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{joao.lourenco.silva,arlindo.oliveira}@tecnico.ulisboa.pt

Abstract. Medical image segmentation is inherently uncertain. For a
given image, there may be multiple plausible segmentation hypotheses,
and physicians will often disagree on lesion and organ boundaries. To be
suited to real-world application, automatic segmentation systems must
be able to capture this uncertainty and variability. Thus far, this has
been addressed by building deep learning models that, through dropout,
multiple heads, or variational inference, can produce a set - infinite, in
some cases - of plausible segmentation hypotheses for any given image.
However, in clinical practice, it may not be practical to browse all hy-
potheses. Furthermore, recent work shows that segmentation variability
plateaus after a certain number of independent annotations, suggesting
that a large enough group of physicians may be able to represent the
whole space of possible segmentations. Inspired by this, we propose a
simple method to obtain soft labels from the annotations of multiple
physicians and train models that, for each image, produce a single well-
calibrated output that can be thresholded at multiple confidence levels,
according to each application’s precision-recall requirements. We evalu-
ated our method on the MICCAI 2021 QUBIQ challenge, showing that
it performs well across multiple medical image segmentation tasks, pro-
duces well-calibrated predictions, and, on average, performs better at
matching physicians’ predictions than other physicians.

Keywords: Uncertainty Estimation · Medical Image Segmentation ·
Soft Labels.

1 Introduction

Accurate segmentation of medical images is crucial in diagnosing and planning
the treatment of multiple pathologies. Nevertheless, it is also very laborious
and time-consuming, spurring great interest in the development of automatic
segmentation mechanisms.

In the last few years, deep learning systems have achieved high performance
in the segmentation of several organs and anatomical structures [30]. However,
most methods do not account for the uncertainty inherent to these tasks. For a
given image, there may be multiple plausible segmentations, and physicians will
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often disagree on the zones of interest and their contours. Thus, models should
be able to capture uncertainty and express it in their predictions. Otherwise,
they risk biasing physicians, which may lead to misdiagnosis and sub-optimal
treatment.

To date, most work on uncertainty estimation in medical image segmentation
focuses on being able to produce multiple plausible outputs for a given image
[1,11,22,23,33]. However, in clinical practice, it may impractical to browse all
hypotheses. Furthermore, recent research [15] shows that, even though segmen-
tation variability increases with the number of annotators, it plateaus after a
certain data and task-dependent number of independent annotations, implying
that, although multiple plausible segmentations exist for a given input, they can
be encompassed by the annotations of a sufficiently large group of physicians.

In this work, we follow a trend orthogonal to that of previous work. Rather
than aiming to build probabilistic models that can produce various plausible
hypotheses, we propose to train deterministic models on soft labels built from
the annotations of multiple physicians. We evaluated our method on datasets
from the MICCAI 2021 QUBIQ challenge. The results showed that it performs
well compared to alternative approaches and produces well-calibrated outputs
across a range of medical image segmentation tasks and imaging modalities.

2 Related Work

Monte Carlo Dropout is a technique used by early approaches for uncertainty
estimation in image segmentation, which use dropout [42] over spatial features
to induce probability distributions over the models’ outputs [16,17], allowing the
drawing of multiple samples at test-time. However, these methods quantify un-
certainty pixel-wise, leading them to produce spatially inconsistent segmentation
hypotheses.

Ensembles [26,28] and Multi-Head Neural Networks [13,29,38] are simple meth-
ods to produce plausible and consistent output hypotheses. While they may not
be able to capture diversity and learn rare variants when ensemble members
and network heads are trained independently, that can be circumvented by joint
training on an oracle loss [7], which only accounts for the lowest-error predic-
tion. The main disadvantages of these approaches are their poor scaling with the
number of hypotheses and the latter’s requirement to be set at training time.

Variational Bayesian Inference methods, like the sPU-Net [23], HPU-Net [22]
and PHiSeg [1] combine conditional variational autoencoders [19,20,36,41] with
U-Net-based [37] networks to model the distribution of segmentations given an
input image. Input images are encoded into multivariate normal latent spaces
that the decoder samples at test-time to produce arbitrarily complex and diverse
segmentation hypotheses. However, this approach requires a training-only poste-
rior network, and the placement of the latent variables within the model entails
a partial forward pass for each output hypothesis. Recent work addresses these
issues with a more constrained low-rank multivariate normal distribution over
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the logit space, which avoids the use of a posterior network and allows efficient
sampling without compromising performance [33]. Other work [11] extends the
sPU-Net using variational dropout [21] to predict epistemic uncertainty, and in-
tergrader variability as a target for supervised aleatoric uncertainty estimation.

3 Method

3.1 Motivation

For many years, due to optimization difficulties and lack of computing power, it
was very difficult to train deep neural networks. However, in the last few years,
better hardware and new architectural components, such as batch normalization
[14] and residual connections [9], have enabled training increasingly deeper and
wider networks [9,12,25,40,43,44], which achieve high performance in a wide
range of tasks. However, unlike their shallower and less accurate counterparts
from the past, like the LeNet [27], modern neural networks are poorly calibrated,
leading to a situation where the probabilities they assign to classes do not reflect
their real likelihoods. Though a set of factors such as model capacity, batch
normalization and lack of regularization have been put forward as possible causes
for miscalibration, the use of hard labels is probably one of the causes at the heart
of the problem. When training neural networks to make their predictions match
a set of hard labels, which are often the only available ones, it is unreasonable to
interpret them as probabilistic models and expect them to output well-calibrated
confidence values.

A simple approach to address this issue would be to use soft labels conveying
information about real class likelihood. These would not only allow modeling the
uncertainty inherent to the data, but would also be likely to enable faster and
more data-efficient training. As noted in seminal work on knowledge distillation
by Hinton et al. [10], compared to hard targets, high entropy soft targets provide
much more information per training case and much less variance in the gradient
across samples, allowing models to be trained on much fewer data and with
significantly higher learning rates. In fact, even noisy soft labels can be of great
value, as showcased by recent research on semi-supervised learning [35,45].

3.2 Proposed Method

We propose to use soft labels built from multiple annotations to model uncer-
tainty and address network calibration. Given a set of labels for an image, we
average them to produce probabilistic ground-truth masks. Beyond expressing
real physicians’ uncertainty about zones of interest and their contours, these
high entropy soft labels enable our models to enjoy the advantages pointed out
by Hinton et al. [10]. Additionally, note that, for binary variables, the variance
can be easily obtained from the mean1. Thuerefore, although it can be used as
an auxiliary supervision signal, it does not need to be predicted directly by the
models.

1 X = X2 =⇒ V(X) = E(X2)−E(X)2 = E(X)−E(X)2.
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Depending on the number of annotations per image, the set S of possible
ground-truth probabilities will be more or less granular. Formally, let N be the
number of annotations, then S = { i

N : i ∈ N ∧ i ≤ N}. More annotations per
image result in smoother and less noisy ground-truth, which, intuitively, should
allow better segmentation performance and uncertainty modeling.

Following Hinton et al. [10], we minimize the cross-entropy between the prob-
abilities predicted by the model, p, and the ground-truth soft targets, g. Note
that the dice loss (DL) function, commonly used in segmentation tasks, is not
suitable to be used with soft targets. Let C be the number of classes and N the
total number of pixels. DL can be defined as

DL(p, g) = 1− 2

∑C
c=1

∑N
i=1[gcipci]∑C

c=1

∑N
i=1[gci + pci]

. (1)

Without loss of generalization, consider the binary classification of a single-pixel
image. For g > 0, DL is a monotonically decreasing function of p. Hence, for
p ∈ [0, 1], the minimum DL will be obtained for p = 1.

Consequently, the model is encouraged to binarize its outputs and does not
learn to predict uncertainty. This problem could be mitigated by measuring DL
at multiple confidence thresholds. However, it would require defining the optimal
number of thresholds and their values. Thus, we opt for the more principled
cross-entropy loss. Researching overlap-based loss functions that, unlike DL, can
be used to match soft targets is a possible direction for future work.

3.3 Model Architecture

We conduct our experiments using a U-Net decoder [37] with 16-channel fea-
ture maps at the highest resolution level. As encoder, we use an EfficientNet-B0
[44]. Besides being a better feature extractor than the default U-Net encoder,
the EfficientNet-B0 makes for segmentation models whose compute scales bet-
ter with input image size (see Figure 1), even when compared to other popular
encoders [39], which can be of great value when segmenting high pixel-count
medical images. In informal experiments we observed that increasing model ca-
pacity within the EfficientNet family did not enhance performance significantly.

4 Experimental Setup

4.1 Datasets and Data Augmentation

We evaluated our method on datasets from the MICCAI 2021 QUBIQ challenge2,
composed of CTs and MRIs with multiple annotations per case. Except for the
four-channel brain tumor MRIs, all images are single-channel. Due to architec-
tural constraints, images are cropped during training to ensure their dimensions
are multiples of 32. Crop sizes were set empirically to balance segmentation
performance and training time. Table 1 summarizes the details of each dataset.

2 Challenge information and datasets available at this https url.

https://qubiq21.grand-challenge.org/
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Fig. 1: Compute as a function of input image size in pixels, for a U-Net with 16
channel feature maps at the highest resolution using its default encoder (in red),
an EfficientNet-B0 (in blue) and a ResNet-50 (in green). An EfficientNet-B0
encoder requires about 7.1 times less FLOPS than the U-Net’s default encoder,
which in turn requires about 1.5 times less FLOPS than a ResNet-50.

Table 1: Summary of the MICCAI 2021 QUBIQ challenge datasets used.

Dataset Modality Tasks Annotators
Size Cases

Slice Crop Train Validation

Brain Growth 2D MRI 1 7 2562 2562 34 5
Brain Tumor 2D MRI 3 3 2402 2242 28 4
Kidney 2D CT 1 3 4972 3202 20 4

Prostate 2D MRI 2 6†
6402

4802 48 7
640× 960

Data augmentation is performed online and consists of the following sequen-
tially applied random transformations: 1) -10% to 10% horizontal and vertical
translation; 2) −15◦ to 15◦ rotation; 3) -10% to 10% zoom; 3) horizontal flip with
50% probability; 4) vertical flip with 0% probability for the kidney dataset and
50% for the remaining. Following Fort et al. [4], we draw multiple augmentation
samples per image in a growing batch regime. However, unlike them, we keep
the original images in the batch, since we observed this improves performance
slightly. Specifically, we augment each batch with three transformations of each
image.

4.2 Evaluation Metrics

Segmentation is a spatially structured prediction task. Therefore, segmentation
models’ calibration must be assessed using metrics that take spatial structure
into account. Hence, instead of common pixel-wise calibration metrics [2,5,34],
we measure overlap and surface distance at multiple confidence thresholds. Ad-

† Except for three cases, which only have 5 annotations.
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ditionally, following previous work [22,23,33], we use the generalized energy dis-
tance to measure the statistical distance between the ground-truth masks and
our models’ predictions at the 50% confidence threshold. Below, we briefly de-
scribe the more domain-specific metrics, which may be unknown to some readers.
In addition to those, we also measure precision and recall.

Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) are mea-
sures of the overlap between two segmentations. DSC is the ratio between the
area of overlap and the sum of the two areas, and is equal to 1−DL (see Eq. 1).
IoU is the ratio between the overlap and union areas. When both segmentation
masks are empty, we set DSC and IoU to 1.

95% Hausdorff Distance (95% HD). Given two sets of points - two segmentation
masks, in this context -, the Hausdorff distance is the maximum distance from a
point in one set to the closest point in the other set. The 95% HD disregards the
5% most distant pairs of points, ignoring outliers, but still providing a measure
of the longest distance between the two sets of points.

Generalized Energy Distance (DGED) measures the statistical distance between
probability distributions. As long as the function d(·, ·) is a metric, so is DGED.
Following previous work [22,23,33] we define d(x, y) = 1 − IoU(x, y), which has
been proven to be a metric [24,31]. Given the distributions of ground-truth seg-
mentations, p, and predicted segmentations, p̂, D2

GED is defined by

D2
GED(p, p̂) = 2Ey∼p,ŷ∼p̂[d(y, ŷ)]− Ey,y′∼p[d(y, y′)]− Eŷ,ŷ′∼p̂[d(ŷ, ŷ′)]. (2)

As our models are deterministic, the formula above can be simplified to

D2
GED(p, p̂) = 2Ey∼p[d(y, ŷ)]− Ey,y′∼p[d(y, y′)], (3)

where ŷ is the predicted segmentation mask. The first term of Eq. 3 is the average
distance between predicted and ground-truth annotations, and the second can
be interpreted as a measure of ground-truth segmentation diversity.

4.3 Implementation and Training Details

We use encoders pre-trained on ImageNet [3]. Decoder hidden and output layers
are initialized using Kaiming [8] and Xavier initialization [6], respectively. Models
are trained for 150 epochs - 180 for the 3rd brain tumor task -, using batches
of 8 images. As optimizer, we use Adam [18], with β1 = 0.9, β2 = 0.999 and no
weight decay. Learning rates are initialized at 10−2 and decreased to 10−4 using
a cosine annealing schedule [32]. To ensure reproducibility, we trained and tested
each model three times, obtaining similar results across all runs. All experiments
are conducted using public PyTorch implementations [46] under an MIT license.

5 Results

To assess calibration, we start by measuring DSC, precision, recall and 95%
HD between model predictions and averaged ground-truth masks at multiple
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confidence thresholds. Specifically, we use thresholds ranging from 10% to 90%
confidence, with a step size of 10%.

The averages of these metrics across thresholds are reported in Table 2. Note
that the results should be interpreted taking into account image sizes, reported
in Table 1, and ground-truth area to image size ratios. For example, the prostate
tasks’ regions of interest are relatively large, making them easy to overlap and
leading to a high DSC. However, the large size of the images - 640 × 640 and
640×960 - and structures leads to apparently high 95% HDs, compared to those
of other tasks. On the other hand, the tiny structures in the third brain tumor
segmentation task are challenging to detect and segment, hence the relatively
low DSC and recall. Nevertheless, the low image size and object make low 95%
HDs relatively easy to achieve.

Overall, apart from the second brain tumor segmentation task, which we dis-
cuss in more detail below, our method achieves high segmentation performance in
all the remaining tasks. Furthermore, the low standard deviations indicate that
performance is consistent across multiple confidence thresholds and, therefore,
that models are well-calibrated.

Table 2: Dice score, precision, recall, 95% Hausdorff distance and ground-truth
area to image size ratio, averaged across confidence thresholds ranging from 10%
to 90%, with a step size of 10%. Results presented as mean ± standard deviation.
Task Dice Score [%] Precision [%] Recall [%] 95% HD [pixels] Ground-Truth Area

Image Size
[%]

Brain Growth 93.19± 1.83 93.33± 2.55 93.16± 1.84 3.53± 0.73 8.33± 1.57
Brain Tumor 1 92.90± 1.09 93.79± 1.01 89.04± 2.30 6.84± 2.37 3.50± 0.31
Brain Tumor 2 65.06± 20.27 67.18± 21.75 63.74± 19.57 15.15± 13.18 1.33± 1.47
Brain Tumor 3 85.73± 4.88 97.67± 1.78 78.34± 6.67 2.27± 2.15 0.29± 0.04
Kidney 96.04± 1.43 96.57± 1.64 95.65± 2.53 7.67± 3.65 1.90± 0.12
Prostate 1 95.64± 0.04 94.13± 1.05 97.43± 0.78 16.18± 7.58 8.87± 0.68
Prostate 2 93.56± 4.58 91.78± 4.09 95.70± 5.32 12.48± 5.46 5.49± 0.58

To further assess calibration and uncertainty modeling, we follow previous
work [22,23,33] and measure the generalized energy distance (DGED) between
the multiple ground-truth annotations and the models’ predictions at the 50%
confidence threshold. Additionally, we measure the expected value of the DSC
between predictions at 50% confidence and each physician’s annotations - which
is not equivalent to measuring the DSC between model predictions and average
ground-truth masks at the same threshold. Results are reported in Table 3.

Except for the second brain tumor segmentation task, the remaining tasks’
D2

GED is very low, meaning the models’ predictions closely match the distribu-
tions of ground-truth annotations. In fact, in most cases, the expected value
of the IoU distance between model predictions and ground-truth annotations
is lower than that of the IoU distance between annotations by different physi-
cians, indicating that, on average, our models do a better task at matching a
physician’s annotations than other physicians do, which is remarkable, especially
considering the small dimension of the datasets, composed of 20 to 48 samples.
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The overall worse performances are registered for the second and third brain
tumor segmentation tasks. For the latter, the lower performance is largely jus-
tified by the difficulty of segmenting its tiny structures. However, in the former
case, the difficulty lies in the high variability between ground-truth masks. Even
though three annotators may not be enough to represent all the segmentation
hypotheses in this task, we suspect the annotations from one of the physicians
to be incorrect, as their average IoU distance to the others is 94.15%, and the
distance between the other physicians’ annotations is only 19.82%.

Finally, note that the expected value of the DSC between predictions at
50% confidence and each physician’s annotations is generally high, meaning that
beyond matching the averaged predictions of multiple physicians, the masks
produced by our models also match individual physicians’ annotations well.

Table 3: From the 2nd to the 5th column: squared generalized energy distance;
expected IoU distance between predictions and ground-truth masks; ground-
truth diversity; expected DSC between predictions at 50% confidence and each
physician’s annotations. Results presented as mean ± standard deviation.

Task D2
GED Ey∼p[1− IoU(y, ŷ)] Ey,y′∼p[1− IoU(y, y′)] Ey∼p[DSC(y, ŷ)]

Brain Growth 0.1323± 0.0077 0.1876± 0.0087 0.2429± 0.0124 89.63± 01.60
Brain Tumor 1 0.1455± 0.0622 0.1393± 0.0492 0.1330± 0.0497 92.39± 03.78
Brain Tumor 2 0.6731± 0.5631 0.6843± 0.3167 0.6955± 0.0835 34.27± 43.45
Brain Tumor 3 0.2515± 0.1928 0.2272± 0.1523 0.2030± 0.1306 86.25± 10.22
Kidney 0.0613± 0.0077 0.0814± 0.0105 0.1015± 0.0150 95.73± 01.59
Prostate 1 0.0950± 0.0692 0.1096± 0.0569 0.1242± 0.0478 94.07± 03.80
Prostate 2 0.0988± 0.0907 0.1431± 0.0679 0.1874± 0.0828 90.99± 15.25

6 Discussion

We proposed a new way of approaching uncertainty modeling in image segmen-
tation. Instead of building models that learn independently from the annotations
of multiple physicians and can produce multiple segmentation hypotheses for a
given image, we train deliberately deterministic models on the joint predictions
of physician ensembles, using the averages of their predictions as soft labels.

We evaluated our method on datasets from the MICCAI 2021 QUBIQ chal-
lenge, showing that it results in well-calibrated models that, on average, match
physicians’ predictions better than other physicians. The results show that our
system exhibits a good performance on this task, competitive with other ap-
proaches.

In future work, we plan to test this technique on larger datasets and more
challenging tasks with multiple classes, possibly including problems outside the
scope of medical image segmentation. Additionally, we intend to investigate if
the soft labels used in our method allow the more data-efficient training generic
soft labels do [10]. Finally, given soft labels’ role in recent teacher-student semi-
supervised learning methods [45,35], we plan to assess if networks trained on
soft labels, like ours, can be better teachers than those trained on hard labels.
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