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Abstract— We consider a joint uplink and downlink scheduling
problem of a fully distributed wireless networked control system
(WNCS) with a limited number of frequency channels. Using
elements of stochastic systems theory, we derive a sufficient
stability condition of the WNCS, which is stated in terms of
both the control and communication system parameters. Once the
condition is satisfied, there exists a stationary and deterministic
scheduling policy that can stabilize all plants of the WNCS.
By analyzing and representing the per-step cost function of
the WNCS in terms of a finite-length countable vector state,
we formulate the optimal transmission scheduling problem into
a Markov decision process and develop a deep reinforcement
learning (DRL) based framework for solving it. To tackle the
challenges of a large action space in DRL, we propose novel action
space reduction and action embedding methods for the DRL
framework that can be applied to various algorithms, including
Deep Q-Network (DQN), Deep Deterministic Policy Gradient
(DDPG), and Twin Delayed Deep Deterministic Policy Gradient
(TD3). Numerical results show that the proposed algorithm
significantly outperforms benchmark policies.

Index Terms—Wireless networked control, transmission
scheduling, deep Q-learning, Markov decision process, stability
condition. I. INTRODUCTION

The Fourth Industrial Revolution, Industry 4.0, is the au-
tomation of conventional manufacturing and industrial pro-
cesses through flexible mass production. Automatic control
in Industry 4.0 requires large-scale and interconnected de-
ployment of massive spatially distributed industrial devices,
such as sensors, actuators, machines, robots, and controllers.
Eliminating the communication wires is a game-changer in re-
shaping traditional factories. In this regard, wireless networked
control has become one of the most important technologies of
Industry 4.0. It offers high-scalable and low-cost deployment
capabilities and enables many industrial applications, such
as smart city, smart manufacturing, smart grids, e-commerce
warehouses and industrial automation systems [1], [2].

Unlike traditional cable-based networked control systems,
in a large-scale wireless networked control system (WNCS),
communication resources are limited. Not surprisingly, during
the past decade, state estimation and transmission scheduling
in WNCS have drawn a lot of attention in the research commu-
nity. For example, some recent works have investigated the es-
timation problem under dynamic sampling periods [3] and ran-
dom access protocol scheduling [4]. Focusing on the sensor-
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controller communications only (the controller-actuator co-
located scenario), the optimal transmission scheduling problem
of over a single frequency channel for achieving the best
remote estimation quality was extensively investigated in [5]–
[8]. For the multi-frequency channel scenario, the optimal
scheduling policy and structural results were obtained in [9].
The optimal transmission power scheduling problem of an
energy-constrained remote estimation system was studied in
[10]. The joint scheduling and power allocation problems
of multi-plant-multi-frequency WNCSs were investigated in
[11], [12] for achieving the minimum overall transmission
power consumption. From a cyber-physical security perspec-
tive, denial-of-service (DoS) attackers’ scheduling problems
were investigated in [13], [14], for maximally deteriorating
the WNCSs’ performance.

In the WNCS examined in the above works, the scheduling
problem is commonly reformulated into a Markov decision
process (MDP) problem. The MDP problem can be solved
using traditional algorithms (e.g., value iteration [2], [9], [15],
policy iteration [16], and linear programming [17], [18]) and
reinforcement learning algorithms (e.g., Q-learning [19] and
deep Q-Networks [20], [21]). Traditional algorithms and Q-
learning are effective when the system scale is small. For
example, numerical results of the optimal scheduling of a
two-sensor-one-frequency using value iteration system were
presented in [9]. These methods involve operations over every
possible state and action. As the number of actions increases,
the number of state-action pairs grows, leading to a dramatic
increase in the computations required. For example, when the
action space is large, Q-learning necessitates constructing a Q-
value table, which demands substantial storage proportional to
the size of the action space, leading to the curse of dimension-
ality [19], [22], [23]. Deep Q-Networks (DQN) address this
issue using deep neural networks (DNNs) for value function
approximations, thus eliminating the need for extensive Q-
value tables. Some recent works [20], [21] have applied DQN
to solve multi-system-multi-frequency scheduling problems in
different WNCS scenarios.

However, handling large action spaces also presents sig-
nificant challenges in DQN. The size of the DNNs required
for DQN expands dramatically with respect to the action
space. This can hinder effective exploration of the action
space during training, resulting in increased storage and com-
putational requirements. Ma et al. [24] proposed decoupling
the original problem into subproblems and developing mul-
tiple deep reinforcement learning (DRL) algorithms to solve
the corresponding subproblems with reduced decision space.
However, the presence of multiple learning agents creates a
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non-stationary environment, which can destabilize learning
and make convergence more difficult. To deal with large
decision spaces, recent works resort to stochastic policy-based
DRL algorithms [25]–[27]. A stochastic policy refers to a
policy that specifies a probability distribution over actions,
given the current state of the environment. Ni et al. [25]
leveraged a Graph Neural Network (GNN) based DRL to
learn stochastic policies, i.e., Proximal Policy Optimization
(PPO) for warehouse scheduling. Yang et al. [26] developed
an actor-critic DRL for learning stochastic policies with con-
tinuous action space for scheduling, power allocation, and
modulation scheme adaptation. However, it has been proved
that the optimal policy is deterministic for unconstraint MDP
problems [28]. Here, a deterministic policy means that the
action in a given state is determined by a fixed function
without any randomness. Consequently, deterministic policy-
based DRL methods are generally more preferable.

We note that most of the existing works only focus on
WNCSs which are only partially distributed [5]–[7], [9], [11],
[12], [20], [21]. For example, Chen et al. [29] focus on the
sensor scheduling in the uplink transmission of a WNCS, using
either DQN or Deep Deterministic Policy Gradient (DDPG).
Redder et al. [30] developed a DQN-based algorithm for
optimal actuator scheduling in the downlink transmission of
a WNCS over a Markov fading channel. Existing works only
consider optimizing either the uplink or downlink transmission
for WNCSs. In a fully distributed setting, both downlink
(controller-actuator) and uplink (sensor-controller) transmis-
sions are crucial for stabilizing each plant. The joint uplink
and downlink scheduling problem of fully distributed multi-
plant WNCS has never been considered in the open literature.

In this paper, we investigate the transmission scheduling
problem of distributed WNCS. The main contributions are
summarized as follows:

• We propose a distributed N -plant-M -frequency WNCS
model, where the controller schedules the uplink and
downlink transmissions of all N plants and the spatial
diversity of different communication links are taken into
account. The controller generates sequential predictive
control commands for each of the plants based on pre-
designed deadbead control laws.2 Different from uplink
or downlink only scheduling, a joint scheduling algorithm
has a larger action space and also needs to automatically
balance the tradeoff between the uplink and the downlink
due to the communication resource limit. To the best of
our knowledge, joint uplink and downlink transmission
scheduling of distributed WNCSs has not been investi-
gated in the open literature.

• We derive a sufficient stability condition of the WNCS
in terms of both the control and communication system
parameters. The result provides a theoretical guarantee
that there exists at least one stationary and deterministic
scheduling policy that can stabilize all plants of the

2Note that deadbead controller is commonly considered as a time-optimal
controller that takes the minimum time for setting the current plant state to
the origin.

WNCS. We show that the obtained condition is also
necessary in the absence of spatial diversity of different
communication links.

• We construct a finite-length countable vector state of the
WNCS in terms of the time duration between consec-
utive received packets at the controller and the actua-
tors. Then, we prove that the per-step cost function of
the WNCS is determined by the time-duration-related
vector state. Building on this, we formulate the optimal
transmission scheduling problem into a Markov decision
process (MDP) problem with an countable state space
for achieving the minimum expected total discounted
cost. We propose effective action space reduction and
action embedding methods that can be applied to DRL
algorithms, including foundational ones like DQN and
more advanced ones such as DDPG and Twin Delayed
Deep Deterministic Policy Gradient (TD3), for solving
the problem. Numerical results illustrate that the proposed
algorithm can reduce the expected cost significantly com-
pared to available benchmark policies.

Notations:
∑j

m=i am ≜ 0 if i > j. lim supK→∞ is the
limit superior operator. Ck

n ≜ n!
k!(n−k)! and Pk

n ≜ n!
(n−k)! are

the numbers of combinations and permutations of n things
taken k at a time, respectively. Tr(A) and rank[A] denote the
trace and the rank of matrix A, respectively.

II. DISTRIBUTED WNCS WITH SHARED WIRELESS
RESOURCE

We consider a distributed WNCS system with N plants
and a central controller as illustrated in Fig. 1. The output
of plant i is measured by smart sensor i, which sends pre-
filtered measurements (local state estimates) to the controller.
The controller applies a remote (state) estimator and a control
algorithm for plant i. It then generates and sends a control
signal to actuator i, thereby closing the loop. A key limitation
of the WNCS is that smart sensor i cannot communicate with
actuator i directly due to the spatial deployment. Instead, the
uplink (sensor-controller) and downlink (controller-actuator)
communications for the N plants share a common wireless
network with only M frequency channels, where M < 2N .
Thus, not every node is allowed to transmit at the same time
and communications need to be scheduled. As shown in Fig. 1,
we shall focus on a setup where scheduling is done at the
controller side, which schedules both the downlink and uplink
transmissions.3

Each smart sensor has three modules: remote estimator,
control algorithm and local Kalman filter. The first two mod-
ules are copies of the ones at the controller to reconstruct
the control input of the plant. Such information is sent to the
Kalman filter for accurate local state estimation. The details
will be presented in the sequel.

3Such a setup is practical, noting that most of the existing wireless
communication systems including 5G support both uplink and downlink at
base stations [31].
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Fig. 1. A distributed networked control system with N plants sharing M
frequency channels. Kalman filter, remote estimator and control algorithm are
denoted as KF, RE and CA and discussed in Sections II-B, II-C and II-D,
respectively.

A. Plant Dynamics

The N plants are modeled as linear time-invariant (LTI)
discrete-time systems as [11], [21]

xi,k+1 = Aixi,k +Biui,k +wi,k,

yi,k = Cixi,k + vi,k, i = 1, · · · , N (1)

where xi,k ∈ Rni and ui,k ∈ Rmi are the state vector of
plant i and the control input applied by actuator i at time
k, respectively. wi,k ∈ Rni is the i-th plant disturbance
and is an independent and identically distributed (i.i.d.) zero-
mean Gaussian white noise process with covariance matrix
Qw

i ∈ Rni×ni . Ai ∈ Rni×ni and Bi ∈ Rni×mi are the
system-transition matrix and control-input matrix for plant
i, respectively. yi,k ∈ Rpi is sensor i’s measurement of
plant i at time k and vi,k ∈ Rpi is the measurement noise,
modeled as an i.i.d. zero-mean Gaussian white noise process
with covariance matrix Qv

i ∈ Rpi×pi . Ci ∈ Rpi×ni is the
measurement matrix of plant i. We assume that plant i is vi-
step controllable, ∀i ∈ {1, . . . , N} [32], i.e., there exists a
control gain K̃i satisfying

(Ai +BiK̃i)
vi = 0. (2)

Note that when Ai is non-singular, the system (1) is vi-step
controllable if and only if

rank
[
A−1

i Bi,A
−2
i Bi, . . . ,A

−vi
i Bi

]
= ni.

The details of the control algorithm will be given in Sec-
tion II-D.

B. Smart Sensors

Due to the noise measurement, each smart sensor runs a
Kalman filter to estimate the current plant state as below [33]:4

4In this subsection, we focus on smart sensor i and the index i of each
quantity is omitted for clarity

xs
k|k−1 = Axs

k−1 +Buk−1

Ps
k|k−1 = APs

k−1A
⊤ +Qw

Kk = Ps
k|k−1C

⊤(CPs
k|k−1C

⊤ +Qv)−1

xs
k = xs

k|k−1 +Kk(yk −Cxs
k|k−1)

Ps
k = (I−KkC)Ps

k|k−1

(3)

where xs
k|k−1 and xs

k are the prior and posterior state esti-
mation at time k, respectively, and Ps

k|k−1 and Ps
k are the

(estimation error) covariances of esk|k−1 ≜ xk − xs
k|k−1 and

esk ≜ xk − xs
k, respectively. Kk is the Kalman gain at time

k. We assume that each (A,C) is observable and (A,Qw)
is controllable [9]. Thus, the Kalman gain Kk and error
covariance matrix Ps

k converge to constant matrices K̂ and P̂s,
respectively, i.e., the smart sensor is in the stationary mode.
As foreshadowed, the smart sensor employs a remote estimator
and knowledge of the control algorithm that is applied at the
controller side to obtain the control input in (3). Thus, the
Kalman filter (3) is the optimal estimator of the linear system
(1) in terms of the estimation mean-square error [34]. The
remote estimator and control algorithm will be presented in
Sections II-C and II-D, respectively.

As shown in Fig. 1, at every scheduling instant k, the
smart sensor sends the local estimate xs

k (rather than the raw
measurement yk) to the controller.

Before proceeding, we note that (3) leads to the following
recursion for the estimation error at the sensors:

esk+1|k = Aesk +wk

esk =
(
I− K̂C

)
esk|k−1 − K̂vk

and hence

esk =
(
I− K̂C

)
Aesk−1 +

(
I− K̂C

)
wk−1 − K̂vk.

Then, the relation between the estimation errors esk and esk−K ,
∀K ∈ N, is established as

esk=ZKesk−K+

K∑
i=1

Zi−1(I−K̂C
)
wk−i−

K∑
i=1

Zi−1K̂vk−i+1,

where Z ≜
(
I− K̂C

)
A.

C. Remote Estimation

At the beginning of a time slot, the controller calculates the
control sequence and transmits it within the time slot based
on the current plant state estimation rather than the real-time
state, as the packet carrying the current plant state can only be
received at the end of the current time slot due to the one-step
transmission delay. Then, the controller applies a minimum
mean-square error (MMSE) remote estimator for each plant
taking into account the random packet dropouts and one-step
transmission delay as [33]:

x̂i,k+1 =

{
Aix

s
i,k +Biui,k if βi,k = 1

Aix̂k +Biui,k if βi,k = 0
(4)
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where βi,k = 1 or 0 indicates that the controller receives
sensor i’s packet or not at time k, respectively. Then, the
estimation error ei,k is obtained as

ei,k ≜ xi,k − x̂i,k =

{
Aie

s
i,k−1 +wi,k−1 if βi,k−1 = 1

Aiei,k−1 +wi,k−1 if βi,k−1 = 0
(5)

From (4), the controller’s current estimation depends on the
most recently received sensor estimation. Let τi,k ∈ {1, 2, · · · }
denote the age-of-information (AoI) (see [15] and reference
therein) of sensor i’s packet observed at time k, i.e., the num-
ber of elapsed time slots from the latest successfully delivered
sensor i’s packet before the current time k, which reflects how
old the most recently received sensor measurement is. Then,
it is easy to see that the updating rule of τi,k is given by

τi,k+1 =

{
1 if βi,k = 1

τi,k + 1 otherwise.
(6)

Using (5) and the AoI, the relation between the local and
remote estimation error can be characterized by:

ei,k = A
τi,k
i esi,k−τi,k

+

τi,k∑
j=1

Aj−1
i wk−j .

D. Control Algorithm

Due to the fact that downlink transmissions are unreliable,
actuator i may not receive the controller’s control-command-
carrying packets, even when transmissions are scheduled. We
adopt a predictive control approach [32], [35] to provide ro-
bustness against packet failures: the controller sends a length-
vi sequence of control commands including both the current
command and the predicted future commands to the actuator
once scheduled; if the current packet is lost, the actuator
will apply the previously received predictive command for the
current time slot as the control input.

The control sequence for plant i is generated by a linear
deadbeat control gain K̃i as [32]

Ci,k =
[
K̃ix̂i,k, K̃iΦix̂i,k, · · · , K̃i(Φi)

vi−1x̂i,k

]
(7)

where Φi ≜ Ai+BiK̃i and K̃i satisfies (Ai+BiK̃i)
vi = 0,

and vi is the controllability index of the pair (Ai,Bi). Note
that the first element in Ci,k is the current control command
and the rest are the predicted ones.

Remark 1. It can be verified that if the current state estima-
tion x̂i,k is perfect and the plant i is disturbance free, then the
plant state xi,k would be set to zero after applying all vi steps
of the control sequence in (7). Such a deadbeat controller is
commonly considered as a time-optimal controller that takes
the minimum time for setting the current plant state to the
origin [36]. We note that the deadbeat control law may not be
cost-optimal optimal to minimize the quadratic cost function
defined in Section IV, and the optimal control law may depend
on the scheduling policy. Since the current work focuses on the
transmission scheduling design of the N -plant-M -frequency
WNCS, the optimal joint control-scheduling problem can be

investigated in our future work. Specifically, we aim to identify
an optimal scheduling policy that minimizes the quadratic cost
for a given deadbeat controller.

Accordingly, actuator i maintains a length-vi buffer

Ui,k ≜ [u0
i,k,u

1
i,k, · · · ,uvi−1

i,k ]

to store the received control commands. If the current control
packet is received, the buffer is reset with received sequence;
otherwise, it is shifted one step forward as

Ui,k =

{
Ci,k, if γi,k = 1

[u1
i,k−1,u

2
i,k−1, · · · ,uvi

i,k−1,0], if γi,k = 0
(8)

where γi,k = 1 or 0 indicate that actuator i receives a control
packet or not at time k, respectively. The first command in the
buffer is applied as the control input each time

ui,k ≜ u0
i,k.

Let ηi,k ∈ {1, 2, · · · } denote the AoI of controller’s packet
at actuator i observed at time k, i.e., the number of passed time
slots (including the current time slot) since the latest received
control packet by actuator i. Its updating rule is given as

ηi,k =

{
1, if γi,k = 1

ηi,k−1 + 1 if γi,k = 0
(9)

From (7) and (8), and by using the deadbeat control prop-
erty (2), the applied control input can be concisely written
as

ui,k = K̃i(Φi)
ηi,k−1x̂i,k+1−ηi,k

. (10)

E. Communication Scheduler

The N -plant WNCS has N uplinks and N downlinks
sharing M frequencies. Each frequency can be occupied by at
most one link, and each link can be allocated to at most one
frequency at a time. Let am,k ∈ {−N, . . . , 0, . . . , N} denote
the allocated link to frequency m at time k, where am,k = i′

means the frequency is allocated to |i′|-th plant, where i′ > 0
and < 0 indicate for uplink and downlink, respectively, and
i′ = 0 denotes that the frequency channel is idle.

The packet transmissions of each link are modeled as i.i.d.
packet dropout processes. Unlike most of the existing works
wherein transmission scheduling of WNCSs assumes that
different node transmissions at the same frequency channel
have the same packet drop probability [20], we here consider
a more practical scenario by taking into account the spatial
diversity of different transmission nodes – each frequency
has different dropout probabilities for different uplink and
downlink transmissions. The packet success probabilities of
the uplink and downlink of plant i at frequency m are given
by ξsm,i and ξcm,i, respectively, where

ξsm,i ≜ P[βi,k = 1|am,k = i],

ξcm,i ≜ P[γi,k = 1|am,k = −i].
(11)
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The packet success probabilities can be estimated by
the controller based on standard channel estimation tech-
niques [37], [38], and are utilized by the MDP and DRL-based
solutions in Section IV-C and Section V.

Acknowledgment feedback. We note that the Transmission
Control Protocol (TCP) is commonly adopted in commer-
cial telecommunication systems for data transmission, such
as 5G and WiFi [39]–[41]. TCP relies on acknowledgment
feedback, where the receiver sends a one-bit acknowledgment
signal back to the sender to confirm the successful receipt
of data packets. This feedback mechanism ensures reliable
data transmission by verifying the delivery of data. Therefore,
we assume that both the uplink and downlink transmissions
adopt the acknowledgment feedback scheme. In particular, the
actuator sends one-bit feedback signal of γi,k to the controller,
and the controller sends βi,k as well as the received γi,k to
sensor i each time with negligible overhead. From {βi,k}
and (4), the smart sensor knows the estimated plant state
x̂i,k by the controller; then, using x̂i,k, {γi,k} and (10), the
sensor can calculate the applied control input ui,k, which is
utilized for local state estimation as mentioned in (3). Note that
sending one-bit acknowledgement feedback leads to negligible
overhead in contrast to sending the applied control input ui,k

from the controller to the sensors.

III. STABILITY CONDITION

Before turning to designing scheduling policies, it is critical
to elucidate conditions that the WNCS needs to satisfy which
ensure that there exists at least one stationary and determin-
istic scheduling policy that can stabilize all plants using the
available network resources. Note that a policy π is a function
mapping from a state to an action. A deterministic policy
means that the function gives the same action when the input
state is fixed. A stationary policy means the function π is
time invariant, i.e., πk = π,∀k. In other words, the action
only depends on the state, not the time [28]. We adopt a very
commonly considered stochastic stability condition as below.

Assumption 1. The expected initial quadratic norm of each
plant state is bounded, i.e., E[x⊤

i,0xi,0] < ∞,∀i = 1, . . . , N .

Definition 1 (Mean-Square Stability). The WNCS is mean-
square stable under Assumption 1 if and only if

lim sup
K→∞

1

K

K∑
k=1

E[x⊤
i,kxi,k] < ∞,∀i = 1, . . . , N. (12)

Intuitively, the stability condition of the WNCS should
depend on both the (open-loop) unstable plant systems (i.e.,
those where ρ(Ai) ≥ 1) and the M -frequency communication
system parameters. For the tractability of sufficient stability
condition analysis (i.e., to prove the existence of a stabilizing
policy), we focus on policy class that groups the unstable
plants into M disjoint sets F1, . . . ,FM and allocates them to
the M frequencies, accordingly. Let F̄ ≜ {i : ρ(Ai) ≥ 1, i ∈
{1, . . . , N}} denote the index set of all unstable plants. We
have F1∪· · ·∪FM = F̄ ⊆ {1, . . . , N} and Fi∩Fj = ∅,∀i ̸=

j. Then, we present the stability condition below which takes
into account all potential allocations (F1, . . . ,FM ).

Theorem 1 (Stabilizability). Consider the index set {Fm}
as introduced above and define ρmax

m ≜ maxi∈Fm ρ2(Ai),
ξ̄max
m ≜ maxi∈Fm{ξ̄sm,i, ξ̄

c
m,i}, ξ̄sm,i ≜ 1 − ξsm,i, ξ̄

c
m,i ≜ 1 −

ξcm,i. We then have:

(a) A sufficient condition under which the WNCS described
by (1), (3), (4), (10) and (11) has a stationary and determin-
istic scheduling policy satisfying the stability condition (12) is
given by

κ ≜ min
(F1,...,FM )

max
m=1,...,M,Fm ̸=∅

ρmax
m ξ̄max

m < 1. (13)

(b) For the special case that the packet error probabilities of
different links are identical at the same frequency (i.e., where
no spatial diversity exists), ξ̄sm,1 = ξ̄cm,1 = · · · = ξ̄sm,N =
ξ̄cm,N ,∀m = 1, . . . ,M , the condition (13) is necessary and
sufficient.

Proof. The sufficient condition (13) is derived in two steps: 1)
the construction of a stationary and deterministic scheduling
policy and 2) the proof of the condition under which the
constructed policy leads to a bounded average cost. Since
a plant with ρ(Ai) < 1 does not need any communication
resources for stabilization, in the following, we only focus on
the unstable plants in F̄ ̸= ∅.

We construct a multi-frequency persistent scheduling policy:
the unstable plants are grouped into M sets F1, . . . ,FM ,
corresponding to the M frequencies. In each frequency, the
controller schedules the uplink of the first plant, say plant i,
persistently until success. It then persistently schedules the
downlink until success, and waits for vi−1 steps for applying
all the control commands in the actuator’s buffer. It then
schedules the uplink of the second plant and so on and so forth.
This procedure is repeated ad-infinitum. The reason we choose
such a policy is because of its tractability and the tightness
of the sufficient stability condition that we will derive. The
detailed proof is included in [42].

Example 1. Consider a WNCS with N = 3 and M = 2,
and ρ2(Ai) ≥ 1, i = 1, 2, 3. The packet error probabil-
ities are ξ̄s1,1 = 0.1, ξ̄c1,1 = 0.3, ξ̄s1,2 = 0.2, ξ̄c1,2 =
0.1, ξ̄s1,3 = 0.2, ξ̄c1,3 = 0.4, ξ̄s2,1 = 0.1, ξ̄c2,1 = 0.3,
ξ̄s2,2 = 0.2, ξ̄c2,2 = 0.1, ξ̄s2,3 = 0.2, ξ̄c2,3 = 0.4. There are
eight plant-grouping schemes at the two frequencies (F1,F2),
i.e., ({1, 2, 3}, ∅), ({1, 2}, {3}), ({1}, {2, 3}), ({2, 3}, {1}),
({2}, {1, 3}), ({3}, {1, 2}), ({1, 3}, {2}) and (∅, {1, 2, 3}). If
ρ2(A1) = 3, ρ2(A2) = 2 and ρ2(A3) = 1, the stability
condition is satisfied as κ = 0.9 < 1; if ρ2(A1) = 1,
ρ2(A2) = 2 and ρ2(A3) = 3, the condition is unsatisfied
as κ = 1.2 > 1.

Remark 2. Theorem 1 captures the stabilizability of the
WNCS scheduling problem in terms of both the dynamic system
parameters, Ai,∀i ∈ F̄ , and the wireless channel conditions,
i.e., {ξ̄sm,i, ξ̄

c
m,i}, i ∈ F̄ ,m = 1, . . . ,M . Once (13) holds,

there is at least one stationary and deterministic policy that
stabilized all plants of the WNCS. If the channel quality of
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svii,k

tvii,k
. . .

sj+1
i,k

tj+1
i,k

sji,k

tji,k
. . . k = t0i,k

τ j+1
i,k τ ji,k

ηji,k

Fig. 2. Illustration of the state parameters of plant i.

different links does not differ much at the same frequency, then
the sufficient stabilizability condition is tight. To the best of our
knowledge, this is the first stabilizability condition established
for N -plant-M -frequency WNCS with uplink and downlink
scheduling in the literature.

IV. ANALYSIS AND MDP DESIGN

As a performance measure of the WNCS, we consider the
expected (infinite horizon) total discounted cost (ETDC) given
by

J =

∞∑
k=0

ϑk
N∑
i=1

E[x⊤
i,kS

x
i xi,k + u⊤

i,kS
u
i ui,k], (14)

where ϑ ∈ (0, 1) is the discount factor, and a smaller ϑ means
the future cost is less important. Sx

i and Su
i are positive definite

weighting matrices for the system state and control input of
plant i, respectively. Thus, it is important to find a scheduling
policy that can minimize the design objective (14).

Note that an ETDC minimization problem is commonly
obtained by reformulating it into an MDP and solving it by
classical policy and value iteration methods [28]. Theoretically
speaking, the MDP solution provides an optimal deterministic
and stationary policy, which is a mapping between its state and
the scheduling action at each time step. However, the optimal
MDP solution is intractable due to the uncertainties involved
and the curse of dimensionality. Thus, we seek to find a good
approximate MDP solution by DRL. In the following, we aim
to formulate the scheduler design problem into an MDP, and
then present a DRL solution in Section V.

From (14), the per-step cost of the WNCS depends on
state xi,k and ui,k, which have continuous (uncountable) state
spaces. Furthermore, xi,k is not observable by the controller.
To design a suitable MDP problem with a countable state
space, we first need to determine an observable, discrete state
of the MDP (in Section IV-C) and investigate how to represent
the per-step cost function in (14), i.e.,

∑N
i=1 E[x⊤

i,kS
x
i xi,k +

u⊤
i,kS

u
i ui,k], in terms of the state.

A. MDP State Definition

We introduce event-related time parameters in the following.
Let tji,k, j = 1, 2, . . . , vi + 1, denote the time index of the j-
th latest successful packet reception at actuator i prior to the
current time slot k, and t0i,k ≜ k. Let sji,k, j = 0, . . . , vi, denote
the time index of the latest successful sensor i’s transmission
prior to tji,k, where sji,k ≤ tji,k, as illustrated in Fig 2.

Then, we define a sequence of variables, τ ji,k, j = 0, . . . , vi,
as

τ ji,k ≜ tji,k − sji,k, (15)

to record the estimation quality at k and at the vi successful
control transmissions, where τ0i,k ≜ τi,k was defined above
(6). Similarly, we define

ηji,k ≜ tji,k − tj+1
i,k , j = 0, . . . , vi, (16)

denoting the time duration between consecutive successful
controller’s transmissions, where η0i,k ≜ ηi,k was defined
above (9). From (15) and (16), τ ji,k and ηji,k can be treated
as the AoI of the sensor’s and the controller’s packet of plant
i, respectively, observed at tji,k.

From (15), (6), (16), and (9), the updating rules of τ ji,k and
ηji,k can be obtained as

τ ji,k+1 =


1, if βi,k = 1

τ0i,k + 1, if βi,k = 0

}
for j = 0

τ j−1
i,k , if γi,k+1 = 1

τ ji,k, if γi,k+1 = 0

}
for j = 1, · · · , vi

(17)

ηji,k =


1, if γi,k = 1

η0i,k−1 + 1, if γi,k = 0

}
for j = 0

ηj−1
i,k−1, if γi,k = 1

ηji,k−1, if γi,k = 0

}
for j = 1, · · · , vi

(18)

Now we define the AoI-related vector state of plant i as

si,k ≜ (τ0i,k, · · · , τvii,k, η
0
i,k, · · · , ηvi

i,k). (19)

B. MDP Cost Function

We will show that the per-step cost function of plant i in
(14), i.e., E[x⊤

i,kS
x
i xi,k + u⊤

i,kS
u
i ui,k], is determined by the

vector state si,k. We focus on plant i (the analytical method is
identical for the other plants), and shall omit the plant index
subscript of xi,k, si,k, ui,k, Sx

i and Su
i in the remainder of

this subsection, where the corresponding parameters are xk,
sk, uk, Sx and Su.

Taking (10) into (1), the plant state evolution can be
rewritten as

xk+1 = Axk +BK̃(A+BK̃)η
0
k−1x̂k+1−η0

k
+wk.
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By using this backward iteration for k − tvk times and the
definition of ηjk and tjk, we have

xk=(A+BK̃)η
0
kxt1k

+
(
Aη0

k−(A+BK̃)η
0
k
)
et1k+

η0
k∑

i=1

Ai−1wk−i

= (A+BK̃)η
0
k×(

(A+BK̃)η
1
kxt2k

+
(
Aη1

k−(A+BK̃)η
1
k
)
et2k+

η1
k∑

i=1

Ai−1wt1k−i

)

+
(
Aη0

k − (A+BK̃)η
0
k
)
et1k +

η0
k∑

i=1

Ai−1wk−i

= . . .

= (A+BK̃)η
0
k+η1

k+···+ηv−1
k xtvk

+w′ + e′

= w′ + e′,

where the last equation is due to the deadbeat control prop-
erty (2). The quantity w′ is related to the plant disturbance
and e′ is determined by the controller’s estimation errors at
the successful control packet transmissions, i.e., et1k , . . . , etvk ,
as given below:

w′ =

η0
k∑

i=1

Ai−1wk−i + (A+BK̃)η
0
k

η1
k∑

i=1

Ai−1wk−i+

· · ·+ (A+BK̃)η
0
k+···+ηv−2

k

ηv−1
k∑
i=1

Ai−1wtv−1
k −i

=

v∑
j=1

(
(A+BK̃)

∑j−2
m=0 ηm

k

tj−1
k −1∑
i=tjk

Atj−1
k −1−iwi

)
,

e′ =
(
Aη0

k − (A+BK̃)η
0
k
)
et1k+

(A+BK̃)η
0
k
(
Aη1

k − (A+BK̃)η
1
k
)
et2k+

· · ·+ (A+BK̃)η
0
k+···+ηv−2

k

(
Aηv−1

k −(A+BK̃)η
v−1
k

)
etvk .

By analyzing the correlation between the sequences of plant
disturbance and estimation noise, we have the following result.

Proposition 1. The per-step cost function about the plant state
is a deterministic function of the vector state sk (see (19)) as

Jx(sk) ≜ E
[
x⊤
k S

xxk

]
= Tr(SxV (sk)), (20)

where V (sk) ≜ E[xkx
⊤
k ] is the plant state covariance given

in (21). In the latter equation, for 0 ≤ i ≤ j ≤ v, we have

∆k(i, j) ≜ sik − sjk =

j−1∑
n=i

ηnk + τ jk − τ ik.

Then, building on the system dynamics (1), the local esti-
mate (3), the remote estimate (4), and the control input (10),
and by comprehensively analyzing the effect of the correla-
tions between plant disturbance and estimation noise on the
control input covariance, we obtain the per-step cost function
about the control input as below.

Proposition 2. The per-step cost function about the control
input at k is a deterministic function of the vector state sk as

Ju(sk) ≜ E
[
u⊤
k S

uuk

]
=Tr

((
K̃(A+BK̃)ηk−1

)⊤
Su

(
K̃(A+BK̃)ηk−1

)
V̂ (sk+1−ηk

)

)
,

(22)
where sk+1−ηk

can be directly obtained by sk. V̂ (sk) ≜
E[x̂kx̂

⊤
k ] is the covariance of the remote estimate given in (23),

where

D̃k ≜ Dk −Aτ0
kZ∆k(0,v),

Ėi
(k,n) ≜ Ěi

(k,n) −Aτ0
kZ∆k(0,n)−τn

k +i(I− K̂C),

Ḟi
(k,n) ≜ F̌i

(k,n) +Aτ0
kZ∆k(0,n)+iK̂.

The proofs of Propositions 1 and 2 are given in [42] due to
the space limitation.

Remark 3. From Propositions 1 and 2, the per-step cost of
the plant is determined by the finite-length vector state sk.
However, expressions for the cost functions are involved due
to the sequential predictive control and the command buffer
adopted at the actuator, as well as the consideration of plant
disturbance, and local and remote estimation errors.

By substituting plant index i into the vector state and the
cost functions (20) and (22), the above results have opened
the door to address the optimal scheduling problem of the N -
plant-M -frequency WNCS with ETDC in (14) as a decision
making problem with a countable state space.

C. Resulting MDP

From (11), (17) and (18), given the current state si,k and
the current transmission scheduling action related to plant i,
the next state, si,k+1, is independent of all previous states and
actions, satisfying the Markov property. Thus, the transmission
scheduling problem of the WNCS can be formulated as an
MDP:

• The state of the MDP at time k is sk ≜ (s1,k, · · · , sN,k),
where si,k is as defined in (19), i = 1, . . . , N . The state
space is S = N2v1+2 × · · · × N2vN+2︸ ︷︷ ︸

N terms

.

• The action at time k, ak ≜ [a1,k, a2,k, . . . , aM,k] =
π(sk), is the transmission link allocation at each fre-
quency, where am,k ∈ {−N, . . . , N}, m = 1, . . . ,M ,
and am,k ̸= am′,k if am,kam′,k ̸= 0. Then, the ac-
tion space A ⊆ {−N, . . . , N}M has the cardinality of
|A| = ∑M

m=0 C
m
MPm

2N .
• The state transition probability P (sk+1|sk,ak) can be

obtained directly from the state updating rules in (11),
(17) and (18).

• The per-step cost of the MDP is the sum cost of each
plant in Propositions 1 and 2 as

c(sk) ≜
N∑
i=1

ci(si,k), (24)
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V (sk) = DkP̂
s(Dk)

⊤ +

v−1∑
n=1

(∆k(n,n+1)−1∑
i=0

Ěi
(k,n)Qw(Ěi

(k,n))
⊤)

+

η0
k+τ1

k−1∑
i=0

AiQw(Ai)⊤ +

v−1∑
n=1

(∆k(n,n+1)−1∑
i=0

F̌i
(k,n)Qv(F̌

i
(k,n))

⊤)
,

Dk ≜
v∑

j=1

(
(A+BK̃)

∑j−2
m=0 ηm

k
(
Aη

j−1
k − (A+BK̃)η

j−1
k

)
Aτ

j
kZ∆k(j,v)

)
,

Ěi
(k,n) ≜ (A+BK̃)

∑n−1
m=0 ηm

k Aτn
k +i +

n∑
j=1

(
(A+BK̃)

∑j−2
m=0 ηm

k
(
Aη

j−1
k − (A+BK̃)η

j−1
k

)
Aτ

j
kZi+∆k(j,n)(I− K̂C)

)
,

F̌i
(k,n) ≜

n∑
j=1

(
(A+BK̃)

∑j−2
m=0 ηm

k
(
Aη

j−1
k − (A+BK̃)η

j−1
k

)
Aτ

j
kZ∆k(j,n)+iK̂

)
(21)

V̂ (sk) = D̃kP̂
sD̃⊤

k+

v−1∑
n=1

(∆k(n,n+1)−1∑
i=0

Ėi
(k,n)Qw(Ėi

(k,n))
⊤)

+

∆k(0,1)−1∑
i=0

(
Aτ0

k+i −Aτ0
kZi(I− K̂C)

)
Qw

(
Aτ0

k+i −Aτ0
kZi(I− K̂C)

)⊤
+

v−1∑
n=1

(∆k(n,n+1)−1∑
i=0

Ḟi
(k,n)Qw(Ḟi

(k,n))
⊤)

+

∆k(0,1)−1∑
i=0

(
Aτ0

kZiK̂
)
Qw

(
Aτ0

kZiK̂
)⊤ (23)

where ci(si,k) ≜ Jx
i (si,k) + Ju

i (si,k).
• The discount factor is ϑ ∈ (0, 1).
• The scheduling problem of the N -plant-M -frequency

system can be rewritten as

min
π

Eπ

[ ∞∑
k=0

ϑkc(sk)

]
. (25)

Remark 4. The discounted MDP problem above with an
infinite state space can be numerically solved to some extent
by using classic policy or value iteration methods with a
truncated state space SL

SL ≜ N2v1+2
L × · · · × N2vN+2

L︸ ︷︷ ︸
N terms

,where NL = {1, . . . , L}.

The computation complexity of relative value iteration al-
gorithm is given as O(|SL||A|2K) [43], where K is the
number of iteration steps, and the state space and action space
sizes are |S| = L2

∑N
i=1 vi+2N and |A| =

∑M
m=0 C

m
MPm

2N ,
respectively. However, the sizes of both the state and action
spaces are considerably large even for relatively small N and
M , leading to numerical difficulties in finding a solution. In the
literature of WNCS, even for the (simpler) N -plant-M -channel
remote estimation system, only the M = 1 case has been found
to have a numerical solution [9]. To tackle the challenge for
larger scale WNCS deployment, we will use DRL methods
exploiting deep neural networks for function approximation in
the following.

Remark 5. Although the MDP problem formulation of the
WNCS assumes static wireless channels with fixed packet drop
probabilities, it can be extended to a Markov fading channel
scenario. A Markov fading channel can have multiple channel
states with different packet drop probabilities, and the channel
state transition is modeled by a Markov chain [33]. In this
scenario, the state of the MDP problem should also include
the channel state, and the state transition probability needs to
take into account both the AoI state and the Markov channel
state transition probabilities. The details of WNCS scheduling

over Markov fading channels can be investigated in our future
work.

V. WNCS SCHEDULING WITH DEEP REINFORCEMENT
LEARNING

Building on the MDP framework, DRL is widely applied
in solving decision making problems with pre-designed state
space, action space, per-step reward (cost) function and dis-
count factor for achieving the maximum long-term reward.
The main difference is that DRL does not exploit the state
transition probability as required by MDP, but records and
utilizes many sampled data sequences, including the current
state s, action a, reward r and next state s′, to train deep
neural networks for generating the optimal policy [44]. To
find deterministic policies5, the most widely considered DRL
algorithms are DQN [45], DDPG [46], and TD3 [47]. In this
study, we applied three algorithms to address the scheduling
problem. DQN, which is the focus of our detailed algorithmic
presentation, is the foundational algorithm in the field of deep
reinforcement learning, primarily designed for environments
with discrete action spaces. DDPG extends the ideas from
DQN by adapting them to continuous action spaces using
policy gradient methods. TD3, further building on DDPG,
introduces mprovements in terms of stability and performance.
DQN serves as a foundation for understanding the basic prin-
ciples that are also applicable to the more complex algorithms
like DDPG and TD3, and is well-suited for our problem
(Section IV-C) with the discrete and finite action space A.
In this regard, we choose to describe the DQN algorithm
in detailed technical depth to avoid redundancy. Detailed
pseudocode for DDPG and TD3, while omitted from the main
text to conserve space, is available in [46], [47] for interested
readers. Although DDPG and TD3 are more typically applied
to continuous action spaces, they can be adapted for discrete

5The present work focuses on deterministic scheduling policies as it has
been proved that the optimal policy is deterministic for unconstrained MDP
problems [28].
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actions through the action embedding method introduced in
this section.

In general, we consider an episodic training scenario, where
the system is operating in a simulated environment. Hence, one
can learn and gather samples over multiple episodes to train a
policy. Then, after verifying the properties of the final policy,
one can “safely” deploy it [46]. We note that if the DRL policy
does lead to instability (i.e., an unbounded expected cost),
one needs to adjust the hyperparameters of the deep neural
network (e.g., the initial network parameters and the number
of layers and neurons) and start retraining. Such readjusting
of hyperparameters of a deep learning agent is commonly
adopted in practice [45].

In the following, we present a deep-Q-learning approach
for scheduler design that requires a sampled data sequence
{(s,a, r, s′)}. We note that the data sampling and the deep Q-
learning are conducted offline. In particular, given the current
state and action pair (s,a), the reward r can be obtained
immediately from Propositions 1 and 2, and the next state
s′ affected by the scheduling action and the packet dropouts
can be sampled easily based on the packet error probabilities
of each channel (11) and state transition rules (17) and (18).
Furthermore, the trained policy needs to be tested offline to
verify the WNCS’s stability before an online deployment.

A. Deep Q-Learning Approach

We introduce the state-action value function given a policy
π(·), which is also called the Q function [28]:

Qπ(s,a)≜E

[ ∞∑
k=0

ϑkrk|s0 =s,a0 =a,ak =π(sk),∀k > 0

]
,

where rk ≜ −c(sk) can be treated as the negative cost function
in (24) at k. Then, by dropping out the time index k, the
Q function of the maximum average discounted total reward
achieving policy π⋆(·) satisfies the Bellman equation as

Q⋆(s,a) = E
[
r + ϑmax

a′∈A
Q⋆(s′,a′)|s,a

]
. (26)

The optimal stationary and deterministic policy can be written
as

a⋆ = π⋆(s) ≜ argmax
a∈A

Q⋆(s,a).

Solving the optimal Q function is the key to find the
optimal policy, but is computationally intractable by con-
ventional methods as discussed in Remark 4. In contrast,
deep Q-learning methods approximate Q⋆(s,a) by a function
Q(s,a; θ) parameterized by a set of neural network parame-
ters, θ, (including both weights and biases), and then learns
θ to minimize the difference between the left- and right-hand
sides of (26) [48]. Deep Q-learning can be easily implemented
by the most well-known machine learning framework Ten-
sorFlow with experience replay buffer, ϵ-greedy exploration
and mini-batch sampling techniques [49]. Building on this, the
approach for solving problem (25) is given as Algorithm 1.

Algorithm 1 Deep Q-learning for transmission scheduling in
WNCS

1: Initialize experience replay buffer B to capacity K
2: Initialize multi-layer fully connected neural

network Q with vector input s, |A| outputs
{Q(s,a1; θ0), . . . , Q(s,a|A|; θ0)} and random parameter
set θ0

3: for episode = 1, · · · , E do
4: Randomly initialize s0
5: for t = 0, 1, · · · , T do
6: With probability ϵ select a random action at,

otherwise select at = argmaxa∈A Q(st,a; θt)
7: Execute at , and obtain rt and st+1

8: Store (st,at, rt, st+1) in B
9: Sample random mini-batch of l transitions

(st,at, rt, st+1) from B as B̃
10: Set zj = rj + ϑmaxa′∈A Q̂(sj+1,a

′; θt) for each
sample in B̃

11: Perform a mini-batch gradient descend step to min-
imize the Bellman error, i.e., minθ̂

∑
B̃(zj−Q(sj ,aj ; θ̂))

2

12: Update θt+1 = θ̂
13: end for
14: end for

B. Deep Q-Learning with Reduced Action Space

In practice, the training of deep Q-network (DQN) con-
verges and the trained DQN performs well for simple decision-
making problems with a bounded reward function, small input
state dimension and small action space, see e.g., [49], where
the state input is a length-4 vector and there are only 2
possible actions. However, for the problem of interest in the
current work, the reward function is unbounded (due to the
potential of consecutive packet dropouts), the state s is of
high dimension, and action-space |A| is large. Hence, the
convergence of the DQN training is not guaranteed for all
hyper-parameters, which include the initialization of θ, the
number of neural network layers, the number of neurons per
layer, and the reply buffer and mini-batch sizes.6 Even if the
convergence is achieved, due to the complexity of the problem,
it may take very long training time and only converge to a
local optimal parameter set θ (which is also affected by the
choice of hyper-parameters), leading to a worse performance
than some conventional scheduling policies. Whilst the hyper-
parameters can in principle be chosen to enhance performance,
no appropriate tuning guidelines exist for the problem at hand.

To overcome the computational issues outlined above, in the
following we will reduce the action space. This will make the
training task simpler and enhance the convergence rate. To be
more specific, for each plant system, instead of considering all
the possible actions to schedule either or both of the uplink
and downlink communications at each time instant, we restrict
to the two modes downlink only and uplink only. Switching
between these two modes of operation occurs once a scheduled
transmission of that plant is successful.

6Note that when N = 3, M = 3 and v1 = · · · = vN = 2, the length of
the state is 18 and the action space size is 229 based on Section IV-C.
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The principle behind this is the intuition that the controller
requires the information from the sensor first and then per-
forms control, and so on and so forth. The above concept
can be incorporated into the current framework by adding the
downlink/uplink indicator slink

i,k ∈ {−1, 1},∀i = 1, . . . , N , into
state sk leading to the aggregated state

s̆k ≜ [sk, s
link
1,k, . . . , s

link
N,k],

where slink
i,k = 1 or −1 indicates the uplink or downlink of

plant i can be scheduled at k. The state updating rule is

slink
i,k+1 =


−1 if slink

i,k = 1 and βi,k = 1

1 if slink
i,k = −1 and γi,k = 1

slink
i,k otherwise.

The new scheduling action at the M frequencies is denoted
as ăk ≜ [ă1,k, . . . , ăM,k], where ăm,k ∈ {0, . . . , N}, ∀m ∈
{1, . . . ,M}, and ăm,k ̸= ăm′,k if ăm,kăm′,k ̸= 0. If ăm,k =
i and slink

i,k = 1, then the uplink of plant i is scheduled on
frequency m at time k. Compared with the original action ak
in Section IV-C, the size of the new action space is reduced
significantly to |Ã| = ∑M

m=0 C
m
MPm

N . For example, when N =
3, M = 3 and v1 = v2 = v3 = 2, the action space size is
reduced from 229 to 34. By replacing s and a with s̆ and
ă, respectively, in Algorithm 1, we can apply the deep Q-
learning method to find a policy with a reduced action space
at a faster rate. It should be noted that the reduced action space
still rapidly increases with the increment of N and M . This
makes it difficult for the DQN-based algorithm to solve the
scheduling problem of larger-scale WNCS, such as N = 10
and M = 10 with a discrete action space of 234662231.

C. Action Embedding for DDPG and TD3

To further handle the issue of large discrete action space,
the discrete actions can be embedded into a continuous action
space. This approach uses a vector of continuous values
to represent the priority of allocating channels to plants.
Specifically, each plant is assigned a continuous value. Plants
are then allocated channels based on the ranking of these
continuous values. For instance, the plant with the highest
value is allocated to the first channel, the second highest
to the second channel, and so on. This method significantly
reduces the complexity of the discrete action space, making it
feasible to handle larger N and M . For example, the number
of output neurons is 6 when N = 6 and M = 4, while the
original discrete action space is 1045. The continuous action
space allows for more efficient learning and optimization by
leveraging the capabilities of DRL algorithms designed for
continuous spaces. We will illustrate numerical results of using
DRL for solving the scheduling problem in the following
section.

VI. NUMERICAL RESULTS

The plant system matrices Ai are randomly generated, in
which case ρ(Ai) ∈ (1.0, 1.1). The control input matrices are
all set to Bi = [1 1]⊤. The measurement matrix Ci is equal
to the identity matrix. The covariance matrices are Qw

i =

Qv
i = 0.1I. Each plant is 2-step controllable, i.e., vi = 2. The

packet success probabilities of each link, i.e., ξsm,i and ξcm,i,
i,m = 1, 2, 3, are generated randomly and drawn uniformly
from (0.5, 1.0). The weighting terms Sx

i and Su
i are chosen

as identity matrices and the discount factor is ϑ = 0.95. The
resulting WNCS satisfies the stability condition established in
Theorem 1.

We adopt the following hyper-parameters for the DRL algo-
rithms. The input state dimension of DQN is set to 2N(vi+1).
We use three hidden layers with 300, 200, 100 neurons, re-
spectively. The output layer of DQN has |Ã| = ∑M

m=0 C
m
MPm

N

outputs (actions) for the problem with reduced action space
(see Section V-B). The activation function in each hidden layer
is the ReLU [49]. The activation function in the output layer
of DDPG and TD3 is the Sigmoid [49]. The experience reply
memory has a size of K = 100000, and the size of mini-
batch is 64. So in each time step, 64 data is sampled from
the reply memory for training. The exploration parameter ϵ
of DQN decreases from 1 to 0.01 at the rate of 0.999 after
each time step. The exploration method for DDPG and TD3
is based on Gaussian action noise with a standard deviation
of 0.2 and a mean value of 0. We adopt the ADAM optimizer
to update the DNNs. Each training takes E = 500 episodes,
each including T = 500 time steps. We test the trained policy
for 100 episodes and compare the empirical average costs
1
T

∑T
k=1

∑N
i=1 c(si,k).

We use Algorithm 1 (DQN) and its adapted version, i.e.,
DDPG and TD3, to solve the scheduling problem with reduced
action space and compare it with the original DQN, DDPG
and TD3, and three heuristic benchmark policies. 1) Random
policy: randomly choose M out of the 2N links and randomly
allocate them to the M frequencies at each time. 2) Round-
robin policy: the 2N links are divided into M groups, and the
links in each of the groups m ∈ {1, . . . ,M} are allocated to
the corresponding frequency m; the transmission scheduling at
each frequency follows the round-robin fashion [20] at each
time. Note that in the simulation, we test all link-grouping
combinations and only present the one with the lowest average
cost. 3) Greedy policy: At each time, the M frequencies are
randomly allocated to M of the 2N links with the largest AoI
value in {τ1,k, η1,k, . . . , τN,k, ηN,k}. Recall that τi,k and ηi,k
denote the time duration since the last received sensing and
control packets of plant i, respectively.

We first consider a N -plant-M -frequency WNCS with N =
5 and M = 5, i.e., 10 links sharing 5 frequencies with a
reduced discrete action space of 1546. Then, we will extend
the network to a larger scale with N = 10 and M = 10, i.e.,
20 links sharing 10 frequencies with a reduced discrete action
space of 234662231.

Fig. 3 showcases the comparison of three DRL algorithms
and the three heuristic benchmark policies when N = 5 and
M = 5. All the DRL algorithms with the reduced action
space, including DQN, DDPG, and TD3, achieve a lower long-
term average cost than the best heuristic benchmark policy,
i.e., Greedy Policy. We note that DRL is a dynamic decision-
making algorithm designed to maximize the cumulative reward
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Fig. 3. The long-term average performance of DRL and benchmark algorithms
over a system with N = 5 and M = 5. Values are means ± standard error
of mean. RAS denotes reduced action space.

over time, inherently aligning with the goal of optimizing
long-term costs. It evaluates actions based on their expected
future rewards, considering both immediate and delayed con-
sequences. Heuristic benchmark policies are based on static
decision rules and lack the ability to adapt to changing envi-
ronments or evolving system dynamics. They often prioritize
immediate rewards or costs, making decisions that optimize
short-term performance without considering long-term impli-
cations. They might select actions that yield immediate gains
but could lead to suboptimal long-term outcomes, such as
increased future costs. Thus, DRL algorithms show positive
performance.

In addition, Fig. 3 demonstrates that the well-trained DQN-
based policy reduces the long-term average cost of greedy
policy by 9.5% from 826.2 to 747.9. The DDPG and TD3
algorithms based on the action embedding method achieve
similar or slightly better performance compared to the DQN-
based algorithm. This is attributed to the large discrete action
space, which makes it difficult for the DQN-based algorithm
to explore adequately during training and to get the optimal
policy after training. The DDPG algorithm reduces the long-
term average cost of the greedy policy by 14.5% from 826.2
to 706.0. TD3 is an extension of DDPG, which is designed
to reduce overestimation bias and variance in the learning
process by introducing delayed policy updates, target policy
smoothing, and twin critic networks. These features can lead to
overly conservative behaviour in WNCS with high stochastic-
ity, which potentially slow down the learning process or lead
to underfitting where the system fails to adequately capture
the beneficial actions amidst noise. Thus, DDPG, as a more
aggressive approach than TD3.

Fig. 3 also shows that the DQN algorithm without reduced
action space (RAS) has an action space size of 63591, which is
unable to solve the original MDP problem with such a large
action space. The DDPG and TD3 algorithms without RAS

Fig. 4. The long-term average performance of DRL and benchmark algorithms
over a system with N = 10 and M = 10. Values are means ± standard error
of mean.

cannot outperform the ones with RAS. These results illus-
trate the effectiveness of the proposed action space reduction
method.

Fig. 4 showcases the comparison of three DRL algorithms
and the three heuristic benchmark policies when N = 10 and
M = 10. In this case, the DQN-based algorithm is unable to
solve the MDP, as the reduced discrete action space is still
too large. Results show that the DDPG and TD3 algorithms
based on the action embedding method effectively address
the challenge of the rapidly growing action space, making it
more suitable for larger-scale WNCS problems. The DDPG
algorithm reduces the long-term average cost of the greedy
policy by 9.9% from 542.7 to 602.0.

VII. CONCLUSIONS

We have investigated the transmission scheduling problem
of the fully distributed WNCS. A sufficient stability condition
of the WNCS in terms of both the control and communica-
tion system parameters has been derived. We have proposed
advanced DRL algorithms to solve the scheduling problem,
which performs much better than benchmark policies. For
future work, we will develop a distributed DRL approach
for enhancing the scalability of the scheduling algorithm.
Furthermore, we will consider co-design problems of the
estimator, the controller, and the scheduler for distributed
WNCSs with time-varying channel conditions.
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