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Abstract. Resource allocation problems are often approached with linear program-

ming techniques. But many concrete allocation problems in the experimental and ob-

servational sciences cannot or should not be expressed in the form of linear objective

functions. Even if the objective is linear, its parameters may not be known beforehand

because they depend on the results of the experiment for which the allocation is to be

determined. To address these challenges, we present a bipartite Graph Neural Network

architecture for trainable resource allocation strategies. Items of value and constraints

form the two sets of graph nodes, which are connected by edges corresponding to pos-

sible allocations. The GNN is trained on simulations or past problem occurrences to

maximize any user-supplied, scientifically motivated objective function, augmented by

an infeasibility penalty. The amount of feasibility violation can be tuned in relation to

any available slack in the system. We apply this method to optimize the astronomical

target selection strategy for the highly multiplexed Subaru Prime Focus Spectrograph

instrument, where it shows superior results to direct gradient descent optimization and

extends the capabilities of the currently employed solver which uses linear objective

functions. The development of this method enables fast adjustment and deployment of

allocation strategies, statistical analyses of allocation patterns, and fully differentiable,

science-driven solutions for resource allocation problems.
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1. Introduction

Resource allocation deals with the distribution of a fixed amount of resources through

a number of admissible actions so as to minimize the incurred cost or maximize the

resulting utility. The problem is encountered in a variety of application areas, including

load distribution, production planning, computer resource allocation, queuing control,

portfolio selection, and apportionment (Katoh & Ibaraki 1998). We are particularly
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interested in allocation problems arising in astronomical research, where the resource to

be allocated is observing time at specific telescopes that are expensive to operate, and the

utility is given by the scientific information gained from the chosen set of observations.

With improved resource allocation strategies, astronomers can expect larger scientific

yields or lower operational costs. The challenge lies in the large number of celestial

objects that could in principle be observed and the large number of instrumental

configurations that could be chosen.

Powerful optimization packages for constrained and mixed-integer optimization like

GUROBI can be employed to solve allocation problems, e.g. as a minimum-cost maximum

flow-problem (Bertsekas 1998). But this approach has several limitations. First, the

fastest algorithms require a linear programming (LP) formulation, i.e. one in which the

objective function and the constraints are linear in the allocations: f(x) = c>x, subject

to Ax ≤ b. Although many problems can be expressed as LP, it does not permit cases

in which different allocations interact or interfere with each other, and we will show that

such cases can easily arise. Second, the minimizers of the respective objective functions

are themselves not differentiable with respect to the parameters of the problem such as

per-item costs c. This precludes such an approach in situations where the actual cost

structure is not known a priori, as is often the case in scientific settings. This limitation

can be overcome by treating the non-differentiable solver as a component in an extended

gradient-based optimization (Amos & Kolter 2017, Agrawal et al. 2019, Vlastelica et al.

2020, Donti et al. 2021), at the expense of additional hyper-parameters and the cost of

running the solver inside of the optimization loop. Third, increasingly accurate analyses

in astronomy and cosmology demand very detailed modeling of the processes that define

the set of ultimately observed celestial objects (Rix et al. 2021). It has thus become

commonplace to perform hundreds or thousands of simulations to determine the actual

“selection function” of the observing program (e.g. Ross et al. 2017, Mints & Hekker

2019, Everett et al. 2020). Complex MIP solvers, run either directly or as component

of a deep learning architecture, would constitute a computational bottleneck for these

efforts.

In this paper we present a Graph Neural Network (GNN) solver for general resource

allocation problems. The underlying bipartite graph comprises sets of items and

constraints as nodes, connected by edges representing possible allocations. The GNN

is trained on simulations or past problem instances to learn how to take actions, i.e.

to assign allocations, that satisfy all constraints within the posed resource limits while

maximizing a user-supplied utility function. In contrast to reinforcement learning, we do

not assign immediate rewards for specific actions. We also do not solve the assignment

or scheduling problem, i.e. to determine a specific feasible sequence of assignments to

maximize a given objective in a multi-epoch observing program. Instead, the GNN

predicts the amount of resources to allocate for every object such that there is at

least one feasible sequence. We have recently demonstrated that GNNs with such a

continuous relaxation solve allocation problems better than strong human heuristics or

parameterized evolutionary strategies even if the utility function can only be learned
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by interacting with the environment (Cranmer et al. 2021). What we show here is that

bipartite GNNs can efficiently learn to obey feasibility constraints of complex real-world

environments with discrete allocations.

The remainder of this paper is structured as follows: In Section 2 we describe the

problem definition and our GNN solver in detail. In Section 3 we specialize this method

to two concrete examples of selecting the optimal set of galaxies to observe with the

upcoming Prime Focus Spectrograph, a highly multiplexed instrument on the Subaru

Telescope, located on Maunakea in Hawai‘i, USA. In Section 4 we discuss training and

initialization, and in Section 5 we compare the results of our GNN to those of direct

gradient descent and the currently established baseline from a LP solver. We conclude

in Section 6 with a summary and an outlook of possible extensions of our approach.

2. Methodology

2.1. Problem Definition

Following Katoh & Ibaraki (1998) and Bretthauer & Shetty (1995), the general resource

allocation problem has the form of a (non-)linear programming problem, where we seek

to

maximizef(x1, . . . , xJ) subject to

hk(x1, . . . , xJ) ≤ 0 k ∈ {1, . . . , Kineq}
hk(x1, . . . , xJ) = 0 k ∈ {Kineq + 1, . . . , Kineq +Keq}.

(1)

The objective function f depends on allocations xj (j ∈ {1, . . . , J}) that can be either

discrete, xj ∈ {0, 1, 2, ..., Tmax}, or continuous, xj ∈ [0, Tmax], up to for some finite Tmax.

Constraint equations hk (k ∈ {1, . . . , K = Kineq + Keq}) limit the configurations under

which these allocation can be distributed. Depending on the features of the objective

function and the types of constraints, resource allocation problems form different classes.

Cases where the objective function or constraints are linear or convex have known

solutions (e.g., Federgruen & Groenevelt (1986), Bretthauer & Shetty (1995), Katoh &

Ibaraki (1998), Shi et al. (2015)). But resource allocation problems remain conceptually

challenging when the objective function or constraints have more complicated forms, and

numerically demanding when allocations are discrete and when the number of variables

is large.

We find it beneficial to reparameterize the objective function, i.e. we seek to

maximizef(y1 . . . , yI) subject to

yi = gi(x1, . . . xJ) i ∈ {1, . . . , I}
hk(x1, . . . , xJ) ≤ 0 k ∈ {1, . . . , Kineq}
hk(x1, . . . , xJ) = 0 k ∈ {Kineq + 1, . . . , Kineq +Keq},

(2)

by means of functions gi (i = 1, . . . , I). The motivation behind the reparameterization

lies in symmetries of the objective function which often permit a strong compression
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from the full set of J allocations to a much smaller number of variables yi. In particular,

if the objective function only depends on the total allocation (e.g. in the single knapsack

problem), a single y1 =
∑J

j=1 xj suffices for any J . For resource allocation problems,

the set of y’s correspond to the items of value for which the allocations are made.

Equation 1 and Equation 2 can represent many types of optimization problems.

What makes resource allocation problems special is that their h and g functions are

permutation invariant, i.e. there exists functions ρ and φ such that e.g. h(x1, . . . , xJ) =

ρ
(∑

j φ(xj)
)

(Zaheer et al. 2017). Consequently, constraint and the item functions do

not depend on the order of arguments.

2.2. Graph Construction

According to Equation 2, the set of allocations x1, . . . , xJ provides the arguments to

both the g and the h functions. This dependency structure suggest a representation of

the allocation problem in the form of a bipartite graph, where one set of nodes represent

the constraints hk (k = 1, . . . , K) and the other represents the items gi (i = 1, . . . , I).

Whenever a particular xj appears as argument of the nodes gi and hk, the graph has an

edge connecting these two nodes. The set of allocations xj (j = 1, . . . , J) thus defines

the connectivity of the graph, with any individual xj potentially being represented by

multiple edges. Because of the suitable representation, bipartite graphs have a long

history in assignment and allocation problems (e.g. Bertsekas 1998, Wong & Saad 2007,

Abanto-Leon et al. 2017, Nair et al. 2020).

Of particular relevance for this work is that the constraints and items form two

classes of similar, permutation invariant functions, as we demonstrate with the following

example.

2.3. Example: Multiple Knapsack Problem

We demonstrate the ansatz above for the 0-1 Multiple Knapsack Problem (MKP). Given

a set of I items and a set of K knapsacks, with vi and wi being the value and weight

of item i, and ck the capacity of knapsack k, the task is to select K disjoint subsets of

items such that they maximize the total value. Each subset is assigned to a different

knapsack, whose capacity cannot be less than the total weight of items in the subset,

i.e. we seek

argmax
{x11,...,xIK}

K∑
k=1

I∑
i=1

vixik

∀k :
I∑
i=1

wixik − ck ≤ 0

∀i :
K∑
k=1

xik − 1 ≤ 0

∀k, i : xik ∈ {0, 1}.

(3)
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Although there are I × K allocation variables, the objective function actually only

depends on I independent combinations of them:
∑K

k=1

∑I
i=1 vixik =

∑I
i=1 viyi, where

yi =
∑K

k=1 xik. We can effectively combine the per-item constraints with the definition

of the yi by defining itemization functions gi(x) = min(
∑K

k=1 xik, 1). The MKP can be

simplified and written in the form of Equation 2:

argmax
{x11,...,xIK}

I∑
i=1

viyi

∀i : yi = gi(x) = min(
K∑
k=1

xik, 1)

∀k : hk =
I∑
i=1

wixik − ck ≤ 0

xik ∈ {0, 1}.

(4)

The maximizers of Equation 4 are equivalent to those of Equation 3 with respect to the

objective function. The latter formulation permits unfeasible assignments of a single

item to multiple knapsacks, which can be corrected by a single pass over all items and

removal of all but one assigned knapsack.

From this formulation, we construct a graph as follows: Each gi is one item node,

and each hk is one constraint node. The edges xik connect both sets of nodes and

form a complete bipartite graph. Because the MKP has one constraint equation per

knapsack, h-nodes represent the knapsacks and the g-nodes the items. It is evident that

the underlying functions are structurally similar and permutation invariant.

This construction is similar to the graph representation of a MIP in Nair et al.

(2020), but not identical. They restrict their problem to objectives of the form
∑

j cjxj
and directly identify the item nodes with xj, we allow for arbitrary permutation invariant

functions g to modify the relation between xj and yi in Equation 2. Also, in the graph

the edges correspond to the elements aij of the matrix in the linear constraint equation

Ax ≤ b, i.e. the carry information about feasibility, whereas the edges in our graph

carry information about the allocation amount.

2.4. GNN Definition

Unlike traditional MIP solvers, or their neural reformulation (Nair et al. 2020), we seek

to find solutions where the parameters of the problem are not fully determined. For the

MKP that can arise e.g. when item values are not known a priori. In addition, we seek

an architecture that learns to solve a particular kind of allocation problem rather than

running an explicit solver for every instance of the problem as proposed in e.g. Vlastelica

et al. (2020). The expected performance gains are important for statistical assessments

of the probability of particular allocations. We thus want to describe allocation problems

with a differentiable, trainable model.
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(a) Edge update given the node fea-

tures.

(b) Constraint node update given edge

features and connected item node

features

(c) Item node update given edge

features and connected constraint node

features

(d) Global update given node features.

Figure 1: Updates in a GNN block. Blue shows the element that is being updated, black

indicates the elements that are involved in the update and grey elements are unused.

h and g represent the attributes of the two types of nodes in the bipartite graph, x

represents the edge attributes, and u is the global attributes of the graph. Parameters

with primes are the updated values.

The h and g functions in allocation problems form two classes of similar functions,

which means that we need to parameterize only the behavior of the classes, not of every

class element. This allows us to model relations on the graph with a bipartite version of

the GNN blocks defined in Battaglia et al. (2018). Specifically, the bipartite GNN block

has two distinct node models, instead of only one for the regular GNN block. Both node

models depend on their attached edges and corresponding nodes, and the edge model
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depends on both sets of attached nodes, whose features we simply concatenate.‡
In addition to the graph connectivity, each of the three types of models needs to

access auxiliary features, such as the item weights in the MKP, so we make sure that

each element in the graph has direct access to all information related to its role in the

optimization problem (see Section 4 for concrete examples). We hypothesize that the

competing demands on available resources can better be met when each node model

has access not only to the edge features, but also to the node features on the opposite

side of the edge. We therefore concatenate them into an extended edge feature set,

expecting that this renders message passing more efficient and thus reduces the number

of GNN blocks. Formally, let nx, nh, ng, nu be the number of features carried by each

edge, constraint node, item node, and global node, respectively. Also, let nag and nah be

the number of different aggregators of the item and constraint models to summarize the

information carried by the (extended) edge features. We normally use four aggregators,

namely the element-wise mean, variance, skewness, and kurtosis of the edge features,

unless the number of edges is too small to define some of the high-order moments.

Defining φ : R(·) → R(·) as a multi-layer perceptron (MLP), our GNN block is thus

comprised of {φx, φh, φg, φu}, where

• φx : R(nx+nh+ng+nu) → Rnx updates the edge features using the previous edge

features, features from the two nodes connected to the edge, and global features;

• φh : R(nh+na
h(nx+ng)+1+nu) → Rnh updates the constraint node features using the

previous constraint node features, nah = 4 aggregators (element-wise mean, variance,

skewness, and kurtosis) of the extended edge features, the number of connected

edges, and the global features;

• φg : R(ng+na
g(nx+nh)+nu) → Rng updates the item node features using the previous

item node features, the aggregated edge features, and the global features;

• φu : R(nh+ng+nu) → Rnu updates the global features using the mean of the node

features and the previous global features.

The update sequence is built in a similar way as the MetaLayer class in the PyGeometric

package (Fey & Lenssen 2019). In particular, we place another MLP before the

aggregation step, which renders the models more flexible, and is the reason why we

can handle permutation invariant functions by φh and φg instead of merely symmetric

functions (Zaheer et al. 2017). The updates proceed in the order of Figure 1: first the

edge model given the node features, then both node models given the respective edge

features, and then a global model given the node features.

We stack 4 GNN blocks and perform batch normalization on all nodes and edge

features, where the batch dimension is given by the number of nodes or edges of the

graph. The number of GNN blocks depends on the complexity of the problem, with more

blocks corresponding to more message-passing steps to negotiate between the competing

demands on the minimizer of Equation 6. Like Cranmer et al. (2021) we find that 3 or

‡ Generalizations to tripartite or even more complex graphs are conceivable to address problems in

which the constraint and item functions cannot be represented by only two classes.
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Figure 2: Comparison between noisy Sigmoid function and round function. Black curve

is the exact Sigmoid function and the shadow shows the noise. Blue curve is the exact

round function. In this figure, the sharpness is 20 and the noise level is 0.3

4 blocks suffice, and we leave determining the optimal number of blocks to forthcoming

work.

The output of φx of the last GNN block is a real number x̃j and the corresponding

xj is calculated by xj = Tmax × σ(x̃j). If the problem requires integer allocations, we

apply a round function to the output. During training, we replace the round function

with the noisy sigmoid function (Edward 1994):

z ∼ U(−l/2, l/2)

x′ = x+ z

f(x) = floor(x′) + σ[k(x′ − 1
2
− floor(x′))],

(5)

where k is the sharpness and l is the noise level (see Figure 2).
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2.5. Loss Function

We define the loss function as the negative Lagrangian of Equation 2,

L(x1, . . . , xJ) = −f(y1, . . . , yI) + λ

K∑
k=1

pk [hk(x1, . . . , xJ)] , (6)

where yi = gi(x1, . . . xJ) and pk are penalty functions appropriate for constraint

violations, e.g. `1, `2 or ReLU.

The amount of penalty λ > 0 formally needs to be infinite if only feasible minimizers

of Equation 2 are accepted. We relax this requirement by increasing the penalty to a

large number during network training. Empirically, we find that this often leads to

feasible solutions, or an amount of constraint violation that can tolerated due to slack

in realistic settings. If solutions with exact feasibility are needed, one can make minor

adjustments with a greedy algorithm, e.g. by removing the least valuable items in the

case of overallocation.

3. Application to the PFS Target Selection Problem

The Prime Focus Spectrograph (PFS) is a wide-field, highly multiplexed optical and

near-infrared spectrograph that will soon be installed at the 8.2m Subaru Telescope

located at the peak of Maunakea in Hawai‘i, USA (Tamura et al. 2016). The instrument

is equipped with 2,394 movable fibers distributed over a 1.3 deg2 field of view. The fibers

can be moved laterally so that they can collect the light from astronomical objects they

are pointed at. They stay in place for a configurable amount of time to feed light to

the dispersive elements of the spectrograph, and ultimately to its detector, forming

one ‘exposure’. Between exposures, every fiber can independently be positioned within

a circle of 9.5 mm in diameter by an electro-mechanical actuator. The whole fiber

assembly is packed in a hexagonal pattern with 8 mm separation (see Figure 3). The

overlap between adjacent ‘patrol regions‘ enables full sky coverage.§.

3.1. The Target Selection Problem

Given a total time allocation budget T and list of astronomical ‘targets’ with their

celestial positions and other characterizing features, a target selection strategy has to

decide which targets to observe and, possibly for every single one, for how long. Cranmer

et al. (2021) demonstrated that GNNs can solve this allocation problem, even with an

implicit objective function, better than heuristics or simple parameterized strategies,

but in their approach the allowed allocations xj ∈ [0, Tmax] were independent from each

other, the only requirement being that
∑

j xj ≤ T .

§ Because each galaxy can be reached by at most two fibers, we limit the aggregator in the item MLP

φg to a simple element-wise sum, i.e. nag = 1. Using mean and variance does not yield any benefits,

and higher-order moments would be ill-defined.
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Figure 3: The fiber layout of the Prime Focus Spectrograph in focal-plane coordinates.

Circles indicate the patrol region for all 2,394 fibers.

For a multiplexed instrument such as the PFS the solutions are much more strongly

constrained because the allocations for all 2,394 fibers in any given exposure must be

identical. The allocations of different targets may differ by observing some targets more

often than others. For the planned PFS galaxy evolution program of this case study,

each exposure time is fixed at 1 hours, with a total observing time budget, i.e. the sum

of all exposure times, of T = 42 h.

Specifically, let I be the number of targets in a single field of view of the telescope.

The objective function f measures the scientific utility as a function of the time spent

on each target, i.e., f(τ1, τ2, ..., τI). It is related to the properties of the selected galaxies

and the specific astrophysical questions at hand. In contrast to Cranmer et al. (2021),

we demand for this work that f is a known function. But unlike Lupton et al. (2002)

and Blanton et al. (2003), where f is restricted to specific linear functions, we allow it

to be an arbitrary permutation-invariant function. Let Φi (1 ≤ i ≤ I) be the set of

fibers that can reach the position of galaxy i, and let Ψk (1 ≤ k ≤ 2394) be the set

of galaxies that fiber k can reach. The total time spent on this field is T . The target
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selection problem is then defined as the following optimization problem

arg max
tik

f(τ1, τ2, ..., τI)

∀i : τi = min(
∑
k∈Φi

tik, Tmax)

∀k :
∑
i∈Ψk

tik ≤ T

∀i, k : tik ∈ {0, 1, 2, .., Tmax}

(7)

where tik is the time fiber k spends on galaxy i, and we redefined all times in integer

multiples of the base exposure time of 1 h. The maximum time Tmax ≤ T any single

galaxy can receive is set by the scientific program. Compared to the general form of

resource allocation problem in Equation 2, we see that τ ’s and t’s correspond to y’s and

x’s, respectively.

In principle, we must make sure that any fiber only observes at most one galaxy

and any galaxy is observed by at most one fiber at each exposure:

T∑
l=1

tikl = tik∑
i∈Ψk

tikl ≤ 1∑
k∈Φi

tikl ≤ 1

tikl ∈ {0, 1}

(8)

where tikl is the time spent on target i from fiber k in exposure l. However, we prove

in Appendix A that finding a sequence of exposure-level assignments is always possible

as long as no explicitly sequence-dependent term appears in objective or constraint

functions, and can be found in at most polynomial time.‖ Thus, we can focus on

the optimization problem in Equation 7 without having to worry about the sequence

decomposition.

The utility function can in some cases be written as the sum of the individual

utilities of each galaxy, i.e. f(τ1, τ2, ..., τI) =
∑

i fi(τi), which leads to a nonlinear MKP

that is already outside of the scope of LP solvers. However, the total scientific yield

generally depends on the collective properties of all observed galaxies. For example,

a scientific study may require that at least a certain number of galaxies be observed

such that a combined measurement reaches a desired significance. The utility function

is thus the sum of a separable part and a non-separable part,

f(τ1, τ2, ..., τI) =
∑
i

fi(τi) + s(τ1, τ2, ..., τI). (9)

‖ If the relation between fibers and galaxies changes with time due to effects like dithering, i.e., Φi

and Ψk are time-dependent, we split one constraint into multiples to make sure each constraint is

time-invariant and can be related to one fixed constraint node in the graph.
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We will define the specific form of f for two cases below. The final loss function is then

a specialization of Equation 6 for the problem in Equation 7:

L(t11, . . . , tIK) = −f(τ1, τ2, ..., τI) + λ
2394∑
k=1

p(
∑
i∈Ψk

tik − T ) (10)

3.2. Case 1: Predefined Galaxy Classes

The galaxy evolution program in the PFS Subaru Strategic Program (SSP) survey

(Takada et al. 2014) currently plans to target a variety of galaxies, and has tentatively

identified 12 distinct science cases and defined selection criteria for each of them. The

sets of galaxies that satisfies these criteria define 12 galaxy classes. Each of the science

cases also defines the number of exposures a galaxy in the respective class should receive.

Table 1 shows the 12 galaxy classes and the number of galaxies satisfying the selection

criteria in a reference field. The total number of visits available is T = 42, while the

time spent on a single galaxy is limited to Tmax = 15.

A general goal in designing the criteria and costs cm of Table 1 is that the program

observes as many galaxies as possible for every science case, ideally in a reasonably

equitable distribution. We formalize this by means of an objective function that

maximizes the minimal per-class completeness over all 12 classes:

f(τ1, . . . , τI) = min

(
n1

N1

,
n2

N2

, ...,
n12

N12

)
with nm ≡

∑
i∈Θm

σ

(
τi + 0.5− Tm

0.2

)
, (11)

where Θm is the m-th class, Tm is its proposed per-galaxy exposure time, and Nm is the

number of galaxies in the field falling into class Θm. We denote nm as the number of fully

observed galaxies in class m. During training we use a sigmoid function, as indicated

above, to smoothly approximate the step function, but at test time we replace it with

the actual step function to count distinct allocations. We chose as penalty function p

a squared ReLU function, i.e. an inequality constraint on the fiber allocation capacity,

because there is no need to exhaust all resources if no gain in f is achieved.

Equation 11 is evidently non-linear and entirely non-separable as it seeks to balance

the allocation across 12 classes, each of which is comprised of thousands of galaxies, for

which multi-exposure allocations need to be determined. The exact form of the equation

could be chosen differently, but the underlying idea is motivated by the current survey

design principle for the PFS galaxy evolution program.

3.3. Case 2: A General Objective Function

For case 2, we envision a smaller observing program that could be carried out with PFS

in a single night. We thus adopt a very modest allocation of T = 6 h and Tmax = 4 h.

Instead of adopting predefined classes, we now combine two objectives: 1) maximizing

the number of galaxies, for which spectroscopic redshifts z can be determined with a

precision δz < 0.001. Such a sample of galaxies can be used to reconstruct the so-called
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Table 1: Predefined Galaxy Classes for Case 1. The required exposure times Tm
have been determined by the PFS Galaxy Evolution program on the basis of expected

performance of the instrument, and the costs cm provide the current baseline, which has

been found by manual exploration. Nm denotes the number of galaxies that satisfy the

class selection criteria in a reference field.

1 2 3 4 5 6

Tm [h] 2 2 2 12 6 6

cm 19683 19683 59049 531441 177147 177147

Nm [103] 68.2 69.3 96.3 14.4 22.0 8.3

7 8 9 10 11 12

Tm [h] 12 6 3 6 12 1–15a

cm 531441 177147 59049 177147 531441 59049

Nm [103] 14.0 22.0 7.4 4.5 2.8 9.7
aEach galaxy in this class has an independent exposure time requirement.

cosmic web (e.g. Jasche et al. 2015, Horowitz et al. 2021). 2) creating a sample of at

least 5,000 faint galaxies at relatively large redshift z > 1 and within a range masses,

11.8 < log10Mhalo < 12.5, that should be observed at least once. The purpose of such

a sample is to aggregate their spectra and achieve high signal-to-noise ratio to test for

the presence of specific spectral features (e.g Carnall et al. 2019, Salvador-Rusiñol et al.

2019). While the specific definitions of these objectives are hypothetical, they serve as

an example of a directly science-driven fiber allocation strategy for PFS.

The objective function thus contains two parts. The separable part of objective

1 is the per-galaxy success rate of redshift measurements. The success rate, a number

between 0 and 1, is calculated by fitting the simulated noisy spectrum of the galaxy, and

inferring of a redshift can be estimated from the spectrum with the desired precision.

We use the same galaxy simulation as in Cranmer et al. (2021), which employs a single

spectral type for every galaxy, so that the redshift success is a function of redshift, mass,

and exposure time only. We calculate the success rate SRi(t) of galaxy i after t = 1, . . . 4

exposures, and then linearly interpolate them:

fi(τi) =


τiSRi(1), 0 ≤ τi ≤ 1

(τi − 1)(SRi(2)− SRi(1)) + SRi(1), 1 ≤ τi ≤ 2

(τi − 2)(SRi(3)− SRi(2)) + SRi(2), 2 ≤ τi ≤ 3

(τi − 3)(SRi(4)− SRi(3)) + SRi(3), 3 ≤ τi ≤ 4

(12)

The non-separable part for objective 2 amounts to counting the number of galaxies

that satisfy the specified redshift and mass requirements and that are observed by at

least one exposure. Let Θ be the set of all such galaxies. We adopt the following
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continuous approximation:

s(τ1, . . . , τI) = 10000 σ

(
n− 5000

100

)
with n ≡

∑
i∈Θ

σ

(
τi − 0.5

0.2

)
, (13)

i.e. n denotes the number of observed galaxies satisfying the selection requirements.

This objective term prefers n > 5000 and is saturated at n ≈ 5500. The prefactor

10000 is a large number compared to
∑

i fi, chosen to ensure that the second objective

receives preference over the first. This choice needs to be made for any multi-objective

optimization. The sharpness of the sigmoid functions, 0.2 and 100 in Equation 13, are

two hyperparameters. Larger sharpness leads to a better approximation to the step

function, but is also more difficult to optimize. One could start with small sharpness

parameters and then gradually increase them during the training, but we achieve good

results with fixed parameters after a hyperparameter search.

We chose the `2 penalty function for case 2 to reduce over- and under-allocation.

In contrast to case 1, the time allocation is strongly limited and insufficient to saturate

both objectives for the large number of available galaxies. We expect that the under-

allocation penalty will become largely obsolete at the end of training but that it provides

more meaningful gradient directions during training.

4. Feature Sets and Training

Of particular importance are the feature set for the items, which in our cases correspond

to one galaxy per node. We thus need to provide to the initial item nodes all features that

meaningfully describe the optimization problem from the perspective of the galaxies.

In Case 1, the feature set comprises Tm, an one-hot version of the class index from

Table 1, and an extra random number, which distinguishes between different galaxies in

the same class. All other nodes, edges and global features of the graph are initialized with

zeros. In Case 2, the item node features are initialized to (SRi(1), SRi(2), SRi(3), SRi(4)

of Equation 12) and a Boolean variable showing whether or not the galaxy satisfies the

redshift and mass requirements of Equation 13), while all other nodes, edges and global

features of the graph are initialized with zeros.

In both cases, we use 10 graphs to train the GNN model, 5 graphs to validate and 5

graphs to test its behavior. There is no overlapping region between training, validating

and testing graphs. The model is trained with Adam (Kingma & Ba 2015) on a 320

NVIDIA P100 GPU. We start with a 2000-epoch pre-training phase with a fixed penalty

strength λ, followed by a 8000-epoch training with exponentially increasing λ. Other

training parameters are shown in Table 2.

We do a coarse hyperparameter search over the learning rate, the penalty factor,

and the noise level of the noisy sigmoid function. The learning rates in both cases are

searched from 10−4 to 10−2. The penalty factor in Case 1 is varied between 10−8 and

10−6, in Case 2 between 10−3 and 10. And the noise level is searched between 0.1 and

0.4. The sharpness of the noisy sigmoid method is fixed to 20. The dimensionality
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Table 2: Training Parameters. LR is the learning rate, λ is the penalty factor and l is

the noise level.

Pre-Training Training

LR λ l LR λstart λend l

Case 1 5× 10−4 1× 10−7 0.3 5× 10−4 1× 10−7 1× 10−4 0.3

Case 2 1× 10−3 0.1 0.3 1× 10−3 0.1 1.0 0.3

of the GNN functions nx, nh and nu is set to 10, while ng is set according to the

item features listed above. We experimented with 20-dimensional features but found no

improvements.

5. Results

We report the GNN test scores in Table 3 and Table 4 in terms of the objective

function as well as the adherence to the constraints. To the latter end, we define

the total overtime and unused time, i.e., ∆T =
∑

k max(0,
∑

i∈Ψk
tik − T ) and ∆T ′ =∑

k max(0, T−
∑

i∈Ψk
tik), and calculate the fraction of such over/unused time compared

to the total available observation time Tall = T K. The result is written as f0
+∆T/Tall
−∆T ′/Tall

.

For example, 10+3%
−2% means that the value of the objective function is 10, with 3%

overtime and 2% unused time.

5.1. Case 1: Balancing Predefined Classes

The training and test data was derived from a galaxy catalog provided by the PFS galaxy

evolution program. For classes 1-8 in Table 1, we use the EL-COSMOS catalog (Saito

et al. 2020), which is based on the COSMOS2015 photometric catalog (Laigle et al.

2016). Since the area coverage of this catalog is too small for simulations of multiple

PFS pointings, we repeat the central region of the catalog in a 3 × 3 tiling pattern, so

that the final extended catalog covers a contiguous area of ∼ 10 deg2. The remaining

classes are artificially superposed on the same region so that the number densities are

consistent with the expectation. Each galaxy in the catalog has a label indicating the

class it belongs to.

We compare our GNN approach to the currently employed network flow

optimization method, which is based on the fiber-assignment method in Blanton et al.

(2003). Similar to our approach, it constructs a graph connecting fibers and galaxies,

but then solves a linear min-cost max-flow problem on the graph with the MIP optimizer

GUROBI, given predetermined costs for every galaxy class: f(τ1, . . . , τI) =
∑

i cm ι(i ∈
Cm ∧ τi ≥ Tm), where ι denotes the indicator function. Multi-exposure programs like

case 1 can be implemented by creating a graph with one fiber node per exposure. The

network flow optimization guarantees feasibility but does not permit the adjustment of

the class costs to maximize the objective function. We therefore adopt, as a baseline
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Table 3: Case 1 results in terms of the values of the objective function in Equation 11

(minimal completeness across the classes in Table 1) from network flow optimization

with preset costs (‘Baseline-LP‘); direct gradient descent of Equation 7 (‘GD’); and our

GNN method for 5 independent test fields. The percentages denote the fraction of the

full time allocation T that is overallocated (+) or underallocated (−), averaged over all

fibers.

Field ID Baseline-LP GD GNN (Ours)

1 0.773+0.0%
−19.3% 0.824+0.8%

−1.4% 0.877+0.1%
−9.9%

2 0.764+0.0%
−20.1% 0.827+0.8%

−1.6% 0.876+0.1%
−10.2%

3 0.767+0.0%
−20.5% 0.829+0.8%

−1.8% 0.880+0.1%
−10.5%

4 0.768+0.0%
−20.6% 0.828+0.8%

−2.0% 0.870+0.1%
−10.7%

5 0.775+0.0%
−20.7% 0.830+0.8%

−1.9% 0.871+0.1%
−10.8%

and a representation of the current state of development, the fixed costs cm from Table 1

which were identified through manual exploration of the linear objective listed above.

It is important to emphasize that these costs they were determined with the same

general goal, namely to achieve an equitable distribution of completeness across all

galaxy classes, but not the specific objective function in Equation 11.

For a more flexible optimization of the objective function, we also solve the problem

of Equation 11 in the form of Equation 7, i.e. directly for O(105) of tik, by ordinary

gradient descent. We use Equation 5 to convert tij to integers at test time. We have

tried different types of gradient descent (Adam, momentum), but the results are very

similar.

The results are shown in Table 3. In all 5 test fields, our GNN method outperforms

the current baseline and the gradient descent solver despite being trained on fields

different from the test fields. The network-flow fiber assignment provides a good baseline

with a minimum completeness of ≈ 76%, but it leaves ≈ 20% of the time unallocated.

This apparent contradiction is not an indication of suboptimal performance of the

method itself. Instead, it suggests that the pre-determined class costs of Table 1 are

suboptimal for this specific objective function. The GD method, which like our GNN

optimizes Equation 11, improves upon this baseline. But we find that, depending on

the initialization, it can require a very large number of iterations to converge to a

(local) minimum, as expected for such a high-dimensional optimization problem. The

GNN benefits from learning a model of what makes galaxies valuable in relation to the

constraints, and it communicates that through message passing on the graph. While

the GNN MLPs have in total O(104) parameters themselves, they encode the strategy of

solving Equation 7 with galaxy and fiber configurations as given by the training data and

the instrument. As a result, similar galaxies will generally be evaluated similarly. This

generalization leads to an increased completeness of ≈ 88% even though the solution

has not been optimized on the test fields.

With respect to feasibility, unused time is not a concern for case 1. We expected
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that conflicts between highly valuable galaxies will prevent full utilization of the time

allocation, and have confirmed that in the test results. For instance, a canonical problem

arises from multiple long-integration galaxies being located in the patrol region of a

single fiber. Because of the partial overlap of the patrol regions, some, but not all,

of these conflicts can be solved by utilizing a neighboring fiber. If that cannot be

achieved, a fraction of the available time cannot be used to increase the completeness of

the respective class and, in turn, of the objective function. However, in comparison to

Baseline, the GNN approach evidently converts unused time into gains of the objective,

which reveals the suboptimality of having to predetermine the costs for this complex

resource allocation problem. Interestingly, GD does not achieve higher completeness

than the GNN despite utilizing almost all the available time.

Overtime violations are, by design, impossible for the network flow method, and

are almost completely avoided by the GNN strategy. As we detail in Section 5.2, a

minor overtime violation is acceptable in this case, but could be avoided entirely by

increasing the penalty strength beyond the final value in Table 2. The Brute Force

solver has minor overtime allocations, smaller than the unused allocations, consistent

with the asymmetry of the penalty.

In addition to the highest objective function values, GNN is also the fastest method.

For every field, both Baseline and GD need to be run again, while the runtime of the

GNN is less than 1 second once the training is done. However, even if we include the

training time, the GNN is still faster than a single run of the network flow optimization

with GUROBI.

5.2. Case 2: Optimizing a General Objective Function

The training and test data were derived from UniverseMachine simulations (Behroozi

et al. 2019), which has a size of 4.0 × 4.0 deg2, comprising about 35,000 galaxies in a

single PFS field of view. The spectrum simulation follows the approach in Cranmer

et al. (2021), which uses a single spectral type of a massive elliptical galaxy, artificially

redshifted, and scaled in amplitude to match the expected performance of PFS for a

given stellar mass. Stellar masses were predicted from UniverseMachine halo masses

according to the scaling relation in Girelli et al. (2020). The precision of the redshift

estimates was determined by fitting the known spectrum template to 100,000 such galaxy

spectra in the presence a constant sky spectrum and the corresponding Poisson shot

noise. This procedure constitutes a best-case scenario because spectral misclassification

is impossible and catastrophic outliers are rare.

Case 2 again cannot directly be solved with LP techniques because the main aspect

of this problem lies in the determination of the relative importance of the two competing

objectives as well as the individual per-galaxy utilities of objective 1 (the precision of

the redshift estimation). We therefore adapt a known heuristic approach to precondition

the problem, so that we can express it as a LP problem. We first randomly select 5,000

galaxies satisfying the redshift and halo mass conditions and label all of these galaxies as
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Table 4: Case 2 test results in terms of the values of the objective function in Equation 12

(i.e. aggregated redshift success rate; the second objective of Equation 13 is fully

saturated by design) from three competing strategies for 5 independent test fields. The

percentages denote the fraction of the full time allocation T that is overallocated (+) or

underallocated (−), averaged over all fibers.

Field ID Baseline-LP GD GNN (Ours)

1 2184.7+0.0%
−0.0% 2485.6+0.0%

−0.0% 2593.1+1.2%
−0.4%

2 2084.4+0.0%
−0.0% 2404.2+0.0%

−0.0% 2485.6+1.1%
−0.5%

3 2151.7+0.0%
−0.0% 2457.1+0.0%

−0.0% 2544.4+1.1%
−0.4%

4 2295.6+0.0%
−0.0% 2590.4+0.0%

−0.0% 2696.1+0.9%
−0.5%

5 2308.5+0.0%
−0.0% 2623.6+0.0%

−0.0% 2711.9+1.0%
−0.5%

class 1, to be observed with a single exposure. Giving this class infinite costs ensures to

saturate Equation 13. We then chose a proposed time allocation τi for all other galaxies

i = 1, . . . , N , so that it maximizes the expected gain, τi = argmaxτ∈{0,1,2,..,T}

[
fi(τ)
τ

]
(Dantzig 1957), where fi is defined in Equation 12. The same min-cost max-flow MIP

solver we used for case 1 is then run with 1 +N classes, where N classes are comprised

of only one galaxy each and specified by their proposed time and expected utility fi(τi).

Because the classes are defined separately for the two objectives, galaxies in class 1

cannot be used for redshift measurement, necessarily leading to a suboptimal solutions

for galaxies that are useful for both objectives. We also run the brute-force Gradient

Descent method for comparison.

The results are shown in Table 4. Because the second objective term s is saturated

in all cases, we only show the total redshift success rate of Equation 12 as the objective.

We can see that the results of the GNN method are superior to GD and the Baseline

method in terms of the objective function. This result demonstrates that our method

is capable of finding effective strategies for allocating resources in this general test case

that combines separable and non-separable objectives.

We note that the GD method is closer to the GNN results than it was in case 1,

which we attribute to the reduced volume of the parameter space due to the shorter

program times (Tmax = 4 instead of Tmax = 15). We also find that the GNN method

yields mild levels of feasibility violations. Although we could in principle avoid such

violations by further increasing the penalty factor λ, we allow them here because

observations with PFS will simultaneously allocate about 10–20% of the fibers as

calibration targets. We decided to ignore this operational complication for this work,

but, because the numbers of calibrations measurements are flexible, we can compensate

a small amount of over- or unused time with the calibration allocations.
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6. Summary and Outlook

Resource allocation problems arise in many application areas but remain challenging,

especially if they involve high-dimensional and discrete allocation spaces and non-linear

or non-separable objectives. In this paper we present a bipartite GNN architecture that

learns a strategy for solving general resource allocation problems. It is based on message

passing on a graph formed from nodes representing the items of value and the allocation

constraints, respectively, connected by edges corresponding to all possible allocations. It

is trained to minimize any user-specified objective function, augmented by a penalty for

constraint violations, using instances of the problem – either from historical occurrences

or simulations – that should capture all relevant aspects of the problem at test time.

We apply our GNN method to the target selection problem in astronomy, which,

when given a total observing time budget, amounts to choosing which celestial sources

from within a given sky area are to be observed, and for how long. Specializing on a

highly multiplexed instrument, the Prime Focus Spectrograph for the Subaru Telescope

at Maunakea in Hawai‘i, results in the additional complication of having to assign

discrete and identical exposure times to sources observed simultaneously by all 2,394

fibers of this instrument.

We demonstrate that our GNN method finds efficient allocation strategies in two

realistic problem settings with non-linear and non-separable objectives. We compare our

results to two direct solvers, one performing a minimum-cost maximum-flow network

optimization with predetermined costs, and the other directly solves for all possible

allocations by gradient descent. Our method yields higher values of the objective

function in all cases for every test field. It formally guarantees feasibility only for

infinitely large penalties, and we recommend to increase the penalty term during training

until feasibility is achieved or feasibility violations are deemed tolerable. The tuning of

the feasibility penalty also allows the exploration of strategies in systems with some

amount of slack or surplus, as we expect in the case of PFS.

The development of this GNN method for resource allocations bring two important

benefits for future work. First, the runtime for the GNN solution is much shorter

than that of direct solvers, of order 1 second compared to several hours in some cases.

Substantial accelerations by neural MIP solvers have also been found in Nair et al.

(2020). In our case, performing the GNN optimization to precondition a traditional

MIP solver should lead to substantially reduced computational costs while maintaining

the guaranteed feasibility of that solver. Either option will render it practically doable

to roll out strategy updates over a large number of problem instances or to assess the

probabilities that any item receives some amount of allocation. This so-called ‘selection

function’ is of critical importance for precision analyses in astrophysics and cosmology.

Second, multi-objective problems require the balancing of priorities for different

kinds of items (e.g. galaxies in our case 1), which traditionally have to be established

beforehand. If the respective utilities are not known a priori, as is routinely the

case in scientific experiments, the complexity of this task renders it unlikely that
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manual exploration of the priorities yield near-optimal results. Our GNN provides a

differentiable architecture, thereby exposing all relevant parameters of the problem to

optimization. Similar to Cranmer et al. (2021), we intend to make use of this capability

in forthcoming works to train another neural network to learn the utility of galaxies

based on easily observable features instead of assuming that these utilities are known,

as we have done in test case 2.

The permutation invariance and flexible node and edge models of GNNs render

them exceptionally well suited for resource allocation problems. We suspect that is

should also work well e.g. for auction strategies (Huang et al. 2008). Other interesting

questions beyond the scope of this work relate to the goal of Explainable AI, for instance:

what information is passed between the nodes of the graph; how many message-passing

steps are needed to achieve these results; and what role does the global model play.

The GNN code used in this paper is available at https://github.com/

tianshu-wang/PFS-GNN-bipartite.
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Appendix A. Proof of the Theorem

Let V be the set of all vertices and E be the set of all edges, we have a hypergraph

G = (V,E). The connectivity of this graph is represented by the incidence matrix

A ∈ R|V |×|E|, where Aij = 1 if and only if edge j is connected to vertex i, otherwise

Aij = 0.

The time allocations tikl between galaxy i and fiber k in exposure l from Equation 8

are represented by vectors El ∈ {0, 1}|E| (l = 1, . . . , T ). The jth element of El equals

tikl if the jth edge in E connects item node i and constraint node k. Similarly, tik can

be represented by a vector Etot ∈ {0, 1, 2, ..., T}|E|, and the jth element of Etot equals

tik. The target selection problem Equation 7 is then written as

arg max
Etot

f(Etot)

A · Etot ≤ T1|V |

Etot ∈ {0, 1, 2, ..., T}|E|
(A.1)

We want to decompose Etot into a set of El that satisfy

Etot =
T∑
l=1

El

A · El ≤ 1|V |

El ∈ {0, 1}|E|

(A.2)

Theorem. Given a solution Etot to the problem Equation A.1, there exists at least one

set {E1, . . . ,ET} satisfying Equation A.2.

Proof by induction. When T = 1, Etot = E1 and the theorem holds trivially.

Assume that the statement is true for T = S. For T = S + 1, we have Etot,S+1 which

satisfies

A · Etot,S+1 ≤ (S + 1)1|V |

Etot,S+1 ∈ {0, 1, 2, ..., S + 1}|E|
(A.3)

If we can find E ∈ {0, 1}|E| such that A · (Etot,S+1 − E) ≤ S1|V | and Etot,S+1 − E ≥ 0,

the problem is converted to a T = S problem and we can thus find a subset

{E1,...,ES}⊂ {0, 1}|E| such that Etot − E =
∑

lEl. Combining all El and E gives a

decomposition of Etot. Thus the theorem is equivalent to the existence of such E.

E is given by the following problem:

A · (Etot,S+1 − E) ≤ S1|V |

Etot,S+1 − E ≥ 0

E ∈ {0, 1}|E|
(A.4)

where Etot,S+1 satisfies A · Etot,S+1 ≤ (S + 1)1|V | and Etot,S+1 ∈ {0, 1, 2, ..., S + 1}|E|.
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Let Av be the vth row of A and U = {v|Av ·Etot,S+1 = S + 1}. For any v ∈ U , we

must have Av · E = 1. The problem becomes

AUE = 1|U |

AV/UE ≤ 1|V/U |

Etot,S+1 − E ≥ 0

E ∈ {0, 1}|E|

(A.5)

We generalize the problem into a linear system so that E can take any number between

0 and 1:

AUE = 1|U |

AV/UE ≤ 1|V/U |

E ≤ Etot,S+1

0|E| ≤ E ≤ 1|E|

(A.6)

Therefore, the theorem is equivalent to the existence of integer solutions of Equation A.6.

The existence of such integer solutions is guranteed by the following lemma:

Lemma. The solution set of problem Equation A.6, a convex polytope, contains at least

one integer point.

Proof. First, we can show that this solution set is not empty because E′ = 1
S+1

Etot,S+1 is

obviously a solution. Now, consider an arbitrary corner of this polytope, E?. The corner

is determined by |E| linearly independent equations. Equations come from the bottom

two conditions will directly give the value of the corresponding element in E?. The

remaining undetermined elements of E? is then determined by the first two conditions,

i.e., by the linear equations defined by A′, an invertible square submatrix of A. Since

the graph is bipartite, A is totally unimodular. This means that any square submatrix

has determinant 1, 0 or -1. Because the submatrix A′ is invertible, its determinant

can only be ±1. Then by Cramer’s rule, the inverse matrix is also an integral matrix.

Thus the solution to the linear equations, the undetermined elements of E? are integers.

Therefore, any corner of the solution set is an integer point. And because the set

is non-empty, there must be at least one corner E? which is the solution to problem

Equation A.5.

Time Complexity

To find such a decomposition, we can find a sequence of El by recursively finding E?.

Finding E? is no slower than polynomial time, because we can randomly choose a vector

c and maximize c ·E within the polytope. Since the linear programming problems can

be solved in polynomial time, finding E? and the sequence {El} can also be done in

polynomial time.
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