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Abstract—We propose Hypernetwork Kalman Filter (HKF) for
tracking applications with multiple different dynamics. The HKF
combines generalization power of Kalman filters with expressive
power of neural networks. Instead of keeping a bank of Kalman
filters and choosing one based on approximating the actual
dynamics, HKF adapts itself to each dynamics based on the
observed sequence. Through extensive experiments on CDL-B
channel model, we show that the HKF can be used for tracking
the channel over a wide range of Doppler values, matching
Kalman filter performance with genie Doppler information. At
high Doppler values, it achieves around 2dB gain over genie
Kalman filter. The HKF generalizes well to unseen Doppler, SNR
values and pilot patterns unlike LSTM, which suffers from severe
performance degradation.

I. INTRODUCTION

Channel tracking in wireless communication leverages the
knowledge about the dynamics of the time varying channels
to improve channel estimation quality. The channel dynamics
is determined by the Doppler frequency. When the Doppler
frequency is known, Kalman Filter (KF) is widely used
for tracking [11, [2]], [3]. An auto-regressive (AR) model is
assumed for the transition dynamics, and the parameters are
chosen either based on a Doppler dependent model, e.g., Jakes
model or by fitting the parameters to the data. KF is MMSE
optimal when the transition dynamics, observation model,
and noise statistics follow a linear Gaussian assumption. It
can elegantly adapt to missing observations and is robust to
noise variation. If the underlying dynamics changes, Kalman
parameters need to be updated according to the new dynamics.
In practice, when the Doppler value can change over a wide
range, the space of possible dynamics are roughly quantized
into different bins, and a finite number of KFs, one per Doppler
bin. are stored . This process is prone to error propagation.
Any mistake in approximating the Doppler value can lead to
a wrong choice of Kalman and incur considerable loss.

During recent years, recurrent neural networks (RNNs) have
appeared as a promising solution for tracking application. With
high expressive and approximation power, these models can
be trained on a large dataset of all possible scenarios with the
hope that a single neural network model can smoothly interpo-
late between different operation regimes and replace the bank
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of Kalman filters. However, in this paper, we will show that a
naive application of these methods to channel tracking suffers
from various issues. Their performance degrades significantly
on unseen cases with deviations from the training scenario.

Inspired by [4]], we adopt a hybrid approach. Instead of
replacing the KF by Neural Networks (NNs), we keep the
underlying graphical model and only update the parameters
of Kalman using a hypernetwork. The Hypernetwork Kalman
Filter uses only Kalman equations for prediction and updates
its parameters continuously based on the dynamics of the
channel, which is learned online from the past. In this way, the
model inherits the benefits of Kalman, for instance handling
of missing observations or varying SNR.

Our contributions are as follows. We propose HKF for
tracking channels with unknown and varying dynamics. At
each time step, a neural network updates the parameters of the
KF based on the latent representation of past sequence. The
prediction and tracking are done using Kalman equations. We
evaluate this model for tracking channel taps in an OFDM
transmission. We have used the clustered delay line (CDL)
channel model from 3GPP standard [5]. We show that a single
LSTM suffers significantly from model mismatch. In contrast,
the proposed HKF consistently outperforms LSTM and pro-
vides gain over Kalman across a wide range of Doppler.

A. Related Works

Channel tracking is important for continuous transmission
in time varying channels. Kalman filtering is the standard
tool, and there are many papers around this problem (see for
instance [L], [2]], [3]). In these works, the underlying dynamics
of the channel is known, therefore the Kalman parameters can
be matched to the dynamics. However, we assume a multi-
Doppler scenario where the Doppler is not known a priori.
The authors in [4] proposed a non-causal hybrid model where
the Kalman updates are modeled as message passing algorithm
learned using NNs. In contrast, in our work, Kalman updates
are not modeled by an NN, and the model is causal.

There are many works related to tracking and forecasting
which leverage NN to learn hidden state space model [6], [7],
(8], [9]. While most of the previous works focus on making KF
more complex, e.g., non-linear Kalman transitions, the closest
work to our paper is [10] where the authors similarly use
an LSTM to update Kalman parameters. However, they don’t



have missing observations in the training sequence. During
inference they deal with missing observation by assuming that
there are always some covariates available that are correlated
with the observation. This is not the case in wireless com-
munication. Between pilot transmissions, there is no covariate
observation available.

II. PROBLEM SETUP

Consider an OFDM system with N sub-carriers. The com-
munication spans over T consecutive OFDM symbols. At
OFDM symbol t, the source signal ; € CV is modulated
over N sub-carriers using IFFT operation and is transmitted
after cyclic prefix (CP) addition. We assume that CP is long
enough to remove Intersymbol Interference (ISI). However, the
channel is changing in time with a Doppler frequency fy. We
assume a multi Doppler scenario where the Doppler frequency
can differ from one scenario to another. The channel is
estimated using known pilot OFDM symbols at some intervals.
The pilots are transmitted once every 7}, OFDM symbols. We
assume that known QPSK symbols are modulated over all sub-
carriers in each pilot OFDM symbols. The channel at time ¢
is denoted by h; € CV. The estimated channel solely based
on the pilot at time ¢ is denoted by o; given as

oy = hy + 1y, (D

where r; is the additive noise with the covariance matrix R;.
The goal is to track the channel between pilot transmissions
and also use past information to improve the estimated channel
from pilots. The final estimated channel at time ¢ is denoted by
h.. The error for each instance is measured using Normalized
Square Error (NSE) defined as:
_ 1 — 3

NSE(1) = @)

The final reported error is the average NSE, namely Mean
Normalized Square Error (MNSE). Two remarks are in order.
First, to reduce the dimension, we track the channel in
time domain in our experiments. Second, although we have
considered SISO channels, the method can be easily extended
to MIMO channels.

A. Kalman based Channel Tracking

We start by presenting Kalman filter based solution to this
problem. For details of Kalman equations, we refer to classical
textbooks like [11]. We use AR models for the transition
dynamics of h,. Particularly, we use AR(2) Kalman equations

given by:
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The matrix F; models the transition dynamics, and H; models
the observation matrix. For AR(2)-Kalman based channel
tracking, we have:

The vector g, is the process noise with the covariance matrix
Q:. By Qt, we denote the covariance matrix of the total
noise vector in equation The covariance matrix of total
observation noise (rt rt,l)T is denoted by Rt. Note that
by assuming FY¥ = 0, we get the AR(1) model.

Kalman updates can be computed using equation [3| and
equation f] We have to consider two cases for channel es-
timation, first for information symbols where no observation
is given, and next, for pilot symbols where the observation
o, is present. At time ¢, we have access to previous estimates
ﬁt, 1 and ilt_g‘t_l and the covariance matrix of the estimate

(A hi ) denoted by ¥;_};_;. When no observation, i.e.,
hi_oi_1

no pilot is available at time ¢, the estimated channel is equal

to:
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Note that with AR(2)-model, fl,t_1|t is simply equal to hi_1.
When the observation o; is available, the estimated channel
h; is given recursively by Kalman updates:

h, ) ( hi 1 >
. =F{. + Ky, (6)
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where K; and y; are respectively the Kalman gain and the
Kalman innovation. The Kalman innovation is given by:

O¢ ilt—l
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The Kalman gain is recursively computed from the estimate
covariance matrix of last time step denoted by 3, _;_;.

K, =%, H!(HX,, H + R,)™", (8)

where 3y, = FtEt_l‘t_lFtH + Qt. The estimate covari-
ance matrix at time ¢, 3, is given by 3;,_, if there is no new
observation. Otherwise, 3, is given by (I — K;H;)3;;_;.
For AR(2) model, we use the assumption that H; = I, which
simplifies the above equations. These equations can be recur-
sively computed with known (FY}, F%, Q;, R;) for all ¢. In
this paper, since the ground truth channel is known in training
time, Kalman parameters can be obtained by a simple linear
regression. For multi Doppler case, KF parameters should be
chosen according to the actual Doppler. This requires keeping
a bank of KFs at hand with an additional Doppler estimation
unit. In this paper, we assume that the Doppler range is divided
into finite bins with one KF per bin. We assume that Doppler
frequency is known for choosing the correct bin. We refer to
this approach as Binned Kalman Filter (BKF). For each bin,
the parameters of the KF is computed over the pre-selected
Doppler values in the bin. For example see Table [I|

'Throughout the text, h|; means the estimate of hs at time ¢.



B. RNN based Channel Tracking

To avoid the overhead of explicit Doppler estimation and
maintenance of a bank of KFs, we can adopt a data driven
approach. As an alternative to KF, we can use an RNN for
prediction, which is trained over the full range of Doppler
values. Therefore, a single model can replace bank of KFs
without any need for explicit Doppler estimation. To account
for missing observations, we make the RNN predict, at every
time step, the current channel estimate izt and the next
observation 0;41. In case of missing observation, the RNN
can take this synthetic estimated observation 0;4; as input.
We use the real observation o, whenever it is present. We
define o; as follows:

- o0; observation is present
0t =19 . . . )
O, missing observation
The recurrent iterations of the RNN is given by:
z = RNN(2¢_1,hi_1,6;) (10)
hi, 6,41 = MLP(z,) (a1

where, z; represents the state variable of the RNN, ilt repre-
sents the channel estimate at time ¢, and 6,41 represents the
synthetic observation for time ¢+ 1. The loss function used to
train the RNN is given by:

(12)
Here, m denotes different the training sample index, and ¢
denotes the time entries in the sequence. T represents the
sequence length. MSFE is the mean squared error, and ¢
represents the trainable RNN and MLP parameters.

RNNs have properties that are complementary to the KF.
Unlike KF, RNNs do not assume any linear or Gaussian con-
straints on the transition and observation dynamics. Also, the
RNNSs do not require the evolution dynamics to be stationary
as it can learn to extract the time varying dynamics directly
from the training data. At the same time, RNNs have their
own share of limitations. Like most of the deep learning
methods, RNNs are very sensitive to the training data and do
not generalize well to the settings other than what it is trained
for, which makes them brittle for real world deployment. The
RNNs are found to be notoriously difficult to train end-to-
end due to the infamous exploding and vanishing gradient
problem. On the opposite end of the spectrum, KF models
time sequences in a very interpretable manner by explicitly
depicting the transition model, observation model, and noise
model parameters. This elegant structure of KF renders it
with properties inexistent in solely NN based solutions, like
efficient handling of missing entries in the time sequence and
robustness to out of distribution data. As we will see in the
section the RNN based tracking scheme fails to achieve
performance competitive to the BKF and also faces difficulties
in generalization to unseen scenarios. In the next section, we

MSE(R (9), ")+ MSE(6] (9), o]").

discuss the technical details of the proposed HKF, which can
overcome this problem.

IIT. HYPERNETWORK KALMAN FILTER

The proposed HKF complements the flexibility of the RNNs
in learning to extract the dynamics from the data with the
robustness and interpretability of the KF. We extend the class
of evolutionary processes that a KF can model by augmenting
it with an RNN. The HKF retains the interpretability of KF
and at the same time circumvents the limitations posed by a
standalone KF by incorporating an RNN whose parameters are
learned from the training data. The HKF consists of a Kalman
filter accompanied by an RNN to augment its capabilities. The
prediction is still done by Kalman, thereby enjoying robustness
and generalization of Kalman. However, Kalman parameters
are updated at each time using an RNN based on the process
history. A detailed schematic of the HKF is depicted in Fig. [I]
Below we describe the details of both the constituent units of
the HKF: the Kalman filter and the Hypernetwork RNN.

A. Kalman Filter

At the core of HKF lies a classical Kalman filter. The details
of Kalman is given in the previous section. As we have seen, a
Kalman filter is parameterized completely by the parameter set
0, := (F}, F}, H;, Q:, R;). In classical time-stationary KF, 6,
is assumed to be the same at each time step which immensely
limits the class of evolutionary dynamics it can model. The
traditional binning based channel tracking method circumvents
this limitation by coarsely binning the bigger set of possible
dynamics into subsets and maintaining a different set of KF
parameters per bin. In the proposed HKF, the parameters 6;
at each time ¢ are updated by the hypernetwork RNN.

B. Hypernetwork RNN

As illustrated in Fig. [T] at every time step ¢ the RNN updates
the KF parameters (6,11) for the next time step ¢ + 1. The
RNN models the KF parameters in terms of residual around
the mean set of parameters 6. In other words, the Kalman base
parameters are fixed to 6, and the RNN provides corrections:

Zt = RNN(Zt_l, 6t); A9t+1 = MLP(Zt) (13)

Orp1 =0+ Al (14)

The hidden state of RNN is projected by a single layer MLP
(zero hidden layer) to the required dimension which is then
recasted into KF parameters domain. Note that o; is defined
similar to equation 0] In case of missing observation (o;), the
RNN uses the KF estimate at time ¢, i.e., ﬁt and forward
it through the observation process (H;, R;). This means that
the synthetic observation 6; is modeled as a Gaussian random
vector with mean value Htilt and the covariance R;. The
synthetic observation is then fed into the RNN. To be able
to backpropagate through this sampling process, we use the
reparameterization trick [12]:

6, = Hhy + R %, € ~ N(0,1,,) (15)
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Fig. 1. Illustration of Hypernetwork Kalman Filter. Each shaded block

represents one inference iteration of the HKF, where 6 denotes the base set
of KF parameters around which the RNN models the residual A6y, 0; is the
final KF parameters at step ¢, z; is the RNN state variable, o; and 6; are
the real and synthetic observation respectively, and i represents the trainable
parameters of the HKF. The RNN extracts the time varying dynamics of the
underlying process and informs the KF, at every step, with the optimal set of
KF parameters.

In the channel tracking problem, we assume that H; is set to
identity and R, is a diagonal matrix with diagonal elements
given by the vector Rg;q4. Then, the sampling operation can
be simplified to Ry/> ©e.

C. Hypernetwork Kalman filter

The HKF, at every step, has access to the base set of
KF parameters. The stationary base parameters are given by
0 = (F\,F,, H Q, R). The hypernetwork RNN models the
correction term for them. In our experiments for channel
tracking, we assume a perfect knowledge of the measurement
process, i.e., the measurement matrix H is identity, and the
SNR is perfectly known/estimated. Therefore, the observation
noise covariance matrix R is diagonal with entries that are
determined by the genie SNR value. The KF parameters which
varies across different Doppler scenarios are FY, F¥, and Q;.
Hence, the RNN only models residuals in these parameters,
ie, Abi 1 = {AF[™ AF™ AQ;11}. In our experiments,
we set F) to identity matrix, F5 to zero matrix, and @ to KF
process covariance matrix averaged across the entire training
dataset. The loss function used to train the HKF is given by:

M T
Luxr) =Y > MSE(h}(),h}")

m=1 t=1

(16)

Here, 1 represents the trainable parameters of the HKF
(hypernetwork RNN and the associated MLP).

IV. EXPERIMENTS

For channel tracking, we have generated a dataset consisting
of 15 Doppler values and then binned them into 5 mutually
exclusive and collectively exhaustive bins. For binning, we
use the genie Doppler information to use the correct bin
for each channel sequence. We use MATLAB for dataset
generation with CDL-B channel profile. We have used 4096
tones for OFDM transmission at 4 GHz carrier frequency,
delay spread of 100 ns, and sub-carrier spacing of 30 KHz.
Table [I] depicts the binning strategy used for our experiments,
i.e., the Doppler values per bin followed by the corresponding

Bin setup
Bin index | Doppler values (Hz) | corresponding velocity (kmph)

Bin 0 0, 30, 60 0.0, 8.0, 16.0

Bin 1 70, 100, 130 18.0, 27.0, 35.0

Bin 2 150, 210, 270 40.5, 56.6, 72.8

Bin 3 300, 400, 500 81.0, 108.0, 135.0

Bin 4 800, 1300, 1850 215.8, 350.7, 499.0
TABLE I

Bin based discretization of Doppler spectrum

User Equipment (UE) relative velocity. Our dataset contains
800 training channel instances, and 200 test channel instances
per Doppler frequency. Each channel instance is 1500 OFDM
symbols long. Unless specified otherwise, we use an SNR of
10 dB and a pilot ratio of 1 : 6, i.e., a noisy observation at
every 6" time step. The evaluation metric in our experiments
is MNSE as in equation 2| measured in dB unit. Although any
RNN can be used, we have used LSTM for the rest. To ensure
a fair comparison across different learning based methods, we
keep the size of the network hidden state (z) at 2N for both
the RNN and the hypernetwork RNN.

In terms of computational complexity, the HKF has the
highest complexity followed by the RNN, further followed by
the variants of KF. It should be noted that non-learning based
methods, i.e., HKF, and BKF, have an extra computational
overhead due to the Doppler estimation unit for Doppler shift
estimation but the NN based methods doesn’t need explicit
Doppler information as they learn to extract the channel
dynamics implicitly from the pilots.

A. Evaluation of different channel tracking schemes

In the first experiment, we train one HKF on the entire
dataset consisting of all the 15 Doppler values. To compare
HKF against a standalone NN based baseline, we also train
an LSTM on the similar settings. We compare both of these
learned methods with genie KF (GKF) and BKF. The param-
eters of GKF is matched exactly to the Doppler value and
obtained using the data generated from the same Doppler.
Note that this approach would be prohibitively complex in
practice, as we require to keep in infinite bank of Kalman
filters, one for each Doppler. On the other hand, as mentioned
before, the BKF is an intermediate solution, which only keeps
a finite bank of Kalman filters, each one corresponding to a
Doppler range. We have chosen five bins presented in Table
[ Table M charts the evaluation results on the test data for all
the 15 Doppler values. Our HKF performs consistently better
than the standalone LSTM. A single HKF, without any genie
Doppler information, outperforms the BKF baseline which
requires genie Doppler information and 5 separate KFs. At
higher Doppler frequencies, the HKF even outperforms the
GKF, which uses a separate KF per Doppler.

B. Impact of increasing model capacity

In this experiment, we study the effects of increasing the
depth (complexity) of the HKF. We define HKF-2 as HKF but
with 2 layers of LSTM. In Table.[[I, we observe that increasing
the depth of HKF leads to consistent performance boost for



MNSE (in dB)

Doppler [ GKF [ BKF [ LSTM [ HKF [ HKF-2
0 Hz -48.89 | -31.78 | -18.05 | -29.99 | -31.86
30 Hz -32.60 | -32.60 | -22.16 | -30.59 | -30.62
60 Hz -31.40 | -28.47 | -26.77 | -30.76 | -30.92
70 Hz -30.64 | -28.84 | -26.63 | -30.75 | -30.95
100 Hz | -27.71 | -30.06 | -29.15 | -30.80 | -31.04
130 Hz | -28.89 | -26.96 | -29.23 | -30.82 | -31.22
150 Hz | -29.64 | -2991 | -29.30 | -30.65 | -31.04

210 Hz | -31.76 | -30.76 | -29.19 | -30.62 | -30.80

270 Hz | -30.66 | -28.61 | -29.12 | -30.33 | -30.44

300 Hz | -29.68 | -30.18 | -29.27 | -30.20 | -30.22

400 Hz | -30.24 | -29.98 | -28.15 | -29.48 | -29.38

500 Hz | -29.55 | -28.85 | -27.90 | -28.72 | -28.63

800 Hz | -26.70 | -18.75 | -25.59 | -26.47 | -26.55

1300 Hz | -21.65 | -17.59 | -22.01 | -22.85 | -23.24

1850 Hz | -16.86 | -15.25 | -18.29 | -19.18 | -19.67

TABLE II

Performance of HKF & HKF-2 (see [[V-B) on a range of Doppler values
compared against classical and standalone NN based baselines.

MNSE (in dB)
Doppler ‘ BKF ‘ LST™M ‘ HKF-1 ‘ HKF-2
50 Hz -30.06 | -25.58 | -30.89 | -31.12
120 Hz | -28.12 | -27.99 | -30.62 | -31.05
240 Hz | -29.87 | -28.90 | -30.49 | -30.64
450 Hz | -29.65 | -27.63 | -29.18 | -29.07
1500 Hz | -17.99 | -19.52 | -20.94 | -21.27
TABLE III

Evaluation on untrained Doppler values

13 out of 15 Doppler frequencies. The result suggests that
further improvements in the performance can be achieved by
increasing the depth of the network.

C. Doppler interpolation

In the following experiment, we evaluate the ability of
different tracking schemes to interpolate to unseen Doppler
scenarios, i.e., Doppler frequencies that are not present in
the training dataset. For this experiment, we generate data for
one extra Doppler per bin. In case of BKF, we use the genie
Doppler information to pick the right bin for each test instance,
i.e., we choose the KF belonging to the exact bin to which
the test channel belongs. Depicted in Table. our HKF and
HKF-2 outperform LSTM on all the 5 Doppler frequencies and
outperform BKF at 4 out of 5 cases without genie information.

This result is in agreement with our postulate that the
HKF brings together the flexibility of the RNNs with out
of domain generalization capability of the KF. The proposed
HKF demonstrates better Doppler interpolation properties than
both the classical baseline and solely NN based baseline. In
the current experiment, the HKF-2 consistently outperforms
the HKF-1, hence, we use HKF-2 for the next experiments.

D. Generalization properties

In the next experiments, we investigate the performance of
different schemes when extrapolated to settings beyond the
training scenario. For the sake of completeness, we introduce
HKF-G, a global version of HKF-2. The HKF-G shares the
same model with HKF-2, but unlike HKF-2 which is trained

on a single SNR value of 10 dB and a pilot ratio of 1 : 6,
HKF-G is trained on SNR values uniformly sampled from the
range 5 — 15 dB and pilot ratios uniformly sampled from the
set {1:3,1:5,1:6,1:8,1:10}. The idea is to see how
much gain we get by training on a range of different scenarios.

1) Generalization to untrained pilot ratios: We start with
generalization to different untrained pilot ratios. Table.
shows the evaluation results when both the LSTM and HKF-2,
trained on a pilot ratio of 1 : 6, are evaluated on a pilot ratio
of 1 : 3. An increased pilot frequency means more frequent
observations of the underlying channel. Intuitively, increase
in pilot frequency should lead to better channel estimates. As
depicted in upper half of Table. the performance of HKF-2
improves by increasing the pilot frequency and it still remains
competitive to the BKF. On the other hand, despite the more
frequent observations, the LSTM completely collapses.

To increase the scope of our findings, we also evaluated
our methods on unseen Doppler values combined with an
untrained pilot ratio. The lower half of Table. [[V] depicts
the results when different schemes are evaluated on untrained
Doppler values combined with an untrained pilot ratio of 1 : 3.
For both the seen and unseen Doppler scenarios, the HKF-2
performs competitive to the BKF while the LSTM fails to
generalize. The HKF-G, which includes this pilot ratio in the
training phase, performs the best among others.

MNSE (in dB)
Seen Doppler values
Doppler ‘ BKF ‘ LSTM ‘ HKF-2 ‘ HKF-G
0 Hz -35.33 | -18.63 | -34.77 -35.15
30 Hz -34.80 | -20.64 | -33.42 -33.91
60 Hz -31.33 | -20.21 -33.11 -33.47
70 Hz -31.96 | -20.16 | -33.11 -33.39
100 Hz -33.04 | -18.67 | -33.60 -33.93
130 Hz -30.48 | -17.27 | -33.53 -33.74
150 Hz -33.09 | -16.16 | -33.41 -33.62
210 Hz -33.40 | -14.50 | -33.39 -33.63
270 Hz -32.19 | -13.18 | -32.94 -33.15
300 Hz -33.19 | -12.65 | -32.72 -32.95
400 Hz -32.90 | -11.33 | -32.08 -32.36
500 Hz -32.26 | -10.57 | -31.51 -31.90
800 Hz -28.06 | -10.52 | -29.61 -30.43
1300 Hz | -27.18 -9.83 -27.07 -28.45
1850 Hz | -25.30 -7.60 -24.17 -26.53
Unseen Doppler values
50 Hz -32.60 | -20.66 | -33.27 -33.68
120 Hz -31.51 | -17.68 | -33.63 -33.89
240 Hz -32.87 | -13.70 | -33.18 -33.40
450 Hz -32.69 | -10.90 | -31.85 -32.15
1500 Hz | -27.28 -7.71 -25.40 -27.04
TABLE IV

Evaluation on untrained pilot ratio of 1 : 3

In the preceding experiment, we experimented with an
increased pilot frequency of 1 : 3. In the following experiment,
we perform a similar experiment but with a reduced pilot
frequency of 1 : 10. Intuitively, a decrease in pilot frequency
would lead to degradation in the performance as there are
less frequent observations available to estimate the channel.
Table[V] depicts the results when different schemes are evalu-
ated on an untrained pilot ratio of 1 : 10 combined with seen



and unseen Doppler instances. Similar to the previous results,
the HKF-2 remains competitive to the BKF while the LSTM
collapses. Owing to its more diverse training, the HKF-G fares
much better than the other tracking methods.

MNSE (in dB)
Seen Doppler values
Doppler ‘ BKF ‘ LSTM ‘ HKEF-2 ‘ HKF-G
0 Hz -28.56 -4.55 -20.44 -26.16
30 Hz -31.70 -5.55 -19.52 -26.93
60 Hz -25.80 -4.85 -18.62 -27.29
70 Hz -26.16 -4.31 -20.68 -25.30
100 Hz | -27.59 -3.29 -23.47 -27.39
130 Hz | -23.34 2,11 -23.56 -27.17
150 Hz | -26.00 -1.34 -25.07 -27.63
210 Hz | -27.90 -0.32 -24.87 -27.60
270 Hz | -24.41 0.34 -25.54 -27.22
300 Hz | -26.77 0.54 -21.16 -27.09
400 Hz | -26.86 1.07 -24.04 -25.95
500 Hz | -24.77 1.34 -23.30 -24.71
800 Hz | -10.36 1.95 -18.95 -20.80
1300 Hz | -9.50 2.19 -10.90 -15.45
1850 Hz | -7.25 2.23 -5.18 -11.10
Unseen Doppler values
50 Hz -27.74 -5.11 -23.34 -24.83
120 Hz | -25.32 -2.39 -23.31 -27.41
240 Hz | -26.43 0.07 -24.40 -27.38
450 Hz | -26.28 1.19 -24.14 -25.38
1500 Hz | -10.21 2.22 -8.08 -12.28
TABLE V

Evaluation on untrained pilot ratio of 1 : 10

2) Generalization to untrained SNR values: In the follow-
ing experiments, we study the generalization properties of
different schemes to different noise levels. Both the LSTM,
and the HKFs, trained on an SNR of 10 dB, are evaluated on
two different SNRs of 5 dB and 15 dB. Table. [VI] shows the
finding when different schemes are evaluated on an untrained
SNR of 5 dB with seen and unseen Doppler instances. Evident
from the Table. the performance of LSTM degrades signif-
icantly. On the other hand, the HKF-2 performs comparable to
the HKF-G and even outperforms the BKF at certain instances.

Next, we evaluate different methods on an untrained SNR
of 15 dB. Tables. charts the findings of our experiments
when different schemes are evaluated on seen and unseen
Doppler scenarios. Similar to the prior experiment, the LSTM
fails to generalize to a new SNR while the HKF-G performs
the best. The HKF-2, despite being trained on a single SNR
(10 dB) far away from the test SNRs (5 dB and 10 dB),
performs competitive to the HKF-G and BKF. The HKF-2
performs comparable to BKF in low-to-mid frequency range
and outperforms it at higher frequency range.

V. CONCLUSION

Exclusive neural network based solutions to channel track-
ing problem generalize poorly to unseen scenarios with sig-
nificant performance degradation. On the other hand, although
Kalman filter generalizes well to different SNR and observa-
tion patterns, it needs to be adapted continually to changing
channel dynamics. We propose a hypernetwork Kalman filter

MNSE (in dB)
Seen Doppler values
Doppler ‘ BKF ‘ LSTM ‘ HKF-2 ‘ HKF-G
0 Hz -28.62 | -15.83 | -27.15 -28.84
30 Hz -29.81 | -17.18 | -27.30 -28.44
60 Hz -25.08 | -18.46 | -27.79 -28.65
70 Hz -25.67 | -18.11 | -27.85 -28.56
100 Hz | -26.56 | -18.81 | -27.92 -28.57
130 Hz | -23.50 | -18.64 | -27.99 -28.47
150 Hz | -26.88 | -18.83 | -27.81 -28.31
210 Hz | -27.32 | -19.26 | -27.54 -28.13
270 Hz | -25.59 | -19.81 | -27.07 -27.69
300 Hz | -26.83 | -19.68 | -26.79 -27.50
400 Hz | -26.57 | -19.44 | -25.92 -26.78
500 Hz | -25.63 | -19.52 | -25.13 -26.16
800 Hz | -17.90 | -19.42 | -23.64 -24.19
1300 Hz | -16.77 | -16.94 | -20.93 -21.31
1850 Hz | -14.62 | -14.83 | -18.20 -18.31
Unseen Doppler values
50 Hz -26.61 | -18.17 | -27.74 -28.64
120 Hz | -24.64 | -18.59 | -27.91 -28.49
240 Hz | -26.58 | -19.18 | -27.29 -27.79
450 Hz | -26.28 | -19.58 | -25.55 -26.40
1500 Hz | -17.17 | -14.85 | -19.23 -19.37
TABLE VI

Evaluation on untrained SNR of 5 dB

MNSE (in dB)
Seen Doppler values
Doppler [ BKF [ LSTM [ HKEF-2 [ HKF-G
0 Hz -34.00 | -18.76 | -33.70 -33.26
30 Hz -34.56 | -22.61 | -31.84 -32.01
60 Hz -31.08 | -27.59 | -32.11 -32.34
70 Hz -30.96 | -29.33 | -32.24 -32.44
100 Hz | -32.84 | -31.31 | -32.16 -32.63
130 Hz | -29.53 | -31.72 | -32.59 -32.89
150 Hz | -32.29 | -30.41 | -32.46 -32.65
210 Hz | -33.98 | -30.74 | -32.24 -32.62
270 Hz | -31.05 | -29.89 | -31.82 -32.08
300 Hz | -33.28 | -31.56 | -31.55 -31.90
400 Hz | -33.22 | -29.48 | -30.59 -31.01
500 Hz | -31.71 | -29.95 | -29.69 -30.12
800 Hz | -19.11 | -23.72 | -27.74 -27.72
1300 Hz | -17.95 | -23.10 | -24.18 -23.92
1850 Hz | -15.52 | -18.98 | -20.08 -19.62
Unseen Doppler values
50 Hz -32.78 | -27.08 | -32.44 -32.59
120 Hz | -30.79 | -29.08 | -32.28 -32.74
240 Hz | -32.79 | -30.36 | -32.05 -32.37
450 Hz | -32.80 | -29.14 | -30.20 -30.62
1500 Hz | -18.35 | -20.15 | -21.82 -21.29
TABLE VII

Evaluation on untrained SNR of 15 dB

solution which reconciles the best part of both approaches. It
was shown that a single HKF could be used on a wide range
of Doppler values with good out of domain generalization. We
believe these neural augmentation approaches are well suited
for maximal utilization of the domain knowledge.
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