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Abstract. In this work, we propose Random Walk-steered Majority Un-
dersampling (RWMaU), which undersamples the majority points of a
class imbalanced dataset, in order to balance the classes. Rather than
marking the majority points which belong to the neighborhood of a few
minority points, we are interested to perceive the closeness of the ma-
jority points to the minority class. Random walk, a powerful tool for
perceiving the proximities of connected points in a graph, is used to
identify the majority points which lie close to the minority class of a
class-imbalanced dataset. The visit frequencies and the order of visits of
the majority points in the walks enable us to perceive an overall close-
ness of the majority points to the minority class. The ones lying close to
the minority class are subsequently undersampled. Empirical evaluation
on 21 datasets and 3 classifiers demonstrate substantial improvement in
performance of RWMaU over the competing methods.

Keywords: class imbalance · undersampling · random walk · majority
class

1 Introduction

Real-world data from the domain of medical [22], text [36], software defect pre-
diction [2], and fraud detection [31] often have significant imbalance between
target classes. In a binary classification dataset with class-imbalance, the class
with more instances and the class with fewer instances are known as the ma-
jority and the minority class respectively. When a classifier is modelled on an
imbalanced dataset, it often gets influenced to predict the majority class.

There are a number of different solutions to the class-imbalance problem in
the literature. These can be categorized into: i) algorithmic methods [14], ii) data
preprocessing [10] and iii) ensemble-based learning [8]. Data preprocessing is the
most popular choice amongst these three as it is independent of model building.
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In data pre-processing, we undersample (remove points from) the majority class
or oversample (add points to) the minority class in order to reduce the difference
in representation between the two classes. Consequently, the bias towards the
majority class is reduced.

The state-of-the-art undersampling schema primarily mark the majority points
to be undersampled in one of two ways: i) finding a good representative set of
the majority class by employing procedures like clustering, thereby discarding
the majority points which lie near the clusters’ periphery, or ii) marking the ma-
jority points which lie in the k-nearest neighborhood of the minority points. The
k-nearest neighborhood based undersampling methods are generally focused to
find the majority points which lie close to the minority points. While doing so,
the methods somewhat become oblivious to the points’ relative distances. More-
over, employing a crisp neighborhood-based protocol delivers a locally optimized
nearness. In most cases, the methods are not motivated to quantify the overall
closeness of the majority points to the minority class.

In this work, we present Random Walk-steered Majority Undersampling
(RWMaU), an undersampling technique which addresses these concerns. Instead
of simply figuring out the k-nearest majority neighbors of the minority points,
we are motivated to obtain the overall closeness of the majority points to the
minority class. We employ random walk for this purpose. Random walk is a
powerful tool for perceiving the mutual proximity of the nodes in a graph. It has
been extensively used in the domain of social network analysis to find commu-
nities, compute feature representations, and find other relevant parameters of a
graph [12,13]. RWMaU forms a directed graph from a class-imbalanced dataset,
where each point is connected to its k-nearest neighbors. The edge-weights of the
outward edges depend on the relative distances of the neighbors. We simulate a
number of random walks from the minority points (as starting nodes) and study
the visit frequencies of the majority nodes (along with the order of the visits) in
these walks.

In particular, we use the visits and their orders to compute the proximity
scores of the majority points with respect to the minority class, thereby finding
the majority points which are close to the minority class as a whole. While
undersampling the majority class, we remove the majority points in order of their
decreasing proximity scores. A majority point which has the highest proximity
to the minority class is removed first.

The key aspects of our work are summarized as follows.

– We quantify the majority nodes’ visit frequencies and the order of the visits
in random walks to compute the nearness of the majority points to the
minority class.

– The majority points which lie close to the minority class are removed to alter
the class distributions in favor of the under-represented minority class.

– An empirical study involving 21 datasets, 3 classifiers, 5 competing meth-
ods (4 undersampling methods and the original datasets) and 2 evaluating
metrics indicates the effectiveness of the proposed method.
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The remainder of the paper is organized as follows. In Section 2, we discuss the
relevant existing work in the field of handling class-imbalance. We present the
random walk preliminaries, motivation of our work, and the proposed algorithm
in Section 3. The experimental design is described in Section 4 and the results
of the experiments are discussed in Section 5. Finally, in Section 6 we conclude
the paper.

2 Related Work

One of the early approaches in the field of class-imbalance learning is algorithm-
based methods. Most of the schema from this domain are motivated to either
shift the class boundary away from the minority class [21] or to add a cost-
sensitive learning framework where the misclassification cost of the minority
class is increased [19,15,32]. Other important classes of algorithm-based methods
are active learning [33], multi-objective optimization based methods [27], kernel-
based methods [30] and one class classifiers [16].

Data-preprocessing techniques form an important and popular choice to ad-
dress class-imbalance of data. In undersampling, the points belonging to the
majority class are selected and removed to reduce the difference in cardinalities
of the two classes. Various techniques are proposed by the researchers in this
domain to make a judicious choice of the majority points to be removed from
the dataset. The two principal techniques to choose points to be undersampled
are i) cluster based - clustering is done to recognize the key points to be kept for
the classification phase [24,18,35] and ii) nearest neighbor based - the majority
neighbors of the minority points are identified and are removed (with some ad-
ditional condition checks) [4,17]. Oversampling of the minority class is another
way of balancing the cardinalities of the two classes [3,5]. A number of diver-
sified parameters like minority class density [11], oversampling near boundary
[1], majority class non-encroachment [28] are considered by the researchers to
effectively oversample synthetic minority points in the feature space. In recent
years, random walk is learnt on graphs to choose the locations of minority over-
sampling [34]. In addition to these, hybrid data-preprocessing techniques also
exit in literature which employs both minority oversampling and majority un-
dersampling [26]. In some techniques, both data pre-processing and algorithm
adaptation are considered to tackle the issue of class-imbalance.

The third category of class-imbalance learner deals with a set of classifiers
(often at various hierarchies) along with boosting and bagging to obtain an im-
proved learning over class-imbalanced datasets [8]. Minority oversampling is in-
tegrated with boosting to obtain an improved accuracy for both the minority and
the majority class by [9]. In [25], the authors follow a hierarchical paradigm where
a set of weak (preliminary) classifiers are trained on the imbalanced dataset fol-
lowed by derivation of a strong classifier from these weak classifiers.
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3 Random Walk-steered Majority Undersampling
(RWMaU)

In this section, first we briefly explain related aspects of random walks followed
by a brief discussion of the motivation and the core idea of our approach. Then we
present the proposed algorithm, Random Walk-steered Majority Undersampling
(RWMaU).

3.1 Random Walk

A random walk is a sequence of discrete, finite length steps in random directions
depending on probabilities. Random walks are often considered in context of a
graph, G(V,E) where we have a set of nodes V = {v1, . . . , vN} and a set of edges,
E = {(vi, vj)|(vi, vj) ∈ V × V and i 6= j} connecting the nodes. Each edge has
a weight pij which connects vi and vj , which can be captured in an adjacency
matrix of the graph. When we consider a random walk in a graph, we start from
a node, vi, and move to another node vj with considering pij as the transition
probability. This process of moving from one note to another node is repeated
until we have performed a certain number of steps. The sequence of nodes which
this process goes through is called a random walk. Details about random walk
can be found in [20]. We use properties of random walk in our proposed method.

3.2 Motivation and Overview

Our approach is to mark and remove the majority points which are close to
the minority class overall. To do this, we compute a score for each majority
point, which determines how close they are with respect to the minority points
collectively. The majority points with high scores will indicate their closeness to
the minority space. This score is ranked, and the higher scored majority points
are removed. Random walk serves as the backbone of this entire procedure.

We construct a directed weighted graph from the given dataset on which the
random walks will be performed. We assume that the majority points, which
appear a) more frequently in the walk, and, b) earlier in the walk sequence, are
closer to the minority class. Based on these two assumptions the scores for each
majority points are assigned. We simulate a series of random walks from each
minority point and record the visit frequencies of the majority points in the
series of these walks to address the assumption (a). Also, the visit frequencies of
a majority node is weighted based on how far in the walk the node was visited to
incorporate the assumption (b). Therefore, a visit occurring earlier in the walk
will be given more weight than a later one.

A proximity score of each majority point is computed from these two infor-
mation, which will indicate a degree of closeness of the majority point relative
to the minority class. These assigned scores are used to identify and remove the
majority points.
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Algorithm 1 RWMaU

1: procedure RWMaU(D = {(xi, yi), i = 1, . . . , n}, α, γ, k)
2: Xmin = {xi|∀iyi = 1} and Xmaj = {xi|∀iyi = 0}
3: Make graph G(X = {xi|i = 1, 2, . . . , n}, E = {pij |i, j = 1, 2, . . . , n}) use Eq. (2)
4: for xi ∈ Xmin do
5: Wxi = randomWalk(G,xi, γ) (use Eq. (3))

6: for xl ∈ Xmaj do

7: νl =
∑

xj∈Xmin

∑γ
β=1

Wxj
(β,xl)

β

8: u = (|Xmaj | − |Xmin|)× α
9: τ = sortDecresing(ν) . Get sorted order of ν

10: Xrem = {xτj |∀jντj ≥ ντu} . Select top u points to remove
11: A = X − Xrem
12: return A

3.3 Algorithm

In this section, we present Random Walk-steered Majority Undersampling (RW-
MaU). We will also describe the algorithm in details along with Algorithm 1,
which summarises the scheme.

First, we represent the dataset is represented as a directed weighted graph
G(X , E). In G, each vertex represents a point and the weight of the directed
weighted edge from xi to xj is pij which is defined as

G(X = {xi|i = 1, 2, . . . , n}, E = {pij |i, j = 1, 2, . . . , n}) (1)

The pij indicates the reachability of xj from xi in the graph and will be used
as the transition probabilities in the random walk. We define pij as follows

pij =


e
−

dij
diNNk(i)

∑k
m=1 e

−
diNNm(i)
diNNk(i)

, if xj is a k-nearest neighbor of xi

0 , otherwise

(2)

here, dij is the Euclidean distance between xi and xj , and diNNm(i) denotes the

distance between xi and its mth nearest neighbour.
We start a walk from each of the minority point xi ∈ Xmin and record the

nodes visited during the walk along with the order of visit. The random walk
starting at xi ∈ Xmin is represented as Wxi

and is defined as follows

Wxi
(β,xl) =

{
1 if xl is visited in βth step of a walk started at xi ∈ Xmin
0 otherwise

(3)
here Wxi

(β, l) indicates if node xi is visited in the βth step of a random walk
started at minority instance xi ∈ Xmin. The datapoints in Xmaj through which
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relatively more random walks go through, are the ones which are more likely
to be removed during the undersampling process. Now we can calculate the
minority proximity scores of the majority instances xl ∈ Xmaj . We denote the
minority proximity score of xl by νl, which integrates the information about visit
frequency and order of xl in the different random walks.

νl =
∑

xj∈Xmin

γ∑
β=1

Wxj (β,xl)

β
(4)

Once we have computed the values of νl for all majority datapoints, we can
then remove the ones which with a high value of νl.

We will sort the elements of Xmaj in decreasing order of their ν values. We
will discard the first u points to get the set to remove Xrem

u = (|Xmaj | − |Xmin|)× α (5)

In Eq. (5), let u be the number of points to be undersampled and α be a
constant such that 0 < α ≤ 1. α = 0 signifies no undersampling, and if we set
α = 1, we will equate the cardinalities of the minority class and the majority class
in the augmented set. We further denote the removed points from the majority
class by Xrem. Finally, the augmented training A set is obtained by removing
the set of points to be removed through A = X − Xrem. A is used to train the
classifier.

4 Experimental Design

To evaluate the proposed method RWMaU, we have performed a detailed exper-
iment involving 21 binary classification datasets with different degrees of class
imbalance (Imbalance ratio ranging from 1.54 to 32.73). They are listed in Table
1 along with their basis statistics, where n is the number of datapoints, d is
the number of dimensions and Imb. Ratio is the imbalance ratio of the dataset,
which is the ratio of the number of majority class and minority class datapoints.
The datasets are a part of [7,6] obtained from the KEEL project page 3.

In the comparative study, we have included the original training dataset
(without any oversampling or undersampling). Since majority class undersam-
pling is the essence of the proposed work, we have included four undersampling
schemes in this study namely – Random Undersampling (RUS) [23], Instance
Hardness Threshold (IHT) [29], Undersampling with Cluster Centroids (CC) and
Neighbourhood Cleaning Rule (NCR) [17]. K-Nearest Neighbour (with k=5),
C4.5 and C4.5 + Bagging classifiers were used to train the model at their default
settings were used to train the model using various undersampling schemes. The
original (unsampled) dataset’s performance on the above given classifier were
also compared as a baseline. The value of k (in RWMaU) was selected from a
range of 2, 3, . . . , 10 and γ (in RWMaU) was selected from a range of 2k ± 3 in

3 https://sci2s.ugr.es/keel/imbalanced.php
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combination by optimizing over C4.5 Decision Tree classifier. The (k, γ) tuple
which optimized the results of RWMaU on C4.5 Decision Tree were used in all
the experiments.Also, the value of α was set to 0.5 for all the undersampling
methods in the comparative study. This was done to limit removal of too many
majority points.

Table 1: Description of datasets
n d Imb. Ratio

yeast5 1484 8 32.73
yeast1289v7 947 8 30.57
wine-red-4 1599 11 29.17
yeast4 1484 8 28.10
yeast1458v7 693 8 22.10
abalone9-18 731 8 16.40
ecoli4 336 7 15.80
led02456789v1 443 7 10.97
page-blocks0 5472 10 8.79
ecoli3 336 7 8.60
yeast3 1484 8 8.10
new-thyroid1 215 5 5.14
new-thyroid2 215 5 5.14
vehicle3 846 18 2.99
vehicle1 846 18 2.90
vehicle2 846 18 2.88
glass0 214 9 2.06
pima 768 8 1.87
glass1 214 9 1.82
wdbc 569 30 1.68
spam 4597 57 1.54

For each dataset, 80% of the points were selected randomly for training and
the remaining 20% is used for testing. The training set was used with the sam-
pling algorithms to get the undersampled dataset. This undersampled dataset
was used to train the models using the previously mentioned algorithms. We have
also used the original training dataset in the empirical study and reported its
outcomes. The remaining 20% test datapoints were used to compute the model
performance. The above process was repeated 10 times and the average AUC
and F1-Scores were reported and compared. The same training-test partitions
were used for all the competing methods and run on the same platform .

5 Results

The results of the experiments are shown in Table 2 and 3 respectively. The
values in the table are the mean AUC (Table 2) and mean F1-Score (Table 3)
of the ten runs of the experiment, as mentioned in Section 4. The values in
the parentheses are the relative ranking for a sampling method and algorithm
combination on the specific dataset. For example, for ecoli4 dataset, when the
proposed algorithm is used with kNN, attained an AUC value of 0.9963 and an
rank of 1, when compared with kNN used with other sampling methods and
original dataset. The last row of each table shows the average rank over all
datasets for a specific sampling algorithm and classification algorithm pair.
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The objective is to the relative efficacy of RWMaU in learning imbalanced
datasets as compared to the competing paradigms. The comparison is done for
each sampling method and classifier pair. With respect to kNN classifier, on both
metrics, RWMaU did very well compared to other undersampling methods as
well as the original dataset. RWMaU has also performed best on C4.5 Decision
Tree with an average rank of 1.48. Particularly, the difference of average ranks
of RWMaU and the next based ranked method is remarkable. For (Bagging +
C4.5), RWMaU achieved the lowest average rank on both minority class F1 and
AUC scores. However, it is worth noting that the difference with respect to next
best average rank was not that significant as for the previous two cases. In case
of minority F1 score, the thresholding was done using 0.5, we find RWMaU
performing better overall with respect to the different classifiers.

1 2 3 4 5

RWMaU

RUS

CC

NCR
original

IHT

(a) AUC C4.5

2 3 4 5

RWMaU

NCR
original

RUS

CC

IHT

(b) F1 Score C4.5

2 3 4 5

RWMaU

RUS
original

NCR

CC

IHT

(c) AUC C4.5 + Bagging

2 3 4 5 6

RWMaU

NCR
original

RUS

CC

IHT

(d) F1 Score C4.5 + Bagging

1 2 3 4 5

RWMaU

CC

NCR

original

RUS

IHT

(e) AUC KNN

2 3 4 5

RWMaU

NCR

CC

RUS
original

IHT

(f) F1 Score KNN

Fig. 1: Critical difference plots of the post-hoc Friedman test with significance
level α = 0.05 for AUC and F1 Score from the KNN, C4.5 and C4.5 + Bagging
experiments.

To further investigate, we have performed a statistical significance tests to
understand the pairwise differences between the methods. The Friedman test
with Finner p-value correction was performed to do a multiple classifier test on
each combination of sampling method, used algorithm, on both F1-Score and
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AUC scores for each sampling and classifier combination. The summary results
are represented as critical difference plots in Figure 1 4.

With respect to AUC scores, from the critical difference plots, it is clear that
RWMaU performed significantly better than all the methods with used with
C4.5 in Figure 1a and KNN in Figure 1e, with a significance level of α = 0.05.
Although the null hypothesis could not be rejected, except for IHT for C4.5 +
Bagging case as can be seen in Figure 1c.

When we consider the same for F1 Score, RWMaU’s performance was found
to be significantly better than RUS, CC and IHT with C4.5 (Figure 1b) and all
other method except NCR with KNN (Figure 1f). On the other hand, for C4.5
+ Bagging (Figure 1d), RWMaU was found to be significantly better than RUS,
CC and IHT. In general, we may conclude that, RWMaU would improve the
learning of the class-imbalanced datasets over the competing methods.

6 Conclusion

In this paper, we address the class imbalance problem by proposing an under-
sampling method, Random Walk-steered Majority Undersampling (RWMaU).
Our scheme re-balances the dataset by removing datapoints from the majority
class. The main objective is to remove the majority points which are relatively
closer to the minority class. The novelty of our method lies in the use of random
walk visits to perceive the nearness of the points in a dataset. The majority class
points which lie close to the minority class are subsequently undersampled. The
AUC scores and the minority class F1 scores obtained from our empirical study
show that RWMaU delivers improved performance over existing methods. RW-
MaU + KNN and RWMaU + C4.5 performed significantly better than all the
other methods with respect to AUC scores, whereas they performed significantly
better than most of the methods with respect to F1 score. Overall, RWMaU has
attained the best rank in all cases with respect to both AUC and F1 scores. In fu-
ture, we would like to design a minority-oversampling scheme which is built upon
the random walks over the instances of a class-imbalanced dataset. It would also
be interesting to integrate random walk based oversampling and undersampling
in a single framework.
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