort to additional



methods. In [201]], authors develop a sliding window con-
sensus protocol that provably guarantees resilience when the
union of communication graphs over a bounded period of time
jointly satisfies robustness properties. Their policy selectively
activates communication links to attain resilience while solv-
ing tasks that require the robot team to cover wide-spread
areas (e.g., perimeter surveillance). Other work considers the
applications of formation control [207], [208] and leader-
follower systems [209]], whereby reference values are time-
varying. Wang et al. [210]] propose event-triggered update rules
that can mitigate the influence of faulty or malicious agents.

We note that in aforementioned approaches, while the robot
team is adaptive with respect to its communication topology
and motion strategy, there is no adaptation with respective to
the stressors ¢, i.e., the assumed number of non-cooperative
or faulty robots is fixed—hence the pre-operative classification
of these approaches.

3) Optimization-based trajectory control: The use of
model-predictive (e.g., receding horizon ) control for coor-
dinating multi-robot systems consists of continuously finding
paths for all robots in the system, such that a global objec-
tive is optimized (such as traffic throughput or overall fuel
consumption), subject to certain constraints (e.g., no vehicle’s
path collides with another path, nor with any fixed or moving
obstacle). Coupled centralized approaches, which consider the
joint configuration space of all involved vehicles, have the
advantage of producing optimal and complete plans [211]-
[213]]. However, such methods rely on the fact that all vehi-
cles cooperate in the globally determined plans [212], [214].
Consequently, these approaches are notoriously brittle and
susceptible to individual robot failures and non-cooperation.
The work in [215]] shows that a monotonic cost reduction
of global objectives can be achieved, even in non-cooperative
settings. This feat, however, relies on the fact that neighboring
vehicles reliably execute the agreed upon maneuvers up to a
known error bound.

4) Control barrier functions: Reliability can also be
achieved by defining a desirable subset of the robots’ state
space, and then generating control inputs that render this sub-
set forward-invariant. Control barrier functions (CBFs) [216]]
are a framework for establishing such forward invariance,
hence providing the sought-after robustness. In one of the ear-
liest works in this vein, Usevitch et al. [217]] present a method
for guaranteeing forward invariance of sets in sampled-data
multi-agent systems in the presence of a set of worst-case
adversarial agents (whereby the identities of the adversarial
agents are known to the normal agents). While CBFs provide
a computationally efficient tool to guarantee safety in multi-
agent environments, they generally assume perfect knowledge
of other agents’ dynamics and behaviors (e.g., [218]]).

5) Combinatorial approaches: Providing resilience to any
number of robot drop-outs (e.g., due to denial-of-service
attacks or failures) is a computationally challenging task,
since one would need to account for all possible removals
of robots from the joint planning task, which is a problem of
combinatorial complexity. The work in [219]] defines a resilient
coverage maximization problem, in which the objective is to
select a trajectory for each robot such that target coverage is
maximized in the case of a worst-case failure of « robots.
While it is assumed that at most « robots may fail, it is

unknown which robots are going to fail. A similar assumption
is made in [220] for the case of active information gathering
scenario, namely, multi-robot target tracking.

6) Protective approaches: The topic of privacy remains
poorly addressed within robotics at large. Yet, privacy can
be an important facet of defence against active adversaries
for many types of robotics applications. Using privacy as a
defence mechanism is particularly relevant for collaborative
robot teams, where individual robots assume different roles
with varying degrees of specialization. As a consequence,
specific robots may be critical to securing the system’s ability
to operate without failure. The premise is that a robot’s motion
may reveal sensitive information about its role within the team.
Privacy preserving control methods, hence, tackle the problem
of preventing an adversary from being able to distinguish the
role of one robot from that of another. In [221]], the authors
consider collaboration across heterogeneous robot teams; their
method builds on the theory of differential privacy to quantify
how easy it is for an adversary to identify the fype of any robot
in the group, based on an observation of the robot group’s
dynamic state. Note that, a similar, yet post-operative approach
is taken in [222].

Intra-operative approaches. These approaches are dy-
namic, with decision variables x adapting to changes perceived
in ¢; e.g., measurements from non-attacked robots can be used
to observe ongoing failures or newly perceived obstacles.

7) Obstacle avoidance and adaptive navigation: In contrast
to the coupled (centralized) trajectory control methods intro-
duced above, decentralized approaches consider the generation
of collision-free paths for individual robots that cooperate
only with immediate neighbors [223]], [224]], or with no other
vehicles at all [225[]-[227]. Hence, coordination is reduced
to the problem of dynamically (and reciprocally) avoiding
other vehicles (and obstacles), and can generally be solved
without the use of explicit communication. Although such
approaches are resilient to communication-based faults and
attacks, the key disadvantage is that the optimality of global
objectives (such as overall traffic efficiency) can generally not
be guaranteed as robots follow ad-hoc policies. The work
in [228] combines the best of both worlds, presenting a
hybrid planning strategy employing both discrete planning
and trajectory optimization with a dynamic receding horizon
approach. Although pre-planned trajectories form the initial
coordinated trajectory plan, their method allows for adaptation
to dynamic changes, including newly appearing obstacles,
robots breaking down, and imperfect motion execution. Also
adapting to stressors in an online manner, the work in [229]]
learns high-confidence bounds for dynamic uncertainties. This
robust CBF formulation maintains safety with a high proba-
bility and adapts to the learned uncertainties.

8) Security: While most works addressing multi-robot fault
tolerance through robust consensus policies make use of worst-
case assumptions, approaches toward spoof detection make
use of independent physical channel observations (i.e., signal
profiles), created by complex multi-path fading [230]—[232].
The methods differ, e.g., [230] determines which edges in the
network to switch on or off over the evolution of the consensus
in order to eliminate spoofed node influence, whereas [231]]
assigns robot confidence values (signifying robot legitimacy).
The work in [233] leverages a probabilistic measure of trust-



worthiness to find and eliminate adversarial robots in the
presence of a Sybil attack.

9) Combinatorial approaches: The approaches introduced
in the pre-operative section above consider worst-case failures
and over-provision for robustness (e.g., see [220]). Differently,
the work in [234]] continuously takes measurements from all
non-attacked robots to observe ongoing failures (in an active
information gathering task). The control algorithms, therefore,
are calculated based on the actual observed stressors (i.e.,
attacked robots). In a similar vein, Tzoumas et al. [235]
consider a similar scenario (i.e., fault-tolerant robot navigation
with sensor scheduling), whereby at each time step, the algo-
rithm selects system elements based on the history of inflicted
attacks, deletions, or failures; this allows for guarantees of
resiliency to any number of robot failures.

Open Problem 11 (Design of signal complementarity for
system resilience). The commonality of many intra-operative
approaches is that they leverage some independent signal, e.g.,
a physical observation or separate communication channel,
which facilitates the online adaptation to stressors (e.g., see
the need for an ‘eye-in-the-sky’ in [74|]). This, in turn, pro-
motes the design of heterogeneous teams, that can provide
the necessary complementary information. However, thus far,
heterogeneous systems have been hand-designed, and their
optimal control policies are hard to come by [64]. This
compounds the problem of devising methods that incorporate
heterogeneous modalities.

Open Problem 12 (Co-design of control and communica-
tions). Time-varying and unreliable connectivity compounds
the difficulty of resilient group coordination and control. Joint
networking and control designs are needed that exploit evolv-
ing cognitive communications, provide self-healing network
topology adaptation, and guarantee privacy and security.
Enhanced perception-action-communication loop designs are
also needed, that provide relevant signals and feedback to
local agent controllers [|9], [48]].

Post-operative approaches. Learning-based methods have
proven effective at designing robot control policies for an
increasing number of multi-robot tasks, whereby Imitation
Learning (IL) (e.g., [236], [237]) and Reinforcement Learning
(RL) (e.g., [227]) are currently the leading paradigms. In both
cases, the learning procedure leverages information that is
accumulated within robot neighborhoods, composing batches
of data that are learnt from post-factum.

10) Multi-Agent Reinforcement Learning (MARL): Learn-
ing to interact in multi-agent systems is challenged by a non-
stationarity of the environment, as agents learn concurrently to
coordinate their actions, and continually change their decision-
making policies [238]]. An actor-critic method is presented
in [76] that successfully learns policies that require com-
plex multi-agent coordination, discovering various physical
and informational coordination strategies. The work in [239]
introduces a decentralized single-task learning approach that
is robust to concurrent interactions of teammates. It presents
an approach for distilling single-task policies into a unified
policy that performs well across multiple related tasks, without
explicit provision of task identity. The work in [240|] studies
the MARL problem with model uncertainty. The authors pose
the problem as a robust Markov game, where the goal of all

agents is to find policies such that no agent has the incentive
to deviate, i.e., reach some equilibrium point, which is also
robust to the possible uncertainty of the MARL model. The
work in [241] proposes a framework that uses an epistemic
logic to quantify trustworthiness of agents, and embed the
use of quantitative trustworthiness values into control and
coordination policies.

11) Imitation Learning (IL): The idea behind IL is to start
with simple (small-scale) problems and use corresponding
(optimal) solutions as examples to approach more complex,
large-scale problems. This progression from example to appli-
cation is crucial to mitigating the shortcomings of decentral-
ized approaches in solving challenging multi-robot problems.
Bridging the gap between the qualities of centralized and
decentralized approaches, IL-based methods promise to find
solutions that balance optimality and real-world efficiency,
as demonstrated in recent works, e.g., [236], [237], [242].
Although generalization to unseen cases has been successfully
demonstrated, these approaches remain brittle due to their
dependency on expert demonstrations during learning.

12) Graph Neural Networks (GNNs): While centralized-
training, decentralized-execution (CTDE) [243]] is the typical
paradigm for multi-agent RL and multi-agent IL, the under-
lying machine learning framework can vary. Graph Neural
Networks (GNNs) have shown remarkable performance across
a number of multi-robot problems [236]], [242], [244]-[247].
Graph nodes represent robots and edges model communication
links between them [248|]. GNNs provide a general learning
framework for perception-action-communication loops that in-
corporates network topology, distributed processing, and con-
trol [249]]. Global state information can be distilled and shared
through neighbor data exchange. GNNs, like conventional
NNs, maybe susceptible to adversarial attack, e.g., malicious
agents can learn to manipulate or outperform other agents shar-
ing the same communication channel [[77]. A countermeasure
was proposed in [75]], providing a probabilistic model that
allows agents to compute confidence values quantifying the
truthfulness of any given communication partner. This con-
fidence can be used to suppress suspicious information. Yet,
as noted in Open Problem this idea leans on information
complementarity—future work should look to specifying the
requirements needed, and guarantees that can be provided.

13) Adversarial training: Learning to deal with adversarial
input or disruption during training is a promising approach to
providing for resilience. In [222]], Zheng et al. leverage data-
driven adversarial co-optimization, and design a mechanism
that optimizes a flock’s motion control parameters, such that
the risk of flock leader identification is minimized. This
approach is reminiscent of the ideas in [221] that aim to
preserve role privacy. While the work in [77] first shows that
an adversary can learn to exploit other agents’ behaviors to
better its own reward, it also shows that when the learning
is alternated, cooperative agents are able to learn to re-coup
their performance losses. This line of work was extended
in [75], where a local filter is trained to detect implausible
communication, allowing agents to cooperate more robustly.
The work in [250] shows the necessity of performing both
collaborative and adversarial learning, resulting in successful
team performance that can withstand opponent attacks. Yet,
recent work [65]] argues that adversarial training can introduce



novel error profiles in robot learning schemes, and more
work is required to fully understand how the method can be
leveraged to for safety-critical applications.

Open Problem 13 (Quick vs. slow learning). Once deployed,
a policy may become stale and should be updated based on
newly collected data. If updated too soon, noisy data may
lead to overfitting and poor generalization. Conversely, not
updating the policy often enough can lead to catastrophic
failures and an inability to adapt.

Open Problem 14 (Unsupervised resilience learning). Super-
vised learning, including reinforcement learning and imitation
learning, requires apriori specification of rewards / cost func-
tions, or access to expert data. Resilience, however, requires
autonomous identification and diagnosis of failure to inform
how robot policies and configurations should change post-
operatively. It is currently unclear how this is to be achieved
without supervisory intervention.

Open Problem 15 (Interpretability of multi-agent policies).
Time-varying and unpredictable connectivity patterns com-
plexify the task of explaining and guaranteeing performance
of multi-agent policies—literature on visualizing/interpreting
multi-agent communication is sparse, with recent solutions
designed specifically for the task at hand (e.g., [[77]).

D. Other Applications

1) Robot Co-design: Co-design problems aim at jointly
designing sensing, computation, control and other algorithmic
aspects that enable robots to perform a given task. Most of
the approaches in this section are pre-operative, in the sense
that they design for the worst case, but some evolutionary
approaches can be considered post-operative since they evolve
the system design after multiple executions.

Traditional control-theoretic approaches study sensor selec-
tion [62], [259]-[270|], while more modern techniques co-
design sensing and control [55[, [271]-[273]]. A main limi-
tation of this line of work is that the pursuit of theoretical
guarantees limits these papers to focus on linear dynamical
systems, a representation that struggles to capture the nonlinear
and possibly discrete nature of perception and sensing in real-
world robotics. Evolutionary approaches [274]-[277|] provide
a powerful paradigm that can indeed be understood in terms of
Reinforcement Learning; this approach has not been applied to
sensing and perception aspects, due to the size of the search
space (e.g., choice of algorithms, parameters, and computa-
tion) and the difficulty of designing differentiable perception
modules (e.g., [278]]). Similar considerations hold for modu-
lar languages and modularity-based approaches [275]], [279],
[280], where perception is typically simplified to reduce the
size of the library or language and make the design tractable.
Only a few optimization-based co-design approaches have ex-
plicitly tackled sensing and perception. Among those, Zhang et
al. [281] investigate hardware-and-algorithms co-design for
visual-inertial odometry, and provide a heuristic approach to
explore the search space. Zardini et al. [282] leverage Censi’s
monotone co-design theory [283|] to design hardware and
software for an autonomous vehicle. The work [284] designs
sensing and hardware for a multi-robot team in charge of a
collective transport task using integer linear programming.

Open Problem 16 (Multi-Robot Co-design). The literature
on co-design is in its infancy, and the current tools for
automated design still fall short from providing a satisfactory
design tool for real-world robotics problems. E.g., none of
the existing approaches is able to tame the complexity of a
modern SLAM pipeline, due to their scalability limitations and
underlying assumptions. In particular, co-design approaches
neglect resilience altogether (while robustness is investigated
in [285|]) and only a few involve multi-robot systems [|284)].

2) Co-optimization of environment and multi-robot policies:
Current approaches to the design of mobile robot systems
consider the environment as a fixed constraint [286[]—[288]].
In the case of navigation, structures and obstacles must be
circumnavigated; in this process, mobile agents engage in
negotiations for right-of-way, driven by local incentives to
minimize individual delays. Even in cooperative systems,
environmental constraints can lead to dead-locks, live-locks,
and prioritization conflicts [289]], [290]. Despite the obvious
influence of spatial constraints on agent interactions [291]],
the optimization of mobile robot systems and their immediate
environment has, traditionally, been disjoint, and little thought
is given to what would make an artificial environment con-
ducive to effective and efficient collaboration, cooperation and
coordination within mobile robot systems.

As we progress with automated, roboticized systems, we
must jointly re-evaluate the shape, form, and function of the
environments that we operate in. Ultimately, this approach will
allow us to overcome incremental research results, based on
solutions that consider the environment as a fixed constraint,
to provide for robustness and resilience in a holistic way.

Open Problem 17 (Co-optimization of robots and their
environment). Concurrent optimization of robot policies and
environment they operate in has received little attention thus
far (although evidence suggests significant benefits, e.g., [I292]],
[1295|]). Such approaches are particularly applicable in man-
made workspaces (e.g., factories, warehouses and urban set-
tings), especially when stressors originate in the environment.

V. DISCUSSION

Figure [6] summarizes the papers surveyed in Table[l] Fig. [6a]
shows that while the area of Control is well balanced across
pre-, intra-, and post-operative approaches, Perception and
Planning are skewed towards the pre-operative. Fig. [6b] shows
how each domain has a prevailing mode of interaction—
cooperation in Perception, coordination in Planning, and co-
operation in Control (although, again, Control is the most
balanced of the three domains). And lastly, Fig. |6c| shows the
distribution of work done across stressor types. Unsurprisingly,
untargeted stochastic stressors are prevalent in Perception and
Planning. Control features contributions across all stressor
types; this can be traced back to the origins of research on
Byzantine and non-cooperative networks, which are closely
intertwined with the Controls community.

Our overview of open problems, see Table [} indicates that
cooperation and collaboration are ‘harder’ than coordination,
which is understandable, as cooperation and collaboration tend
to involve more problem dimensions and can be of complex
combinatorial nature; it also shows that of all stressors, out-
of-distribution stressors need more attention, both untargeted
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Table I: Taxonomy of Resilience in Multi-Robot Systems, across domains: Perception (orange), Planning (blue), Control (red)

Approach Pre-operative Intra-operative Post-operative
Interaction Stressor
Coordination  Untargeted 167), 1156), [155). 1570, {151). f152h, f179), fisol, | f{i7s), fssh, i87), fisef, | fro4), 37
Stochastic [166], (149, (160, (57, {811, [T64), [T63), [T70), (74, | [257]
159, 218
Untargeted I56 [171]. 18], 193], [184)
Out-of-Distribution
Targeted 173, 1252], (178, 1177]], [220], [[219 191]], [182]], [231]], (234]l, 77
Stochastic [|_|I
Targeted
Out-of-Distribution
Cooperation  Untargeted R1sl, oo, s3], 1870, lodl, 1o7), fosl, o9, ioal, | 28], 24, 29
Stochastic [Lo1), [02), [03), [104), [103], [IO7], [IOS], ([LO9),
=
Untargeted Rorh. 1), 2. k3. B4, kel B3, . . [og). | fie3. b54
Out-of-Distribution [[TTOf
Targeted 198], (210}, [[217], [|205 72|, 1199, 1230, 235 76
Targted {158). 19 217, fog) ERENZNERNT
Targeted , | s s s s | [1144] , 222
Out-of-Distribution
Collaboration  Untargeted 255], 64, 256, [111f, |112] 190, [1192], [I184]
Untargete pssh el s {1 {102}, fre)
Untargeted 189 2570, 1238], [258],
Out-of-Distribution 240, [239
Targeted 250,
Stochastic
Targeted 21 233 41
Out-of-Distribution

as well as targeted. Finally, fewer pre-operative methods are
considered as part of open problems than intra- and post-
operative approaches; this is reminiscent of recent focus less
on a priori designs (pre-operative), rather more on designs that
are adaptive (intra-operative) and learnable (post-operative).

A. Grand Challenges

Introspective, Resilient, Multi-Robot High-level Under-
standing: We believe a grand challenge in multi-robot percep-
tion is to develop multi-robot teams that can build a human-
level shared representation of the environment (encompassing
geometry, semantics, relations among entities in the scene, and
more) in real-time and under computation and communication
constraints. A second grand challenge is the design of truly
resilient perception algorithms: we believe that the first step
towards this goal is to develop introspection techniques that

can reason over failures, rather than just trying to avoid failures
at all costs; the second step would then be to understand how
automated system tuning and reconfiguration would impact the
system performance in response to a failure.

Redundancy vs Complementarity: The open problems in
Sections and highlight the challenge of including
adequate levels of complementarity and/or redundancy in sys-
tem designs, for example through the provision of orthogonal
sensing capabilities, distributed across the robot team, or
redundant numbers of robots. This pre-operative approach
relates to the idea of anticipatory resilience (cf. Fig. [T). While
redundancy is reminiscent of over-provisioning (and classical
notions of robustness), its purpose in this context is to target
unexpected disruptions (in contrast to modeled disruptions).
The grand challenge consists of devising foundational methods
that inform which capabilities are to be integrated, and through



Table II: Classification of Open Problems

Approach Interaction Untargeted Targeted

Problem | Pre- Intra- Post- Coordination ~ Cooperation Collabation Stochastic  Out-of- Stochastic  Out-of-

operative  operative  operative Distribution Distribution
OP|1 v v v v v v v v v
OP 2 v v v v v
opfl | v v v v
op 4 v v v
opf3 v v v v
oplq v v v v
OP/7 v v v v v
opfg v v v v v v
opp v v v v v v
oP|10] v v v v v v v
OP|11 v v v v
op[12 v v v v v
op[13 v v v v v v
op 14 v v v v v v v v
oP |15} v v v v
OP (16| v v v v v v
op[t] | v v v v v v

which interaction paradigms.

Inter-disciplinary Resilience: The works in Table [ highlight
resilience research in the domains of perception, planning, and
control. However, the complexity and inter-disciplinary nature
of future applications of multi-agent systems requires that we
investigate resilience at the intersection of robotics domains.
A grand challenge is to investigate the complex interplay
and second order effects of stressors across the domains of
perception, planning, and control. For example, failures due
to stressors on an agent’s perception could be addressed
through planning by leveraging a heterogeneous teammate’s
complementary sensor system that is more resilient to the
targeted stressor that is encountered (see Open Problem [TT).
A second grand challenge, aligned with Open Problem [I] is
to develop interdisciplinary measures of resilience.

B. Survivorship Bias

Current research practice and publication standards pres-
sure the community to report successes only, which leads
to a culture wherein failures and mistakes may be poorly
documented, undisclosed, and consequently, not discussed
publicly. Operating in this manner reinforces a survivorship
biaﬂ which stymies learning from errors and controversially,
leads to fragile designs [294]. Changes in publication culture,
including more venues targeting negative results, would help
accelerate progress towards resilient solutions.
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