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Abstract

This technical report describes Johns Hopkins University

speaker recognition system submitted to Voxceleb Speaker

Recognition Challenge 2021 Track 3: Self-supervised speaker

verification (closed). Our overall training process is similar to

the proposed one from the first place team in the last year’s

VoxSRC2020 challenge. The main difference is a recently pro-

posed non-contrastive self-supervised method in computer vi-

sion (CV), distillation with no labels (DINO), is used to train

our initial model, which outperformed the last year’s contrastive

learning based on momentum contrast (MoCo). Also, this re-

quires only a few iterations in the iterative clustering stage,

where pseudo labels for supervised embedding learning are up-

dated based on the clusters of the embeddings generated from

a model that is continually fine-tuned over iterations. In the fi-

nal stage, Res2Net50 is trained on the final pseudo labels from

the iterative clustering stage. This is our best submitted model

to the challenge, showing 1.89, 6.50, and 6.89 in EER(%) in

voxceleb1 test o, VoxSRC-21 validation, and test trials, respec-

tively.

1. Introduction

In Voxceleb Speaker Recognition Challenge 2021

(VoxSRC-21) Track 3: self-supervised speaker verifica-

tion (SV), a participant is allowed to use only VoxCeleb2 [1]

dev subset without any speaker labels for model training. For

SV system validation, participants are restricted to use the

VoxCeleb1 [2] pairs or the provided pairs composed of the

subset of the VoxCeleb1 utterances where their distribution

matches that of the test pairs. The validation pairs, however,

cannot be used for training. The test pairs contain utterances

that are shorter than the utterances in training and validation

subsets.

This report shares the details about our developed systems

and findings in this challenge. Our main focus was to check

how the newly proposed non-contrastive self-supervised learn-

ing (SSL) method in CV, DINO [3], works in speaker embed-

ding learning. Thus, the training stages after that follow what’s

proposed from the first place team [4] from the last year’s chal-

lenge [5] with small modifications. This year’s challenge has a

special focus on multi-lingual verification but we do not develop

specific systems for this.

2. Method

In short, the overall pipeline consists of training a front-end

model for speaker embedding extractor and then scoring trial

pairs with cosine scoring in the speaker embedding space. In the

front-end modeling, we mainly have three stages similar to the

first place team’s development pipeline [4] except using non-

contrastive learning for the initial model. We explain the three

stages in order.

2.1. Initial model training: DINO

To generate pseudo labels from embedding clusters for super-

vised training, we train an initial model to extract good em-

beddings that can be clustered by speaker. We adopt a specific

non-constrastive SSL method, DINO, for the purpose.

2.1.1. Motivation: Why non-contrastive over constrative learn-

ing

There have been many methods to train embeddings in a self-

supervised manner [6, 7, 8, 9, 10, 4, 11, 3], and contrastive loss

based methods with data augmentation are popular and well-

performing ones [10, 4, 11]. The works using contrastive loss

compose the negative samples with different samples from a

current sample to make the current and negative samples far

from each other in the embedding space. This, however, could

be wrong as the size of the queue to accumulate negative sam-

ples gets bigger. For example, the more we accumulate utter-

ances to compose negative samples, the more probable some of

the utterances are from the same speaker of the current utter-

ance. We could make the queue size smaller to avoid this issue

but this degrades the performance [12]. In [11], the author in-

troduced a clustering stage at every epoch to sample negative

samples only from different clusters but the improvement was

not large.

Non-contrastive methods, however, do not require nega-

tive samples so they are free from this issue. Moreover, non-

contrastive methods have shown comparable or even better per-

formance compared to contrastive methods. Thus, we pro-

pose to apply a non-contrastive SSL method recently proposed,

DINO [3], that outperforms previous SSL methods in many CV

tasks.

2.1.2. Distillation with No labels

In [3], the author proposed a design to maximize the similar-

ity between feature distributions of differently augmented im-

ages from an original image . This is based on the assumption

that augmented images from one image keep the same semantic

information. For example, although you cropped two images

from a dog image and make one a black image while making

the other jittered, they are still dog images.

The training is done as follows: First, a given sample is aug-

mented in different ways. To be specific, you crop a local view

and a global view of an image, where local and global views

mean small and large portions of the image. Several augmenta-

tions can be added to the cropped images, such as color jitter-

ing, Gaussian blur, solarization, etc. The local views are propa-

gated through one branch while the global views are propagated

through the other branch to minimize the cross-entropy between

two distributions calculated along the branches. A student net-
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Stage Algorithm/Loss Model
EER (%)

voxceleb1 o test VoxSRC-21 val VoxSRC-21 test
Initial model training

(self-supervised learning)

DINO LResNet34 4.83 13.96 -

MoCo ECAPA [4] 7.3 - -

Iterative clustering AAM

ResNet34 (iter1) 2.56 8.59 -

ResNet34 (iter2) 2.13 7.35 -

ResNet34 (iter3) 2.13 6.97 -

ResNet34 (iter4) 2.14 6.88 -

ECAPA (iter7) [4] 2.1 - -

Robust training
AAM Res2Net50

1.89 6.50 6.88

+ larg-margin fine-tuning 1.91 6.32 6.64*

Table 1: Speaker verification results over 3 different trial lists with progressing/different systems over the three stages. The numbers

from [4] seems rounded to the nearest tenth. Pseudo labels for robust training were generated from ResNet (iter3) model. * means the

submission happened after the challenge deadline.

work in one branch and a teacher network in the other branch

are initialized with the same architecture and the model param-

eters while they are updated in different ways during training.

The student network is updated by gradient descent while the

teacher network is updated by an exponential moving average

of the student parameters. To avoid a model to find trivial solu-

tions, i.e., having distributions where one dimension is dom-

inant or uniform distributions, centering and sharpening are

used. centering prevents one dimension from dominating by

calculating a center by equation. However, using centering en-

courages a uniform distribution. That is why sharpening is also

applied where it encourages peaky distributions. This is done

by setting a low value for the temperature in the teacher softmax

normalization. The architecture for the student and teacher net-

works is composed of a backbone, e.g., ViT [13] or ResNet [14]

without later fully connected layers and a projection head. The

projection head consists of a 3-layer fully connected layers with

hidden dimension 2048 followed by L2 normalization and a

weight normalized fully connected layer with K dimensions.

2.1.3. DINO to learn embedding from speech

The assumption that augmented images from one image keep

the same semantic information in CV can be similarly applied to

speaker embedding learning. For example, most of the speech

corpora consist of utterances where each utterance is spoken by

one speaker. In this case, it is reasonable to assume that seg-

ments extracted from random positions in the same utterance

have the same speaker information. The correspondence be-

tween CV and speaker embedding learning is following. An im-

age corresponds to an utterance while cropping local and global

views from an image corresponds to extracting short and long

segments from an utterance. The popular augmentation meth-

ods in speaker embedding learning after extracting segments

are adding sounds such as babbling, music, noise in the back-

ground, or applying room impulse response effects.

2.2. Iterative clustering: pseudo label update

In this stage, we train a new model based on pseudo labels gen-

erated from the initial model. In detail, we extract speaker em-

beddings from the initial model and cluster them using clus-

tering algorithms where the number of clusters is heuristically

determined based on speaker verification performance on vali-

dation data. Indices of final clusters are used as pseudo speaker

labels for supervised speaker embedding training.

Once the first labels are generated from the initial model,

we train a new model, possibly with a larger model. The model

is continually updated over iterations based on pseudo labels

updated after each iteration. The labels are updated in the same

way explained above, i.e., through speaker embedding extrac-

tion, clustering, and pseudo labeling. The number of clusters is

fixed as one value over the iterations.

2.3. Robust training on the final pseudo-labels

In this stage, a new larger model is trained with a large mar-

gin fine-tuning after a few epochs. The difference from the

last year [4] is that we keep using the additive angular mar-

gin (AAM) loss instead of sub-center AAM [15] in this stage.

3. Experiment and result

For the input features in training, we used an 80-dimensional

log filter bank calculated over the 25 ms window with a 10 ms

shift. The moving window of 150 ms was used for the mean

normalization of the features. Adam [16] optimizer with learn-

ing rate scheduling was used over the training stages.

3.1. Initial model training: DINO

The embedding architecture we used for the DINO backbone is

a light version of ResNet34 (LResNet34) with the kernel size of

the first convolution layer as 3 instead of 7 and with a mean and

standard deviation pooling layer followed by a fully connected

layer to have the embedding dimension as 256 as in [17]. The K

in the following DINO projection head was 65536. The reason

for selecting the LResNet34 as the embedding architecture is

to reduce the training time considering DINO takes more com-

putation compared to conventional supervised model training.

For the augmentation, we added sounds such as babbling, mu-

sic, noise in the background or applied room impulse response

effects.

As shown the Intial model training (self-supervised learn-

ing) row in Table 1, DINO outperforms MoCo in the stage.

3.2. Iterative clustering: pseudo label update

In this stage, we used an original ResNet34 architecture [14]

with the kernel size of the first convolution layer as 3 instead

of 7 and with a mean and standard deviation pooling layer fol-

lowed by a fully connected layer to have the embedding dimen-

sion as 256. The loss function used was AAM softmax [18],

warming up the margin value from 0 to 0.3 for the first 20

epochs. The number of clusters is set to 7500 following [4].



As shown in the Iterative clustering row in Table 1, the

model performance converges from 2nd and 4th iterations on

voxceleb1 test o and VoxSRC-21 validation, respectively. This

is possibly because the embeddings from DINO initial model

are better than the ones from MoCo.

3.3. Robust training on the final pseudo-labels

Res2Net50 [19] architecture with 26 for the width of filters and

4 for the scale was used in the final robust training stage. The

pooling layer and the following fully connected layers are the

same in the previous stages. The AAM loss with the same set-

ting in the previous stage was used. The pseudo labels were gen-

erated from the 3rd model from the previous stage, ResNet34

(iter3) in Table 1. After 30 epochs, the post-pooling layers in

the model were fine-tuned with a larger margin, 0.5. The large

margin fine-tuned model on longer chunks, 4 seconds, however,

degraded the performance on VoxSRC-21 test pairs although it

showed improvement on validation pairs, as shown in Table 2.

This is possibly due to the short-length segments, less than 4-

second, that take a large portion of the utterances in the test

trials. Thus, we used 3-second chunks instead for large margin

fine-tuning.

Segment length voxceleb1 test o VoxSRC-21 val VoxSRC-21 test

No fine-tuning 1.89 6.50 6.88

2 second 1.97 6.86 -

3 second 1.91 6.32 6.64*

4 second 1.92 6.31 7.23

Table 2: Relationship between segment length and the perfor-

mance as EER(%) in large margin fine-tuning over 3 different

trial lists. * means the submission happened after the challenge

deadline.

Training a larger model and the following large margin fine-

tuning improve the performance on VoxSRC-21 validation trials

as shown in the Robust training row Table 1.

4. Conclusion

We developed speaker verification systems without using

speaker labels and achieved 1.91, 6.32, and 6.64 in EER(%)

in voxceleb1 test o, VoxSRC-21 validation and test trials, re-

spectively. Our main difference from the previous year’s first

place team [4] was to use non-contrastive self-supervised learn-

ing method, DINO [3]. This showed better performance in the

initial model training stage compared to MoCo [12]. Also, the

better speaker embedding in the initial model led to only a few

iterations in the next iterative clustering stage. In the robust

training stage, we carefully chose the training segment lengths

not to overfit to the training or validation subsets while avoiding

too short segment lengths. This is because the large portion of

the utterances in the test trials was shorter than ones in the train-

ing and validation pairs, having the lengths less than 4 seconds.
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