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Abstract

When causal quantities cannot be point identified, researchers often pursue partial
identification to quantify the range of possible values. However, the peculiarities of
applied research conditions can make this analytically intractable. We present a gen-
eral and automated approach to causal inference in discrete settings. We show causal
questions with discrete data reduce to polynomial programming problems, and we
present an algorithm to automatically bound causal effects using efficient dual relax-
ation and spatial branch-and-bound techniques. The user declares an estimand, states
assumptions, and provides data (however incomplete or mismeasured). The algorithm
then searches over admissible data-generating processes and outputs the most precise
possible range consistent with available information—i.e., sharp bounds—including
a point-identified solution if one exists. Because this search can be computationally
intensive, our procedure reports and continually refines non-sharp ranges that are
guaranteed to contain the truth at all times, even when the algorithm is not run to
completion. Moreover, it offers an additional guarantee we refer to as ε-sharpness,
characterizing the worst-case looseness of the incomplete bounds. Analytically vali-
dated simulations show the algorithm accommodates classic obstacles, including con-
founding, selection, measurement error, noncompliance, and nonresponse.
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The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of data.

Tukey (1986, pp. 74–75)

1 Introduction

When causal quantities cannot be point identified, researchers often pursue partial identi-

fication to quantify the range of possible answers. These solutions are tailored to specific

scenarios (e.g. Lee, 2009; Gabriel et al., 2020; Kennedy et al., 2019; Knox et al., 2020; Li and

Pearl, 2021; Sjölander et al., 2014), but the idiosyncrasies of applied research can render

prior results unusable if identifying assumptions fail or slightly differing causal structures

are encountered. This case-by-case approach to deriving causal bounds presents a major

obstacle to scientific progress. To increase the pace of discovery, researchers need a general

approach that is robust to context-specific peculiarities.

In this paper, we present an automated approach to causal inference in discrete set-

tings which can be applied to all graphical causal models, as well as all observed quantities

and domain assumptions in standard use. With our algorithm, users declare an estimand,

state assumptions, and provide available data—however incomplete or mismeasured. The

algorithm then outputs sharp bounds, the most precise possible answer to the causal query

given these inputs, including a point estimate if the solution is identified. This approach

can accommodate scenarios involving any classic threat to inference, including but not lim-

ited to missing data, selection, measurement error, and noncompliance. Our algorithm also

has the desirable property of alerting users when assumptions conflict with observed data,

indicating a faulty causal theory. Finally, we develop techniques for drawing statistical in-

ferences about estimated bounds. We demonstrate our method using a host of simulations,

validating results wherever existing analytic solutions are available.

Our work advances a rich literature on partial identification in causal inference (Robins,

1989; Manski, 1990; Heckman and Vytlacil, 2001; Zhang and Rubin, 2003; Cai et al., 2008;

Swanson et al., 2018; Gabriel et al., 2020; Molinari, 2020), outlined in Section 2, which

has sometimes cast the task as a constrained optimization problem that can be solved

computationally. In pioneering work, Balke and Pearl (1994, 1997) provided a method

for calculating sharp bounds when causal queries can be expressed as linear programming

problems. However, a wide range of estimands and empirical obstacles result in causal

queries that are not reducible to linear programs, and a complete computational solution

has remained elusive.

When feasible, sharp-bounding approaches offer a principled and transparent approach

to causal inference that makes maximum use of available information while acknowledg-

ing its limitations. Claims outside the bounds can be immediately rejected, and claims

inside the bounds must be explicitly justified by additional assumptions or data that en-

able tightening. But several obstacles still preclude widespread use of these techniques.
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For one, analytic derivation remains intractable for many problems. Within the subclass

of linear problems, Balke and Pearl’s (1994) simplex method offers a highly efficient an-

alytic solution, but one that fails to generalize to the many partially observed settings

where nonlinearity arises. Analytic nonlinear solutions remain limited to specific results,

painstakingly derived case by case (e.g. Knox et al., 2020; Gabriel et al., 2020; Li and

Pearl, 2021). Though general sharp bounds can in theory be obtained by various nonlin-

ear optimization techniques (Geiger and Meek, 1999; Zhang and Bareinboim, 2021), such

approaches are often computationally infeasible. This is because without exhaustively ex-

ploring a vast model space, analysts can obtain local optima that correspond to potentially

invalid bounds—i.e., ranges that may fail to contain the truth.

To address these limitations, we first show in Sections 3 and 4 that essentially all com-

mon causal queries involving discrete variables can be reduced to polynomial programs—a

well-studied class of optimization tasks that nest linear programming as a special case—

building on prior results from Geiger and Meek (1999) and Wolfe et al. (2019).1 While

mature techniques have been developed for such tasks (Belotti et al., 2009; Vigerske and

Gleixner, 2018; Gamrath et al., 2020), it is well known that solving polynomial programs

to global optimality is in general NP-hard. The difficulty of the problem thus highlights

the need for efficient algorithms and bounding techniques that remain valid even when

analysts are faced with time constraints. In Sections 5–6, we develop a procedure, based

on dual relaxation and spatial branch-and-bound relaxation techniques, that provides valid

bounds of arbitrary sharpness, for all causal structures, under virtually any information

environments and domain assumptions. We show this procedure is guaranteed to achieve

complete sharpness with sufficient computation time; in smaller problems, this can oc-

cur in a matter of seconds. However, in cases where the time needed to discover sharp

bounds is prohibitive—which can occur even in moderately sized problems with severe

information fragmentation—our algorithm is anytime (Dean and Boddy, 1988), meaning

it can be interrupted to obtain non-sharp bounds that are nonetheless guaranteed to be

valid. Our technique also offers an additional guarantee we term “ε-sharpness,” indicating

the worst-case looseness factor of the relaxed bounds relative to the unknown, completely

sharp bounds. In Section 7, we provide two approaches for characterizing uncertainty in the

estimated bounds, and we demonstrate our technique in a series of simulations in Section 8.

Our simulations, validated against previously derived analytically results where possible,

show the flexibility of our approach and the ease with which assumptions can be modularly

imposed or relaxed. Moreover, we demonstrate how the algorithm can uncover counterin-

tuitive results: in one case, we show a scenario that appears to be partially identified is in

fact point identified, improving over widely used bounds (Manski, 1990) and recovering a

recent advance in the literature on nonrandom missingness (Miao et al., 2015).

1Specifically, our results apply to elementary arithmetic functionals or monotonic transformations
thereof—a broad set that essentially includes all causal assumptions, observed quantities, and estimands
in standard use. For example, the average treatment effect and the log odds ratio can be sharply bounded
with our approach, but non-analytic functionals (which are rarely if ever encountered) cannot. Functionals
that do not meet these conditions can be approximated to arbitrary precision, if they have convergent
power series.
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Our approach offers a complete and computationally feasible approach to causal infer-

ence in discrete settings. Given a well-defined causal query, valid assumptions, and data,

researchers now have a general and automated process to draw causal inferences that are

guaranteed to be valid and, with sufficient computation time, provably optimal. As we

discuss in Sections 9–10, our approach’s modular nature also allows analysts to conduct

principled robustness tests and sensitivity analyses that can identify the most promising

avenues for future research, promote research transparency, and accelerate scientific dis-

covery.

2 Related Literature

Researchers have long sought to automate causal identification by recasting causal queries

as constrained optimization problems that can be solved computationally. Our work is most

closely related to Balke and Pearl (1994, 1997), which showed that certain bounding prob-

lems in discrete settings—generally corresponding to causal systems in which outcomes

and manipulated variables are fully observed—could be formulated as the minimization

and maximization of a linear objective function subject to linear equality and inequality

constraints. In these cases, causal bounding problems can be reformulated as linear pro-

gramming problems, which admit both symbolic solutions and highly efficient numerical

solutions. Subsequent studies have proven that in particular settings, the bounds pro-

duced by this technique are sharp (Ramsahai, 2012; Bonet, 2001; Heckman and Vytlacil,

2001), and Sachs et al. (2020) shows this approach produces sharp bounds for any such

linear problem. These results were extended by Geiger and Meek (1999), which showed

that a much broader class of discrete problems can be formulated in terms of polynomial

relations—at least, when analysts have precise information about the kinds of disturbances

or confounders that may exist, expressed in terms of latent variable cardinalities. These dis-

crete problems include not only the bounds studied in this paper, but the related problem of

determining what constraints on the main variables are implied by a causal graph. In addi-

tion to the well-known conditional independence constraints implied by d-separation, these

can include generalized equality constraints (or Verma constraints; Verma and Pearl, 1990;

Tian and Pearl, 2002). Beyond these equalities, the main variables are also constrained by

generalizations of the instrumental inequalities (Pearl, 1995; Bonet, 2001).

Geiger and Meek (1999) note that in theory, algorithms for quantifier elimination can

provide symbolic solutions for these questions. However, the time complexity of quantifier

elimination is doubly exponential, rendering it infeasible for all but the simplest cases. At

the core of this issue is that symbolic methods provide a general solution, meaning that

they must explore the space of all possible inputs. In contrast, numerical methods such

as our approach can often eliminate portions of the space that are irrelevant, accelerating

computation.

Even so, computation can be time-consuming; polynomial programming is in general

NP-hard. In practice, many optimizers are able to rapidly find reasonably good values

but cannot guarantee optimality without exhaustively searching the space of candidates.
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This approach poses a challenge for obtaining causal bounds, which represent minimal and

maximal values of the estimand under all models that are admissible, or consistent with

observed data and modeling assumptions. If a local optimizer operates on the original

problem (the primal), proceeding from the interior and widening bounds as more extreme

models are discovered, then failing to reach global optimality will result in invalid bounds—

ranges narrower than the optimal sharp bounds which do not contain all possible solutions.

In this paper, we detail an approach that resolves this obstacle by allowing analysts to

obtain valid bounds in limited time. At a high level, our approach is to reexpress causal

inference problems in terms of principal strata (Frangakis and Rubin, 2002). To do so, we

first present new results on lossless reductions for latent variables of unknown cardinality.

We then show that causal estimands, modeling assumptions, and observed information

can all be expressed in terms of polynomial expressions, equalities, and inequalities with

no loss of information. We show how these systems can be simplified for computational

efficiency, then develop an iterative primal-dual algorithm that searches for admissible

models from the interior of the bounds (the primal problem) while simultaneously refining

a guaranteed-valid outer envelope for the sharp bounds (the dual problem). Even when

exhaustive search is computationally infeasible, suboptimal primal and dual values can still

be found and improved over time. We show suboptimal dual points allow analysts to report

valid loose bounds—those that are wider than the unknown sharp bounds. Our method also

utilizes the suboptimal primal points, allowing analysts to assess the worst-case looseness

factor of the reported valid bounds, relative to the unknown sharp bounds.

3 Preliminaries

In this section, we define notation and discuss concepts necessary to derive our key results.

We first review how arbitrary directed acyclic graphs (DAGs) can be “canonicalized” with-

out loss of information, resulting in an equivalent form with properties amenable to analysis

(Evans, 2018). We then describe how graphs in this form give rise to potential outcomes

and principal strata (Frangakis and Rubin, 2002), two key building blocks in our analytic

strategy.

Suppose that for each i.i.d. unit i ∈ {1, . . . , N}, the main variables of interest are

contained in Vi = {Vi,1, . . . , Vi,J}, indexed by j. We will suppose that the sample space of

each main variable, S(Vi,j), has finite cardinality. These variables may be either observed or

unobserved—as we will show, it is often useful to reason about unobserved elements of Vi in

the context of missing data and measurement error. We will also consider unobserved causal

ancestors of Vi, collectively denoted Ui = {Ui,1, . . . , Ui,K} and indexed by k, that represent

random disturbances or confounders. Without loss of generality, these disturbances—

which have unknown, possibly infinite cardinality—are assumed to subsume all phenomena

that are causally relevant to Vi.
2 As we show in Section 3.3, this assumption is without

2We note that traditionally, variables in Vi are permitted to be affected by exogenous causal noise not
represented in the graph. By incorporating all causally relevant factors into Ui, we take each variable in
Vi to be a deterministic function of its parents in the graph, discussed in more detail below.
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consequence, because even a continuous and infinite dimensional Ui must still map down

to the same finite canonical partitions that we describe there. In addition, we will make

use of counterfactual random variables, which represent hypothetical versions of random

variables in Vi that would have occurred had, contrary to fact, treatment variables been

exogenously set to a specified value. (A more rigorous definition is given in Section 3.2.)

By convention, bold letters denote collections of variables; uppercase and lowercase letters

respectively denote random variables and their realizations. We will consider population

distributions until discussing inference in Section 7.

3.1 Canonical DAGs

We now discuss how DAGs can be canonicalized, or distilled to minimal form, to clarify

which aspects of the structural model can be ignored, greatly simplifying the bounding task.

Suppose that causal relationships between all variables in Vi and Ui are represented by a

directed acyclic graph (DAG) G. The nonparametric structural equations model (NPSEM)

of a DAG states that each main variable Vi,j ∈ Vi is a deterministic function of its parents

in the graph G, denoted pa(Vi,j). That is, all factors determining Vi,j are contained in

pa(Vi,j), a subset of Ui and Vi. We denote the function mapping from pa(Vi,j) to Vi,j as

Vi,j = fj
(
pa(Vi,j)

)
; we use F = {f1, . . . , fJ} to denote the collection of these structural

equations, or the structural causal model model of V (Pearl, 2009; Richardson and Robins,

2013). Note that each main variable may be influenced by multiple disturbances, and a

single disturbance may influence multiple main variables.

A DAG is said to be in canonical form if (i) all disturbances are exogeneous, i.e. no

variable in Ui has any parents in G; and (ii) there exists no pair of disturbances, Ui and

U ′i , such that Ui influences a subset of the variables influenced by U ′i . Evans (2018) showed

that for any DAG G ′ not in canonical form; there exists a canonical form DAG G with

an identical distribution over all factual and counterfactual versions of all variables in Vi.

We can therefore without loss of generality limit our consideration to DAGs in canonical

form. An example of a DAG not in canonical form is given in panel Figure 1(a). Panel

Figure 1(b) illustrates the canonicalized version of this graph. For convenience, we will

refer to the joint distribution over all factual and counterfactual versions of Vi as the full

data law. Moreover, any DAG over Ui, Vi, and unobserved ancillary variables Wi with

unknown cardinality (e.g., confounders or mediators not of direct interest) also has an

equivalent canonical DAG with respect to this full data law. A guide for canonicalizing

arbitrary DAGs is given in Appendix A.1.

In short, representing the causal graph in canonical form distills the data-generating pro-

cess (DGP) to its simplest form, eliminating potentially complex networks of disturbances.

Removing variables that are irrelevant to the causal goal further simplifies the structure.

Without these simplifications, it would be exceedingly difficult, if not intractable, to con-

vert causal problems into polynomial programs that can be readily optimized—the essence

of the approach we develop below.
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Figure 1: Canonicalization of a mediation model. Mediation DAG in non-canonical
form (panel a) and canonical form (panel b) that are fully equivalent with respect to
their full data law. Unit indices, i, are suppressed. Canonicalization proceeds as follows:
(i) the dependent disturbance U3 is absorbed into its parent U23; (ii) the superfluous U2

is eliminated as it influences a subset of U23’s children; and (iii) the irrelevant W13 is
absorbed into the V1 → V3 path as it is neither observed nor of interest. A complete guide
to canonicalization is given in Appendix A.1.

W13

U1 U2 U23 U3

V1 V2 V3

(a)

U1 U23

V1 V2 V3

(b)

3.2 Potential Outcomes

The notation of potential outcome functions allows us to compactly express the effects of

manipulating a variable’s parents or other ancestors. Let A ⊂ V be a subset of variables

that will be intervened upon, fixing them to A = a. When A = ∅, so that no intervention

occurs, then define Vi,j(a) = Vi,j, the natural value. When A ⊆ pa(Vi,j), so that only

immediate parents are manipulated, then unit i’s potential outcome function is given by

its response function, Vi,j(a) = fj
(
A = a,pa(Vi,j) \ A

)
. We will now define more gen-

eral potential outcome functions by recursive substitution (Richardson and Robins, 2013;

Shpitser, 2018). For arbitrary interventions on A ⊂ V , let Vi,j(a) = Vi,j
(
{a` : A` ∈

pa(Vi,j)}∪{Vi,j′(a) : Vi,j′ ∈ pa(Vi,j)\A}
)
; here, ` is a generic index that sweeps over main

variables in the graph. This means that if a parent of Vi,j is directly manipulated, it is set

to the corresponding value in a. Otherwise, the parent takes on its potential value after

intervention on any causally prior variables, or its natural value otherwise. To obtain the

parent’s potential value, we follow the same definition recursively. When defining potential

outcomes, intervention on Vi,j itself is ignored. To illustrate, consider the mediation graph

of Figure 1(b). Possible potential outcomes for Vi,3 are (i) Vi,3(∅) = Vi,3(Vi,1, Vi,2), the

observed distribution; (ii) Vi,3(vi,1) = Vi,3(vi,1, Vi,2(vi,1)), relating to total effects; and (iii)

Vi,3(vi,1, vi,2), relating to controlled effects.

3.3 Principal Stratification

Analysts have little information about the disturbances Ui, which may take on an infinite

number of values. This poses an analytic challenge, as it is difficult to reason about infinite

spaces. Here, we review a result that makes the general partial identification problem

tractable despite this issue: broadly, when Vi are discrete, the model that a DAG encodes

can be represented by a finite number of parameters without loss of generality, as long as

the reduced space is sufficiently large. We then introduce the functional parameterization

used for this task, discuss its relationship to principal strata, and review how any marginal
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of the full data law can be represented in terms of these parameters.

Finkelstein et al. (2021) show that there are finite state spaces for Ui that do not restrict

the NPSEM of a DAG for Pr(Vi = v), i.e. the model over the factual main variables. In the

following proposition, we extend this result to show that there are finite state spaces for Ui

that do not restrict the NPSEM of a DAG for the full data law—i.e., the full distribution

over all factual and counterfactual versions of the main variables.

Proposition 1. Suppose G is a canonical DAG over discrete main variables Vi and dis-

turbances Ui with infinite cardinality. Then the model over the full data law implied by

G is unchanged by assuming that the disturbances have finite cardinalities, provided those

cardinalities are sufficiently large.

A proof can be found in Appendix B, along with details on how to obtain a lower bound

on non-restrictive cardinalities for the disturbances.

Further, Evans (2018) showed that for a large class of graphs called geared graphs, it is

possible to develop a functional model that does not alter the causal model of a DAG. In

the functional model of a graph, each main variable Vi is associated with a disturbance Ui
that fully determines how Vi responds to the values of its remaining parents.3

Proposition 1 enables us to develop functional models for graphs that are not geared

as well. Finkelstein et al. (2021) presents an algorithm for constructing a concise func-

tional model for non-geared graphs, taking as input a disturbance cardinality that is

non-restrictive of the model over factual random variables. By instead substituting the

Proposition 1 disturbance cardinality, which may be larger and restricts neither the fac-

tual nor the counterfactual random variables, we obtain a functional model that is likewise

non-restrictive of the full data law. Intuitively, functional models are closely related to

principal stratification (Greenland and Robins, 1986; Frangakis and Rubin, 2002). For

example, consider the simple DAG,

Ui,1 → Vi,1 → Vi,2 ← Ui,2 (1)

in which Vi,1 and Vi,2 are binary. This relationship is governed by the structural equations

Vi,1 = f1(Ui,1) and Vi,2 = f2(Vi,1, Ui,2), where the functions f1 : S(Ui,1) → S(Vi,1) and

f2 : S(Vi,1) × S(Ui,2) → S(Vi,2) are deterministic and shared across all units. Thus, the

only source of randomness is in the disturbances, Ui = {Ui,1, Ui,2}.
Analysts generally do not have direct information about these disturbances. For exam-

ple, Ui,1 could potentially take on any value in (−∞,∞). However, Proposition 1 states

that this variation is irrelevant, because Vi,1 can only take on two possible values: 0 and 1.

The space of Ui,1 can therefore be divided into two canonical partitions (Balke and Pearl,

1997)—those that deterministically lead to Vi,1 = 0 and those that lead to Vi,1 = 1—and

thus there is no loss of generality in treating Ui,1 as if it were binary.4

3Note that if any main variable Vi has multiple parents in Ui, there may be multiple valid functional
parameterizations, depending on which disturbance is chosen to determine which main variable. If each
main variable has only a single parent in Ui, there is only a single functional parameterization.

4See Section 8.2 of Pearl (2009) for a related discussion.
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The situation with Vi,2 is similar but more involved. After the random Ui,2 is realized,

it induces the partially applied response function Vi,2 = f2(Vi,1, Ui,2 = u2) = f
(Ui,2=u2)
2 (Vi,1),

which deterministically governs how Vi,2 counterfactually responds to Vi,1. Regardless of

how many values the disturbance can take on, this response function must fall into one

of only four possible groups, or principal strata, each corresponding to a possible func-

tion of the form f
(Ui,2=u2)
2 : S(Vi,1) → S(Vi,2) (Angrist et al., 1996). These groups are (i)

Vi,2 = 1 regardless of Vi,1, “always takers”; (ii) Vi,2 = 0 regardless of Vi,1, “never takers”;

(iii) Vi,2 = Vi,1, “compliers”; and (iv) Vi,2 = 1− Vi,1, “defiers”. Thus, from the perspective

of Vi,2, any finer-grained variation in S(Ui,2) beyond the canonical partitions is irrelevant.

These partitions of U are in one-to-one correspondence with principal strata, allowing

causal quantities to be expressed in simple algebraic expressions; e.g., the average treat-

ment effect (ATE) in (1) is equal to the proportion of compliers minus the proportion of

defiers.5 By writing down all information in terms of (possibly unknown) strata sizes, we

can convert causal inference problems into tractable polynomial programming problems

over these variables.

The functional parameterization of this graph has four free parameters: one for the

binary Ui,1 (or its reduced representation) and three for the quaternary Ui,2.6 Because the

distributions of disturbances are independent in canonical DAGs by virtue of their exo-

geneity, only their marginal distributions need be parameterized. Each of Ui,1 and Ui,2
encode full information about how Vi,1 and Vi,2 respectively respond to their remaining

parents. In other words, each setting of Ui provides full information not only about each

variable Vi, but also about each of its potential outcomes. This means that we can rep-

resent “cross-world” distributions such as Pr
(
Vi,2(Vi,1 = 0) = 0, Vi,2(Vi,1 = 1) = 1

)
—the

“complier” proportion—in terms of parameters of the marginal distributions of Ui,2 alone.

As we will see below, this fact will be useful in encoding cross-world type assumptions like

monotonicity, as well as for bounding cross-world targets like the natural direct effect or

the probability of causation. More generally, any marginal of the full data law may be

expressed in terms of the functional parameters.

Finally, consider a more complex example, the mediation DAG of Figure 1(b). The

response functions for Vi,1 and Vi,2 remain unchanged. In contrast, Vi,3 is caused by

pa(Vi,3) = {Vi,1, Vi,2} via the structural equation Vi,3 = f3(Vi,1, Vi,2, Ui,23). Substituting in

a realization of the disturbance, Ui,23 = ui,23, will produce one of sixteen response functions

of the form f
(Ui,23=u23)
3 : S(Vi,1)× S(Vi,2)→ S(Vi,3). More generally, the number of unique

response functions grows with (i) the cardinality of the variable, (ii) the number of causal

parents it has, and (iii) the parents’ cardinalities. Specifically, Vi,j has |S(Vi,j)||S(pa(Vi,j))|

possible response functions: given a particular input from Vi,j’s parents, the number of

possible outputs for Vi,j is |S(Vi,j)|; the number of possible inputs from Vi,j’s parents is

5To see this, note that the ATE is given by E[Vi,2(Vi,1 = 1)−Vi,2(Vi,1 = 0)] =
∑

strata E[Vi,2(Vi,1 = 1)−
Vi,2(Vi,1 = 0) | strata]·Pr(strata) = 0·Pr(always taker)+0·Pr(never taker)+1·Pr(complier)−1·Pr(defier).

6These can be thought of as the probabilities of encountering a unit of the “control” type with Vi,1 = 0
(for Ui,1) and of encountering units of the “always-taker,” “never-taker,” and “complier” types (for Ui,2).
These parameters determine the probabilities of the remaining types (the “treatment” type for Ui,1 and
the “defier” type for Ui,2), as principal strata probabilities must sum to unity.

8



|S(pa(Vi,j))| =
∏

Vi,j′∈pa(Vi,j) |S(Vi,j′)|, the product of the parents’ cardinalities.

In turn, this determines the minimal cardinality of U in a reduced but non-restrictive

functional model—roughly speaking, the number of principal strata combinations that

exist, if we think of U as principal strata. Here, “non-restrictive” means that the simplified

model is fully expressive, or that it can represent any possible full data law. For example,

to capture the joint response patterns that a unit may have on Vi,2 and Vi,3, a reduced

version of Ui,23 will be capable of expressing any full data law if it has a cardinality of

|S(U23)| = 4× 16, because Vi,2 has four possible response functions and Vi,3 has sixteen.

4 Formulating the Polynomial Program

We now turn to the central problem of this paper: sharply bounding causal quantities

with missing data. Our approach is to (i) rewrite the causal query into a polynomial

expression, (ii) rewrite modeling assumptions and empirical information into polynomial

constraints, and (iii) thereby transform the task into a constrained optimization problem

that can be solved computationally. Sharp bounds are the narrowest range that contain all

admissible values for a target quantity, i.e., all values that are consistent with information

available to the analyst: structural causal knowledge in the form of a canonical DAG, G;

as well as empirical evidence, E , and modeling assumptions, A, formalized below. We also

suppose that the main variables take on values in a known, discrete set, S = S(V ). In

this section, we will demonstrate (i) that {G, E ,A,S} restricts the admissible values of

the target quantity, and (ii) this range of observationally indistinguishable values can be

recovered by polynomial programming.

The causal graph and sample space, G and S, together imply a set of possible functional

models, each fully characterizing the main variables. By Proposition 1, without loss of gen-

erality, we can consider a simple functional model in which (i) each counterfactual main

variable is a deterministic function of exogeneous, discrete disturbances; (ii) there are a

relatively small number of such disturbances; and (iii) disturbances take on a finite number

of possible values, corresponding to principal strata of the main variables. When repeat-

edly sampling units (along with each unit’s random disturbances, Ui), the k-th disturbance

thus follows the categorical distribution with parameters PUk
= {Pr(Ui,k = ui,k) : ui,k}. By

the properties of canonical DAGs, these disturbances are independent. It follows that the

parameters PU of the joint disturbance distribution Pr(Ui = ui) =
∏

k Pr(Ui,k = ui,k) not

only fully determine the distribution of each factual main variable—i.e. the potential out-

come under no intervention, Vi,j(∅)—they also determine the counterfactual distribution

of Vi,j(a) under any intervention a, and its joint distribution with other counterfactual

variables Vi,j′(a
′) under possibly different interventions a′. This leads to the following

proposition.

Proposition 2. Suppose G is a canonical DAG and C = {Vi,`(a`) = v`} is a set of counter-

factual statements, indexed by `, that variable Vi,` will take on value v` under manipulation

a`. Let U ⊂ S(U ) indicate the subset of disturbance realizations that lead deterministically

9



to every statement in C being satisfied. Then under the structural equation model G,

Pr

(∧
`

C`

)
=
∑
u∈U

∏
uk∈u

Pr(Ui,k = uk), (2)

which is a polynomial equation in PUi
, the parameters of Pr(U = u).

For example, in the mediation setting of Figure 1(b), Proposition 2 implies that the

joint distribution of the factual variables—Vi,1(∅), Vi,2(∅), and Vi,3(∅)—is given by

Pr
(
Vi,1(∅) = v1, Vi,2(∅) = v2, Vi,3(∅) = v3

)
=

∑
{u1,u23}∈U

Pr(U1 = u1) Pr(U23 = u23), (3)

where U =
{
{u1, u23} : f

(U1=u1)
1 (∅) = v1, f

(U23=u23)
2 (v1) = v2, f

(U23=u23)
3 (v1, v2) = v3

}
is the

set of all disturbances that are consistent with a particular Vi = {v1, v2, v3}. Alternatively,

analysts may be interested in the probability that a randomly drawn unit i has a positive

controlled direct effect when fixing the mediator to Vi,2 = 0. This is given by Pr
(
Vi,3(Vi,1 =

0, Vi,2 = 0) = 0, Vi,3(Vi,1 = 1, Vi,2 = 0) = 1
)

and is similarly expressed in terms of the distur-

bances as
∑
{u1,u23}∈U ′ Pr(Ui,1 = u1) Pr(Ui,23 = u23), summing over a different subset of the

disturbance space, U ′ =
{
{u1, u23} : f

(Ui,23=u23)
3 (Vi,1 = 1, Vi,2 = 0) = 1, f

(Ui,23=u23)
3 (Vi,1 = 0, Vi,2 = 0) = 0

}
.

We now expand this result to include a large class of functionals of marginal probabilities

and logical statements about these functionals.

Corollary 1. Suppose G is a canonical DAG. Let PV denote the full data law and g(PV )

denote a functional of PV involving elementary arithmetic operations on constants and

marginal probabilities of PV . Then g(PV ) can be expressed as a polynomial fraction in

the parameters of PU , h(PU ), by replacing each marginal probability with its Proposition 2

polynomialization.

We say functionals of the full data law that fulfill these properties are polynomial-

fractionalizable, or simply polynomializable if the result contains no fractions. The corollary

has a number of implications, which we briefly discuss here. First, it demonstrates that

a wide array of single-world and cross-world functionals can be expressed as polynomial

fractions. These include traditional targets such as the ATE, as well as more complex tar-

gets such as the pure direct effect and the probability of causal sufficiency. It also suggests

that any non-elementary functional of PV can be approximated to arbitrary precision by

a polynomial fraction, provided the functional has a convergent power series.7

Next, observe that when (i) g(PV ) is a polynomial-fractionalizable expression; (ii)

8 ∈ {<,≤,=, >,≥, 6=} is a binary comparison operator; and (iii) α is a constant, then

7We note that non-elementary functionals rarely arise in practice, with the exception of target quantities
on logarithmic or exponential scales. In such cases, bounds on monotonic transformations of polynomials
can be straightforwardly obtained by bounding the underlying polynomial, then applying the transforma-
tion. An example of a functional that our approach cannot handle is the non-analytic 1(ATE is rational).
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statements of the form g(PV ) 8 α can be equivalently expressed as non-fractional polyno-

mial relations h(PU ) 8 0. Finally, by the same token, any polynomial-fractional expression

h(PU ) in the parameters of PU can be reexpressed with (i) a non-fractional polynomial in

an expanded parameter space and (ii) a polynomial equation in the same expanded space.8

We will make extensive use of these properties to convert causal queries to polynomial

programs.

In Appendix A, Algorithm 1 provides a step-by-step procedure for obtaining sharp

bounds. We begin by transforming a factual or counterfactual target of inference T into

polynomial form, possibly with the use of additional auxiliary variables to eliminate frac-

tions. To accomplish this task, the procedure utilizes the possibly non-canonical DAG G
and the possible main-variable outcomes S(V ) to reexpress T in terms of functional param-

eters that correspond to principal strata proportions. The result is the objective function

of the polynomial program. The procedure then polynomializes the sets of constraints on

polynomializable functionals resulting from empirical evidence and by modeling assump-

tions, respectively E and A. For example, in the binary mediation setting of Figure 1, G
may be the graph depicted in either panel (a) or (b). If only observational data is available,

then E consists of eight pieces of evidence, each represented as a statement corresponding

to a cell of the factual distribution Pr
(
Vi,1(∅) = v1, Vi,2(∅) = v2, Vi,3(∅) = v3

)
= Pr(Vi,1 =

v1, Vi,2 = v2, Vi,3 = v3) for observable values in {0, 1}3. Modeling assumptions include all

other information, such as monotonicity or dose-response assumptions; these can be ex-

pressed in terms of principal strata. For example, the assumed unit-level monotonicity of

the V1 → V2 relationship (e.g., the “no defiers” assumption of Angrist et al., 1996) can

be written as the statement that Pr
(
Vi,2(Vi,1 = 0) = 1, Vi,2(Vi,1 = 1) = 0

)
= 0. Assumed

population-level monotonicity is typically written E[Vi,2(Vi,1 = 1) − Vi,2(Vi,1 = 0)] ≥ 0,

but can equivalently be reformulated in terms of principal strata as Pr
(
Vi,2(Vi,1 = 1) =

1, Vi,2(Vi,1 = 0) = 0
)
−Pr

(
Vi,2(Vi,1 = 0) = 1, Vi,2(Vi,1 = 1) = 0

)
≥ 0. Finally, the statement

that each disturbance k follows a categorical probability distribution is reexpressed as the

polynomial relations Pr(Uk = uk) ≥ 0 : uk and
∑

uk
Pr(Uk = uk) = 1.

Algorithm 1 produces an optimization problem with a polynomial objective subject to

polynomial constraints. This polynomial programming problem is equivalent to the original

causal bounding problem. This leads directly to the following theorem.

Theorem 1. Minimization (maximization) of the polynomial program produced by Algo-

rithm 1 produces sharp lower (upper) bounds on T under the sample space S(V ), structural

equation model G, additional modeling assumptions A, and empirical evidence E.

Once the causal problem is expressed in polynomial form, a variety of computational

solvers can in principle be used to optimize (e.g. IPOPT; Wächter and Biegler, 2006).

However, local solvers cannot guarantee valid bounds without exhaustively searching the

8To see this, let s be a scalar auxiliary variable and set h(PU ) = s, which can be manipulated to
obtain a non-fractional polynomial equation, per (ii). The original expression can now be rewritten simply
as s, which is a monomial and hence a polynomial, per (i). Thus, the original polynomial-fractional
expression has been reexpressed in terms of (i) a non-fractional polynomial expression and (ii) a non-
fractional polynomial equation.
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space; when time is limited, these often fail to discover global extrema for the causal es-

timand, resulting in intervals that may fail to contain the quantity of interest. Moreover,

such approaches often become computationally intractable as causal problems grow com-

plex. In the next section, we show how the polynomial program can be simplified to speed

computation.

5 Simplifying the Polynomial Program

Because solving polynomial programs is in general NP-hard, efficient computation requires

us to fully exploit our knowledge of the problem structure. This knowledge allows ana-

lysts to reduce the complexity of the program in ways that algebraic presolvers may not

necessarily detect. In this section, we discuss several ways to do this.

5.1 Eliminating Blocked Disturbances

We begin by using the following observation to limit the number of disturbance distribution

parameters involved in the target and constraints.

Proposition 3. Consider the polynomialization of a probability Pr
(∧

` C`
)

, where C =

{Vi,`(a`) = v` : `}. We say that for intervention a`, a disturbance Ui,k is blocked from

the corresponding counterfactual Vi,` if there are no paths from Ui,k to Vi,` that do not go

through the causally prior members of the intervention a`. When Ui,k is blocked from Vi,`
for every `, the corresponding parameters PUk

can be eliminated from the polynomialization.

In other words, Proposition 3 states that each main variable Vi,j is only a function of its

ancestors in U that affect it through a variable not under intervention. For each marginal

probability of an event, the disturbances that do not affect any variable in the event are

irrelevant. This allows us to amend the polynomialization of Proposition 2 so that the outer

sum ranges only over all possible settings of relevant disturbances, reducing the degree of

each term in the polynomial. For example, in the mediation graph of Figure 1(b), consider

the total effect of the treatment Vi,1 on the outcome Vi,3. Here, all probabilities are of the

form Vi,3(vi,1 = a1) = v3.9 The disturbance Ui,1 is therefore blocked from the outcome Vi,3,

because the sole path from Ui,1 to Vi,3 goes through the intervention set Vi,1. This means

that whenever Pr(U1 = u1) appears in the polynomial, it does so in a way that ensures∑
u1

Pr(U1 = u1) = 1 can be factored out and eliminated.

5.2 Exploiting the Nested Markov Parameterization

We now consider the common case when the empirical evidence E includes single-world

marginal distributions. This occurs when (i) a factual or counterfactual event
∧
`{Vi,`(a) =

v`} involves the same intervention, a, for every variable of interest; and (ii) the probability

9The total effect is given by Pr
(
Vi,3(Vi,1 = 1) = 1

)
−Pr

(
Vi,3(Vi,1 = 0) = 1

)
, which can equivalently be

written Pr
(
Vi,3(Vi,1 = 1, Vi,2 = Vi,2(Vi,1 = 1)) = 1

)
− Pr

(
Vi,3(Vi,1 = 0, Vi,2 = Vi,2(Vi,1 = 0)) = 1

)
.
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Pr
(∧

`{Vi,`(a) = v`}
)

is observed for every event in that state space, {v` : `} ∈
∏

` S(Vi,`).

For example, in the binary mediation setting of Figure 1(b), an observational study might

obtain information about Pr
(
Vi,1(∅) = v1, Vi,2(∅) = v2, Vi,3(∅) = v3

)
for every combi-

nation of v1, v2, and v3. Similarly, an experiment that randomly manipulated Vi,1 would

obtain two such distributions: (i) by observing Pr
(
Vi,2(Vi,1 = 0) = v2, Vi,3(Vi,1 = 0) = v3

)
for all v2 and v3; and similarly, (ii) by observing Pr

(
Vi,2(Vi,1 = 1) = v2, Vi,3(Vi,1 = 1) = v3

)
for all v2 and v3.

A näıve parameterization might use one parameter for the probability of each principal

strata (e.g., four parameters for the proportion of “always takers,” “never takers,” “com-

pliers,” and “defiers”). It is immediately apparent that one näıve parameter is redundant,

as its value is already implied by the fact that all distributions must marginalize to unity.

Hidden-variable DAG models imply additional equality constraints, each of which can like-

wise be used to reduce the number of parameters needed to describe the model, thereby

reducing the number of polynomial constraints in the program.

These additional equality constraints, which are implied by the structural equations

model of G, are well understood. In particular, G imposes certain conditional independence

and generalized equality constraints (or Verma constraints, Verma and Pearl, 1990; Tian and

Pearl, 2002) on these distributions. Each equality constraint can be used to eliminate one

parameter of the single-world distribution. The parameterization that takes full advantage

of these structural equality constraints to reduce the number of parameters is called the

nested Markov parameterization (Evans et al., 2019). This parameterization achieves the

minimal number of parameters, equal to the dimension of the model of G.

Each nested Markov parameter is exactly equal to an identified marginal probability

of a single-world event, Pr
(∧

`′{Vi,`′(a′) = v`′}
)

. Because each of the nested Markov

parameters is identified from the initial single-world distribution, Pr
(∧

`{Vi,`(a) = v`}
)

,

whether indirectly or directly, it can be calculated directly from the empirical evidence E .

By Proposition 2, this probability remains polynomializable in the parameters PU . This

allows us to add one equality constraint to the program per nested Markov parameter,

based on its polynomialization, rather than one equality constraint per outcome in the state

space. For hidden variable DAGs that imply a large number of equality constraints, this

can substantially reduce the number of constraints. Evans et al. (2019) offers a a complete

guide to obtaining nested Markov formulations of arbitrary single-world distributions.

Each parameter in the nested Markov formulation is the probability of a single-world

event that involves fewer main variables and more interventions, compared to any event

used by the näıve parameterization. As a result, the corresponding polynomialization will

have fewer terms, of lower degree, than the polynomialization of näıve parameters. An

example is provided in Appendix A.4. Using this technique, we modify Algorithm 1 by

partitioning the empirical evidence into all single-world marginal distributions EM and

the remaining evidence ER. The constraints in EM can then be reduced into their nested

Markov form before polynomialization. Because the nested Markov parameterization allows

for fewer, simpler polynomial constraints in the program, it is important to use it whenever

13



the empirical evidence permits.

We note that when certain deterministic relationships exist between variables in Vi,

as in the missing-data setting of Figure 5(c–d),10 these relationships may imply equality

constraints not exploited by the nested Markov parameterization. In such cases, it may be

possible to further reduce the number of constraints; we do not explore that option here.

5.3 Eliminating Additional Constraints and Parameters

Finally, we describe when constraints and parameters can be safely eliminated from a

program. We say that parameters x and y co-occur in a polynomial system if they appear

in the same constraint; they interact if there exists a sequence of parameters from x to y

such that every adjacent pair co-occurs.11 If a constraint’s parameters do not interact with

the objective’s parameters, that constraint may be dropped. If a parameter exists only

in constraints that have been eliminated, then the parameter has also been eliminated,

simplifying the system.

This may be used in conjunction with the structure of G to help simplify the program,

because different districts—components in G connected by bidirected arcs (Tian and Pearl,

2002; Richardson, 2003)—do typically do not interact. That is, likelihoods on marginal

distributions of G have a representation that is decomposable by districts. For example, in

Figure 1(b), Vi,1 lies in one district; in contrast, Vi,2 and Vi,3 lie in another district, because

they are connected by Ui,23. Because each nested Markov parameter is the probability of

a single-world event involving main variables within a single district, its polynomialization

will at most involve disturbance parameters in that district. This leads to the following

proposition.

Proposition 4. The degree of each polynomial in the nested Markov constraints is bounded

from above by the number of latent variables in the corresponding district. Moreover, if two

disturbances Ui,k and Ui,k′ appear in different districts, their parameters PUk
and PUk′

will

not interact in any nested Markov constraint.

To illustrate, consider the common scenario where an analyst observes the full joint

distribution over factual variables, Pr
(
Vi,1(∅) = v1, . . . , Vi,J(∅) = vJ

)
, and seeks to bound

a functional relating a treatment a to an outcome Vi,j(a) in the same district. As an

example, in Figure 1(b), the effect of the mediator Vi,2 on the outcome Vi,3 is wholly

contained within a single district. We can therefore drop all constraints related to nested

Markov parameters involving other districts, and thus all disturbance parameters in other

districts.

10In this graph, a latent variable Y has an observed version Y ∗ that deterministically inherits Y ∗ = Y
when a reporting variable R = 1, but takes on the missing-value indicator Y ∗ = NA otherwise.

11For example, consider the constraints x+ y = a, y + z = b. Here, x and y co-occur; x and z interact.
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6 Computing ε-sharp Bounds in Polynomial Programs

We now turn to the practical optimization of the polynomial program defined by Algo-

rithm 1. Theorem 1 states minimization and maximization of this original primal program

is equivalent to the initial bounding problem. However, obtaining globally optimal solu-

tions in polynomial programming can be computationally intensive. Worryingly, methods

that iteratively improve suboptimal values for the primal problem may fail to produce

valid bounds (i.e., bounds containing all possible values of the estimand, including global

extrema) without searching the full parameter space, P . To address this challenge, we

use dual methods that construct and iteratively refine an outer envelope around the pri-

mal function (i.e. the objective function, or causal quantity of interest). Specifically, we

employ a variation of the spatial branch-and-bound method, combined with a piecewise lin-

ear envelope, implemented using a variety of optimization frameworks that include SCIP

and Couenne (Vigerske and Gleixner, 2018; Gamrath et al., 2020; Belotti et al., 2009).

Throughout the optimization process, current suboptimal values for dual minimization

and maximization problems are guaranteed to produce valid but loose outer bounds; cur-

rent suboptimal values for the primal problem produce possibly invalid inner bounds; and

the lower (upper) endpoint of the unknown sharp bounds is guaranteed to lie between

the current suboptimal primal and dual minimization (maximization) values. Through si-

multaneous primal-dual optimization, we use these suboptimal inner bounds to precisely

quantify worst-case looseness, ε, of the suboptimal but valid outer bounds. This allows

researchers to assess how more computation may lead to tightened conclusions.

A step-by-step description of our optimization procedure, which we term ε-sharp bound-

ing, is given in Algorithm 2 of Appendix A. At a high level, it proceeds as follows. Our

procedure takes as inputs the polynomialized objective function T (p) and constraint set

C(p), obtained from Algorithm 1. It then evaluates a range of models, or points p in the

model space P for which C(p) is satisfied. It seeks to identify extreme values of T (p) within

this subspace. It also accepts two parameters: εthresh, a stopping threshold for the looseness

factor stopping, and θthresh, a stopping threshold for width of the bounds. The algorithm

returns two types of information: the bounds for the causal program, and the worst-case

looseness factor ε.

Primal bounds are denoted P and P , adopting the convention that underlines refer to

objects used for minimization and overlines for maximization. These indicate the extreme

values of the target estimand in any admissible model—that is, satisfying C(p)—that has

been located so far. These are initialized at +∞ and −∞, respectively, indicating that

no admissible models have been found yet. As optimization proceeds, the primal bounds

improve as new, more extreme admissible models are found. We refer to [P , P ] as the inner

bounds : the unknown sharp bounds must at least contain these points, which correspond

to models that are observationally indistinguishable from the true DGP.

Dual optimization begins by partitioning the parameter space into branches, proceeding

separately for the lower and upper bound and respectively producing partitions Bb and Bb.
At initialization, these consist of a single branch spanning the entire parameter space; each
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branch is then recursively divided. The lower and upper parts of the dual envelope, or

outer envelope, are denoted D and D. These are piecewise linear functions, with pieces

corresponding to the branching partitions, that are relaxations of the true objective func-

tion, T (p), from below and above. These relaxations are made to ensure they will always

contain the entire objective function at all points in the parameter space. Within branch

b, the value min{Db(p) : p ∈ Bb} indicates the lowest value attained by the lower envelope;

thus, T = minb
{

min{Db(p) : p ∈ Bb}
}

represents the lowest value attained by the lower

envelope anywhere in the parameter space. Conversely, T = maxb
{

max{Db(p) : p ∈ Bb}
}

represents the highest value of the upper envelope. These extreme points on the dual

envelope, [T , T ], define the dual (outer) bounds. These are the reported causal bounds;

whatever the true sharp bounds, they must lie inside the dual bounds, even if the algorithm

has not run to completion. We let θ equal the bound width, or the difference between the

upper and lower dual bounds, and we define the worst-case looseness factor ε as the slack

(the difference in dual and primal bound widths) divided by the primal bound width.

The algorithm heuristically selects branches in the model space that appear promising,

and refines primal and dual bounds in turn. It first searches within the branch for an

admissible model; if found, and if the associated causal estimand is more extreme than

those previously encountered, it is stored as a new primal bound. Whatever the true

nonparametric sharp bounds, they must lie outside the primal bounds because the true

bounds must contain the extreme models that define the primal bounds. Then, it divides

the branch into sub-branches and refines the dual envelope by tightening the piecewise

linear outer-approximation. The algorithm continuously prunes branches of Bb and Bb
that wholly violate constraints; it also continuously branches and refines the bounds while

θ and ε exceed specified thresholds.

7 Statistical Inference

We now turn to statistical inference for the bounds developed above. We say that the results

of Algorithm 2 when applied to E , the population empirical constraints—i.e., margins of the

full data law that are observed without sampling error—are population bounds. In practice,

the empirical quantities used in these constraints are estimated from finite samples. Our

goal in this section is to account for variation in Ê , the estimated constraints, that arises

over repeated sampling. The results of Algorithm 2 when substituting Ê for E are referred

to as the estimated bounds. In this section, we describe how to construct confidence bounds

that (i) contain the estimated bounds and (ii) contain the population bounds at a rate of

at least the confidence level α over repeated samples.

Recall that each element of empirical evidence E is a relation between (i) some popu-

lation quantity that is an observable functional of the main variables’ distribution, g(PV ),

reexpressed in terms of the disturbance distribution PU ; and (ii) the population value of

that observable quantity. In Ê , we plug in for (ii) the estimated value of the quantity in

finite data. For example, in the mediation graph of Figure 1(b), an analyst with access to

a sample of observational data would have
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Ê =

{
polynomialize

(
Pr
(
Vi,1(∅) = v1, Vi,2(∅) = v2, Vi,3(∅) = v3

)
= 1

N

∑N
i=1 1 {Vi,1 = v1, Vi,2 = v2, Vi,3 = v3}

)
: v1, v2, v3

}
(4)

We will refer to the vector of estimated quantities on the right-hand side of Ê elements—in

the above example, quantities of the form 1
N

∑N
i=1 1 (Vi,1 = v1, Vi,2 = v2, Vi,3 = v3)—as Ê.

We denote the corresponding population quantities as E, the right-hand side values in E .

To construct confidence bounds we consider the sampling variability of these estimated

quantities. We construct regions, CRα(Ê), containing Ê and guaranteed to contain the

population quantities E with at least probability α over repeated samples. These regions

correspond to population distributions over observed parameters that cannot be rejected at

level α. In Algorithm 2, we then replace the Ê constraints with a set of loosened confidence

constraints CRα(Ê). In other words, if the population bounds are obtained by optimizing

subject to a equality constraint {g`(PV ) = E`} ∈ E , and the estimated bounds are obtained

with the plug-in version
{
g`(PV ) = Ê`

}
∈ Ê , then the confidence bounds will incorporate

the interval constraint
{
g`(PV ) ∈ CRα(Ê`)

}
∈ CRα(Ê).

Because loosening Ê to CRα(Ê) can only decrease (increase) the minimum (maximum)

value obtained by the polynomial program, confidence bounds always contain the estimated

bounds. Similarly, when the confidence region for estimated quantities fully contains their

population analogues, then the confidence constraint CRα(Ê) is looser than the population

constraint E , and resulting confidence bounds also contain the population bounds. However,

when the confidence region does not fully contain population quantities due to sampling

error, confidence bounds may still contain population bounds. This can occur if the non-

covered quantity corresponds to a constraint that is irrelevant to the bounds. Therefore,

if the confidence region on the observed quantities has coverage of exactly α, confidence

bounds will contain the population bounds in at least α of repeated samples.

In discrete settings, the task of obtaining confidence bounds thus reduces to the problem

of constructing regions CRα(Ê) for the multinomial proportion, such that Pr
(
E ∈ CRα(Ê)

)
≥ α. We focus on two methods for doing so. Drawing on Malloy et al. (2020), we first

consider a “Bernoulli-KL” approach that constructs separate confidence regions for each

observable atomic event, Pr(Vi = v), treating it as a “success” in a Bernoulli distribution.

The approach rotates through all possible v and combines the event-specific regions using

a result on the Kullback-Leibler divergence of sampling distributions to the underlying

population distribution. The Bernoulli-KL method produces a confidence region for single-

world distributions that is guaranteed to have conservative coverage for the multinomial

proportion in finite samples. The region can be represented as a system of linear inequality

constraints, then incorporated into the polynomial program. Our second approach uses

an asymptotically valid confidence region based on the multivariate Gaussian limiting dis-

tribution of the Dirichlet (Bienaymé, 1838), which can be represented as a single convex

quadratic inequality constraint. Figure 2 visualizes these regions for a simple two-node
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Figure 2: Polynomial confidence regions in a binary graph. Panel (a) presents a
causal graph in which binary X causes binary Y , but both are confounded by an unobserved
U . N = 1, 000 observations are drawn from this DGP, producing an empirical distribution
with proportions 1

N

∑N
i=1 1(Xi = x, Yi = y). Panels (b–c) depict confidence regions for

Pr(Xi = 0, Yi = 0), Pr(Xi = 0, Yi = 1), and Pr(Xi = 1, Yi = 0); the final category,
Pr(Xi = 1, Yi = 1) (not depicted), must sum to unity. Panel (b) shows the Bernoulli-
KL confidence region, which is conservative in finite samples and can be polynomialized
as a set of linear inequalities. Panel (c) shows the Gaussian confidence region, which is
asymptotically valid and can be polynomialized as a single convex quadratic inequality.

U

X Y

(a) (b) (c)

graph. Simulations reported in Section 8.2 evaluate coverage of the methods for various

sample sizes. Appendix C provides details on the implementation of these methods. We

also provide a method for polynomializing arbitrary confidence regions, allowing analysts

to exploit tighter finite-sample confidence regions.

8 Simulated Examples

We now demonstrate our algorithm’s performance via simulations. Several examples corre-

spond to known analytic solutions, offering further validation of our approach. Section 8.1

illustrates how Algorithms 1–2 allow analysts to iteratively state possible assumptions, test

their observable implications, and use them to narrow causal bounds under noncompliance.

Section 8.2 evaluates our proposals for statistical inference with estimated bounds. Sec-

tion 8.3 examines several challenges—selection, mismeasurement, and missingness—that

pose more complex threats to statistical inference. For clarity of exposition, all simulations

use binary variables; our method adapts automatically to categorical variables.

8.1 Instrumental Variables

Noncompliance, or deviation between assigned (Zi) and realized (Xi) treatment status, is a

common obstacle to causal inference in randomized trials. Balke and Pearl (1997) showed

that the task of bounding the ATE on an outcome Yi in the presence of noncompliance
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can be formulated as a linear programming problem, admitting a computational solution

to partial identification. However, this approach cannot be extended to bound the local

average treatment effect (LATE) among “compliers” that accept the assigned treatment—a

principal effect that has received considerable attention—because this estimand corresponds

to a nonlinear objective function. Angrist et al. (1996) shows the LATE can be point

identified, but only if a number of conditions hold. These conditions include (i) ignorability

of Zi; (ii) a non-null effect of Zi on Xi; (iii) an exclusion restriction, or the absence of a

direct effect of Zi on Yi; and (iv) monotonicity, or the absence of “defiers” that behave

inversely to instructions. In this section, we estimate both the ATE and LATE in settings

where assumptions i–ii are satisfied, then probe the implications of assumptions iii–iv. Our

results show that while extant methods offer solutions for specific scenarios and estimands,

even minor deviations from ideal conditions can render them inapplicable or inaccurate.

Below, we show how our algorithm easily accommodates these variations and complications.

Figure 3: DGPs with noncompliance. The figure displays three possible causal models
corresponding to scenarios in which an encouragement Z causes treatment X. Panel (b)
corresponds to the true DAG in our simulated dataset, in which the monotonicity assump-
tion is violated (indicated here by the absence of a + symbol) but other key identifying
assumptions are satisfied. Panel (a) depicts a DAG assumed by an overcautious analyst
that allows for violations of the exclusion restriction. Panel (c) depicts a model assumed
by an overconfident analyst in which monotonicity of Z → X is incorrectly invoked.

Omitted assumption
(overcautious)

U

Z X Y

(a)

Justified assumptions
(true DGP)

U

Z X Y

(b)

Erroneous assumption
(overconfident)

U

Z X Y
+

(c)

Figure 3 displays three possible DGPs that analysts might assume in a scenario involving

noncompliance. We simulate data from the true DGP, shown in panel (b), in which all

assumptions in Angrist et al. (1996) are satisfied except monotonicity of Z → X. In this

simulation, the true values of the ATE and LATE are −0.25 and −0.36, respectively. In

practice, analysts may proceed with an abundance of caution and make the conservative

causal assumptions depicted in panel (a)—a challenging scenario in which a direct effect

of the instrument on the outcome cannot be excluded and monotonicity is not assumed.

Assuming model (a) and applying our algorithm yields sharp bounds of [−0.63, 0.37] and

[−1, 1] for the ATE and LATE, respectively. While these bounds are relatively wide—the

ATE cannot be signed, and the bounds for LATE are entirely uninformative—the resulting

intervals do contain the true estimand values, and they represent the most precise statement

possible under assumptions the analyst is willing to defend.

If the analyst was willing to assume the exclusion restriction, per model (b)—perhaps

due to domain expertise or an experimental design that ruled out direct effects—our al-
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gorithm would bound the ATE at [−0.55,−0.15], revealing a negative effect and correctly

containing the true value of −0.25. However, under these circumstances, the bounds on the

LATE remain entirely uninformative at [−1, 1]. This reflects the fact that without strong

assumptions, it is difficult to learn about cross-world quantities such as principal effects.

Finally, panel (c) shows a DGP imagined by an overconfident analyst, in which all four

identifying assumptions in Angrist et al. (1996) are embraced. Unbeknownst to the analyst,

the monotonicity assumption is in fact violated. Helpfully, when asked to estimate bounds,

our Algorithm 2 reports that the causal query is infeasible. Recall that the true DGP

corresponds to model (b), in which defiers are present; because the algorithm fails to locate

any DGPs in which the observed information is consistent with the absence of defiers, it

provides a clear warning to users that the assumption cannot be defended. However, if

the analyst näıvely applied the traditional instrumental variables two-stage least squares

estimator, they would not be alerted to this fact. Rather, they would obtain a point

estimate of −0.74, roughly twice the true LATE. Put differently, the standard IV approach

ignores observable implications of underlying assumptions. In contrast, our algorithm flags

faulty theory by identifying infeasible scenarios, forestalling fruitless inquiry.

8.2 Coverage of Confidence Bounds

In applied settings, the bounds estimated by our algorithm will be subject to sampling error.

We now evaluate the performance of confidence bounds that characterize this uncertainty,

constructed according to Section 7, using the instrumental variable model of Figure 3(b).

Specifically, we draw samples ofN = 1, 000, N = 10, 000, orN = 100, 000 observations from

this DGP. For each sample, we then compute estimates of eight quantities: Pr(Zi = z,Xi =

x, Yi = y) for all x, y, z ∈ {0, 1}. These quantities form the basis of estimated bounds, by

the plug-in principle. To quantify uncertainty, we compute 95% confidence regions on

the same observed quantities, then convert them to polynomial constraints for inclusion

in Algorithm 2. Optimizing subject to these confidence constraints produces confidence

bounds, depicted in Figure 4. For each combination of sample size and uncertainty method,

we draw 1,000 simulated datasets and run Algorithm 2 once.

Table 1 reports average values of estimated lower (upper) confidence bounds obtained

by Algorithm 2 over 1,000 simulated datasets, for varying N . At all sample sizes, estimated

bounds are centered on population bounds. Figure 2 shows confidence bounds obtained

across methods and sample sizes. The Bernoulli-KL method produces wider confidence

intervals at allN ; atN = 1, 000, it is generally unable to reject zero, whereas the asymptotic

method does so occasionally. Differences in interval width persist but shrink rapidly as

sample size grows and both methods collapse on population bounds. As discussed in

Section 7, we find more conservative coverage for confidence bounds on the ATE (100%

coverage of population bounds), compared to coverage of the underlying confidence regions

on the observed quantities (95% joint coverage of observed population quantities for the

asymptotic method).
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Table 1: Bias of estimated bounds. Average lower (upper) estimated bounds simu-
lated datasets of varying size. Average estimated bounds correspond closely to population
bounds.

Quantity N = 1, 000 N = 10, 000 N = 100, 000 Population
Lower bound −0.549 −0.551 −0.551 −0.550
Upper bound −0.144 −0.146 −0.146 −0.146

Figure 4: Coverage of confidence bounds. Each of 1,000 simulations is depicted with
a horizontal line. For each simulation, a horizontal error bar represents a 95% confidence
bound obtained per Section 7. All confidence bounds fully contain the population bounds,
indicating 100% coverage. The upper (lower) row of panels reflect confidence bounds ob-
tained with the Bernoulli-KL (asymptotic) method. Columns of panels report confidence
bounds obtained using samples of various sizes. Vertical dotted white lines show true pop-
ulation lower and upper bounds, which contain the true ATE of −0.25; vertical dashed
black lines indicate zero.

8.3 More Complex Bounding Problems

We now examine four hypothetical DGPs, shown in Figure 5, featuring various threats to

inference. Throughout, we target the ATE of X on Y . Panel (a) illustrates outcome-based

selection: we observe unit i only if Si = 1, where Si may be affected by Yi. Selection

severity, Pr(Si = 0), is known, but no information about Pr(Xi = x, Yi = y|Si = 0) is

available. Xi and Yi are also confounded by unobserved Ui. Bounding in this setting is

a nonlinear program, with an analytic solution recently derived in Gabriel et al. (2020).

Panel (b) illustrates measurement error: an unobserved confounder Ui jointly causes Yi and

its proxy Y ∗i , but only treatment and the proxy outcome are observed. Bounding in this

setting is a linear problem. A number of results for linear measurement error were recently

presented in Finkelstein et al. (2020); here, we examine the monotonic errors case, where

Y ∗i (Yi = 1) ≥ Y ∗i (Yi = 0). Panel (c) depicts missingness in outcomes, i.e. nonresponse
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or attrition. Here, Xi affects both the partially observed Yi and response indicator Ri;

if Ri = 1, then Y ∗i = Yi, but if Ri = 0, then Y ∗i takes on the missing value indicator

NA. Nonresponse on Yi is differentially affected by both Xi and the value of Yi itself (i.e.

“missingness not at random,” MNAR); Manski (1990) provides analytic bounds. Finally,

panel (d) depicts joint missingness in both treatment and outcome—sometimes a challenge

in longitudinal studies with dropout—with MNAR on Yi.

Figure 6(a–c) illustrates how Algorithm 2 recovers sharp bounds. Each panel shows

progress in time, converging on known analytic results depicted at the right of each plot.

Primal bounds (blue) widen over time as more extreme, observationally equivalent models

are found. Dual bounds (red) narrow as the outer envelope is tightened. When a region

cannot possibly produce a more extreme value than a previously discovered primal point,

it is eliminated from consideration. Optimization proceeds by simultaneously searching for

more extreme primal points and narrowing the dual envelope. Analysts can terminate the

process at any time, reporting guaranteed-valid dual bounds along with their worst-case

suboptimality factor, ε—or await complete sharpness, ε = 0.
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Figure 5: Various threats to inference. Panels depict (a) outcome-based selection, (b)
measurement error, (c) nonresponse and (d) joint missingness. In each graph, X and Y are
treatment and outcome, respectively. Dotted red regions represent observed information.
In (a), the box around S indicates selection: other variables are only observed conditional
on S = 1. In (b), Y ∗ represents a mismeasured version of the unobserved true Y . In (c),
RY indicates reporting, so that Y ∗ = Y if R = 1 and is missing otherwise. In (d), both
treatment and outcome can be missing; and missingness on X can affect missingness on Y .
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UX
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Figure 6: Computation of ATE bounds. Progress of Algorithm 2 in simulated Fig-
ure 5(a–d) DGPs. Black error bars are known analytic bounds, y-axes are ATE values,
and x-axes are runtimes of Algorithm 2. Prior analytic bounds are sharp for settings (a–c).
In setting (d), Algorithm 2 achieves point identification, but Manski (1990) bounds do
not. Red regions are dual bounds, which always contain sharp bounds and the unknown
true causal effect; these can only narrow over time, converging on optimality. Blue regions
are primal bounds, which can only widen over time as more extreme models are found.
Optimization stops when primal and dual bounds meet, indicating bounds are sharp.

(a) Outcome-based selection

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6
Seconds

AT
E

(b) Measurement error

−1.0

−0.5

0.0

0.5

1.0

0.000 0.025 0.050 0.075 0.100
Seconds

AT
E

(c) Nonresponse

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4
Seconds

AT
E

(d) Joint missingness

−1.0

−0.5

0.0

0.5

1.0

0 1 2 3 4
Seconds

AT
E

23



In Figure 6(a–c), the algorithm converges on known analytic results. Ultimately, in the

selection simulation (a), Algorithm 2 achieves bounds of [−0.37, 0.68], correctly recovering

Gabriel et al.’s (2020) bounds; in (b), measurement error bounds are [−0.57, 1.00], matching

Finkelstein et al. (2020); and in (c), outcome missingness bounds are [−0.25, 0.75], equal-

ing Manski (1990) bounds. Somewhat counterintuitively, Figure 6(d) shows dual bounds

collapsing to a point, correctly point-identifying the ATE at −0.25 despite severe missing-

ness. This surprising result turns out to be a special case of an approach using “shadow

variables” recently developed by Miao et al. (2015).12 This example illustrates that the

algorithm is general enough to recover results even when they are not widely known in

a particular model; note that the commonly used approach of Manski (1990) produces

far looser bounds of [−0.72, 0.40], failing to exploit causal structure given in Figure 5(d).

This result suggests our approach enables an empirical investigation of complex models

where general identification results are not yet available. Situations where bounds con-

verge suggest models where point identification via an explicit functional may be possible,

potentially enabling new identification theory.

9 Potential Critiques of the Approach

Below, we briefly discuss several potential critiques of our method.

“The user must know the true causal model.”

Our algorithm requires users specify a causal graph and assumptions, but in many applica-

tions, the true DGP is unknown. This is precisely the obstacle that motivates our approach,

which allows for valid inferences in the absence of complete information. Rather than as-

sert a faulty “complete” model, the user need only input what they know or believe. The

algorithm then outputs the most precise possible solution given that information; key as-

sumptions can be relaxed further using easily incorporated sensitivity analyses, as needed.

We note the difficulty of declaring a causal theory, even a partial one, is universal: any

attempt to draw causal inferences from data—even in experimental settings—is premised

(often implicitly) on underlying causal theory. Making assumptions explicit is not a trade-

off relative to other methods, but a boon for research transparency.

“The bounds may be too wide to be informative.”

Yes.

When a point-identified solution exists, our algorithm will discover it. As Section 8.3

shows, this can occur in surprising scenarios and may help reveal new identification theory.

However, when point-identification is impossible, our approach produces sharp bounds.

These bounds may be insufficient for an analyst to achieve a goal such as discerning the

sign of a causal effect. This is simply a fact about the limitations of the research design—

as we prove, it is impossible to narrow the bounds further without additional information.

Again, there is no tradeoff: incorrect point estimates based on faulty assumptions are also

12Specifically, it can be shown the ATE is identified for the Figure 5(d) graph only among faithful
distributions where X → Y is non-null—i.e. almost everywhere in the model space.
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uninformative. When sharp bounds incorporating all defensible assumptions are wide, it

means progress will require collecting more data or justifying additional assumptions.

“What about continuous variables?”

Our approach applies to discrete data, but analysis of continuous variables can often still

proceed with some adjustments. Discrete approximations often suffice in applied work.

(Indeed, “all data as observed are discrete,” Rubin, 1981, p. 133). When continuous treat-

ments (e.g. birth date, vehicle speed) often affect discrete outcomes (school admittance,

police stops) only when exceeding a threshold, discretization is lossless. Moreover, when

analyzing discrete treatments and continuous outcomes, much of our theory generalizes to

estimands involving expectations of the outcome. Future work may study our method’s

applicability to bounded continuous variables with smooth effects.

“The bounds will take too long to compute.”

Computation time for sharp bounds may sometimes be prohibitive, but our approach is

likely still faster than manual derivation. Notably, the algorithm recovers several recently

published analytic results in mere seconds (Gabriel et al., 2020; Miao et al., 2015; Knox

et al., 2020). Second, when computation time is long, our algorithm’s “anytime” guarantee

ensures premature termination will still produce valid bounds and report a worst-case

looseness factor for the resulting non-sharp bounds.

10 Future Work with Automated Bounding

Causal inference is a central goal of science, and several established techniques can estimate

causal quantities under ideal conditions. But in many applications, these conditions are

simply not satisfied, and developing new analytic solutions is often intractable. For knowl-

edge accumulation to proceed in the messy world of applied statistics, a general solution

is needed. We present a tool to automatically produce sharp bounds on causal quantities

in settings involving discrete data. Our approach involves a reduction of all such causal

queries to polynomial programming problems, enables efficient search over observationally

indistinguishable DGPs, and produces sharp bounds on arbitrary causal estimands. This

approach is sufficiently general to accommodate a range of classic inferential obstacles.

Beyond providing a general tool for causal inference, our approach aligns closely with

recent calls to improve research transparency by requiring the explicit declaration of esti-

mands, identifying assumptions, and theory (Miguel et al., 2014; Lundberg et al., 2021).

With a common understanding of goals and premises, scholars can have meaningful debates

over the credibility of research. When aspects of a theory are contested, our approach allows

for a fully modular exploration of how assumptions shape empirical conclusions. Scholars

can learn whether a particular assumption is empirically consequential, and if so, craft a

targeted line of inquiry to probe its validity. Our approach can also act as a safeguard

for analysts, flagging assumptions as infeasible when they conflict with observed informa-

tion. This means hopeless research projects can be abandoned before wasting effort or

disseminating untruths.
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Future work should seek to reduce computation time for sharp bounds, especially when

incorporating point-identified subquantities or additional semi-parametric modeling ap-

proaches. Causal inference scholars may also use this method as an exploratory tool to

aid in the discovery of new identification theory. These lines of inquiry now represent the

major open questions in discrete causal inference.
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A Examples, Algorithms, and Detailed Discussion

A.1 Canonicalization of DAGs

In this appendix, we summarize the process for obtaining a canonical hidden variable DAG,

presented as Definition 4.6 in Evans (2016). Theorem 4.13 in Evans (2016) shows that the

marginal model of any hidden variable DAG is the same as that of its canonical hidden

variable DAG, and Proposition 7.4 of the same work shows that the same holds for the

model for post-intervention distributions, when interventions are restricted to the main

variables.

Given a hidden variable DAG G, the canonical form of the DAG is constructed by the

following procedure:

1. Add an edge Xj → Xj′ for any pair of variables Xj, Xj′ such that there is a path

from Xj to Xj′ along which all variables between Xj and Xj′ are hidden. Xj and Xj′

can each be hidden or observed.

2. Remove incoming edges to hidden variables.

3. Remove hidden variables whose children are a subset of the children of another hidden

variable.

By construction, all latent variables in the canonical DAG will be exogenous.

A.2 Functional Models in the Context of Determinism

The general approach for obtaining functional models for discrete hidden variable DAGs

(Evans, 2018; Finkelstein et al., 2021) does not take account of the kind of determinism

introduced into the model by missingness indicators, and as such may yield a functional

model that is over-parameterized. Due to the complexity of polynomial programming, it is

beneficial to avoid excess parameters where possible. We now briefly explore this issue.
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Figure 7: A graph with determinism.

A RA A∗ B

Consider the scenario depicted in Figure 7. In this graph, A∗ is a proxy for the unob-

served variable A, which is observed with missingness as indicated by RA. When RA = 0,

then A∗ is deterministically equal to a special value indicating missingness (usually denoted

with the special value such as “?” or “NA”). In addition, A∗ is affected by B. This scenario

might arise if A is measured with missingness and measurement error, and the nature of

the error is affected by B. Of note, A∗ is not a fully deterministic function of A and

RA, and cannot simply be removed from the functional parameterization, as in traditional

missingness without measurement error. However, we can use the fact that it is a partially

deterministic function of RA to reduce the number of parameters needed in the functional

model for this graph.

In general, the functional model for this graph would allocate one value of εA∗—the

exogenous noise that determines A∗ in terms of its parents—for every combination of pos-

sible responses of A∗ to its parents. Suppose A∗ takes values in {0, 1, ?}, and A, RA and

B take values in {0, 1}. This would correspond to 38 = 6561 possible values of εA∗ . How-

ever, any such value that maps RA = 0 to A∗ ∈ {0, 1} or RA = 1 to A∗ =? is ruled out

by the deterministic relationship. As a result, εA∗ need only specify the response of A∗

in {0, 1} to A and B when RA = 1. This yields only 24 = 16 possible values for εA∗ .

This example demonstrates that incorporating known deterministic relationships can yield

a non-restrictive functional parameterization with fewer parameters.

A.3 DAG Parameterization for Non-geared Graphs

Most graphs we encounter in practice are geared (Evans, 2018), which means they have no

non-trivial bi-directed cycles Finkelstein et al. (2021). When graphs are not geared, and the

target estimand as well as all empirical evidence involves only single world probabilities,
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it is possible to improve the complexity of the system. Under these circumstances, it is

preferable to obtain non-restrictive bounds on the cardinalities of latent variables according

to Finkelstein et al. (2021). All single world probabilities can be expressed in terms of the

usual DAG parameters according to the g-formula, and therefore all functionals of such

probabilities described in Corollary 1 can be polynomialized as well. If the target or any of

the empirical evidence involve cross-world probabilities, we must revert to the functional

model approach.

A.4 Example of Program Simplification

Figure 8: A graph with conditional independence and Verma constraints.

A B C D

E F

U1

U2

U3

Consider the graph presented in Figure 8. We will use this graph to illustrate a number

of points raised in the main body of the paper. Suppose we are interested in the ATE of E

on C. First, we will explicitly construct the functional model of this graph, then use it to

generate a simple polynomial program that bounds a causal target. Next, we will employ

several of the strategies described in Section 5 to simplify the program, demonstrating the

importance of these strategies in obtaining tractable program formulations. Finally, we will

observe that a broader class of partial identification problems than previously recognized

can be formulated as linear programs.

Suppose all observed variables in the graph above are binary. In constructing a func-

tional model, we first note that U2 is responsible for determining the values of A, C and E

in response to their parents. A has no parents, E has one parent, and C has two parents.

Therefore U2 takes values in a state space of size 21 × 22 × 24 = 128. Next, we suppose
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U1 is responsible for determining the value of B in response to A, and therefore has size

22 = 4. U3 is left to determine the value of F in response to D, and of D in response to U1

and C. It therefore takes values in space of size 28 × 22 = 1024.13

To construct the polynomial program, we begin with the non-negativity and linear

marginalization constraints on the parameters of the distributions of the disturbances (for

simplicity, we abstain from eliminating one parameter per distribution using the sum-to-

unity constraint):

Pr(Ui = u) ≥ 0 ∀i,∀u ∈ ΩUi∑
u∈ΩUi

Pr(Ui = u) = 1 ∀i.

We then add constraints encoding the empirical evidence E . For simplicity, we assume

that we observe the full joint distribution Pr(A = a,B = b, C = c,D = d,E = e, F = f),

which is a vector of size 26 = 64, corresponding to 64 equality constraints in the program.

There are 3 disturbance variables in this graph, including εE, leading to polynomials in these

equality constraints with terms of degree 3. Given the cardinalities of the disturbances,

there are 24 × 27 × 210 = 2, 097, 152 possible combinations of disturbance assignments. By

a simple exchangeability argument, the same number of possible combinations lead to each

outcome in the state space. As there are 26 outcomes, each of the 64 polynomial equality

constraints for E will have 221

26
= 215 terms, again each of degree 3. This is a very large

program.

Pr(A = a,B = b, C = c,D = d,E = e, F = f) =
∑
u∈ΩU

∏
i

Pr(Ui = u)1(u =⇒ a, b, c, d, e, f)

(1)

We now consider the strategies described in Section 5. First, observe that there are

13It is also possible to construct a functional model by first taking U3 to be responsible for determining F
in response to D, and then U1 to be responsible for determining B in response to A and D in response to C
and U3. By a simple symmetry argument, the two functional models yield the same number of parameters.
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only 31 nested Markov parameters for this graph, corresponding to 31 polynomial equality

constraints encoding E : a substantial savings over the 64 parameters of the näıve parameter-

ization. This reduced parameterization is possible because it encodes standard conditional

independences, such as F ⊥ A | D. In addition, it encodes Verma constraints, which

emerge either (i) from independences in post-intervention distributions or (ii) from the ir-

relevance of an intervention to a particular distribution. In this case, A ⊥ {D,F} | do(C).

As discussed in the main text, each equality constraint can be used to reduce the num-

ber of parameters needed in a non-restrictive reduction that can express every possible

distribution in the model.

Recall that each nested Markov parameter corresponds to the identified probability of a

single world event, where the event is specified in terms of variables in a single district, and

the intervention is on all parents of the district relevant to those variables. For example,

in this case, one of the nested Markov parameters is Pr
(
b = 1, f = 1|d = 1, do(a =

1, c = 1)
)
. We can now make use of Proposition 3 to reason that each of these polynomial

constraints must involve only disturbances from a single district. Therefore in the equations

corresponding to nested Markov parameters for the district corresponding to U2, parameters

of the distributions of U1 and U3 will all sum out, and we will be left with equations

that are linear in the parameters of U2. Likewise, in equations corresponding to nested

Markov parameters for the district containing descendants of U1 and U3, parameters for

the distribution of U2 will factor out, and we will be left with a quadratic equation.

Finally, we can make use of Proposition 4 to note that constraints involving nested

Markov parameters corresponding to the {U1, U3} district can be dropped from the pro-

gram. This is because they only involve parameters for the distributions of U1 and U3,

which do not appear in any constraint involving parameters for the distribution of U2. The

target, by contrast, involves only parameters for the distribution of U2.

As a result of taking the three steps described in Section 5, we have taken this problem

from a polynomial program involving 1156 parameters to a linear program involving only

27 = 128 parameters and fewer constraints. This example also motivates the following
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corollary, which expands the class of partial identification problems that can be formulated

as linear programs relative to known results (Balke and Pearl, 1997; Finkelstein et al., 2020;

Wolfe et al., 2019).

Corollary 2. Suppose G is a hidden variable DAG with observed variables V , C = {V`(a`) =

v` | ` ∈ L} is a set of counterfactual statements, and Pr(C) is the target of interest. Further

suppose that the full joint distribution Pr(V = v) is observed. Then Pr(C) can be sharply

bounded given the observed data by optimizing a linear program if all {V`|` ∈ L} are in the

same single-latent-variable district.

Proof. Because the common district of C contains only a single latent variable, by Propo-

sition 3 the objective will be linear in the parameters of the distribution of that latent

variable. By Proposition 4, the constraints will not involved parameters corresponding

to other districts. By Algorithm 1, no single term in a constraint will involve multiple

parameters for the same latent distribution, meaning that all constraints involving only

parameters corresponding to a single-variable district will be linear. The non-negativity

and sum-to-unity constraints on the parameters of the latent-variable distribution are also

linear. It follows that the objective and all constraints are linear.

A.5 Constructing the Polynomial Program

Algorithm 1 constructs a polynomial program to sharply bound any factual or counter-

factual target of inference, T , that is a polynomial fraction or monotonic transformation

thereof. In addition to T , the algorithm takes as input a possibly non-canonical DAG G;

empirical evidence E , modeling assumptions A, and sample space of possible outcomes for

the main variables, S(V ). It produces an optimization problem with a polynomial objective

subject to polynomial constraints. This polynomial programming problem is equivalent to

the original causal bounding problem.
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Algorithm 1 Constructing a Polynomial Program

Input: graph G, evidence E , assumptions A, sample space S(V ), target T
Output: polynomial program in parameters PU or PU ∪ s

Initialization
1: initialize empty constraint set C ← ∅
2: G ← canonicalize G
3: PU ← parameters of functional model for G

Polynomialize objective function
4: T ← polynomial-fractionalize(T )
5: if T contains fractions then
6: polynomialize(T = s) and append to C
7: T ← s
8: end if

Polynomialize constraints
9: for

(
g(PV ) 8 α

)
∈
(
E ∪ A

)
do

10: polynomialize
(
g(PV ) 8 α

)
and append to C

11: end for
12: for Ui,k ∈ Ui do
13: append

(
PUk

is a distribution
)

to C
14: end for

Optimize
15: return optimize T subject to C

A.6 Optimizing the Polynomial Program

Algorithm 2 provides a step-by-step description of the ε-sharp bounding procedure. For ease

of reference, we duplicate the Section 6 discussion of the algorithm’s various components

here.

Algorithm 2 takes as inputs the polynomialized objective function T (p) and constraint

set C(p), obtained from Algorithm 1. It then evaluates a range of models, or points p in

the model space P for which C(p) is satisfied. It seeks to identify extreme values of T (p)

within this subspace. It also accepts two parameters: εthresh, a stopping threshold for the

looseness factor stopping, and θthresh, a stopping threshold for width of the bounds. The

algorithm returns two types of information: the upper and lower bounds for the causal

program, and the worst-case looseness factor ε.

Primal bounds are denoted P and P , adopting the convention that underlines refer to

objects used for minimization and overlines for maximization. These indicate the extreme
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values of the target estimand in any admissible model—that is, satisfying C(p)—that has

been located so far. These are initialized at +∞ and −∞, respectively, indicating that

no admissible models have been found yet. As optimization proceeds, the primal bounds

improve as new, more extreme admissible models are found. We refer to [P , P ] as the inner

bounds : the unknown sharp bounds must at least contain these points, which correspond

to models that are observationally indistinguishable from the true DGP.

Dual optimization begins by partitioning the parameter space into branches, proceeding

separately for the lower and upper bound and respectively producing partitions Bb and Bb.

At initialization, these consist of a single branch spanning the entire parameter space; each

branch is then recursively divided. The lower and upper parts of the dual envelope, or

outer envelope, are denoted D and D. These are piecewise linear functions, with pieces

corresponding to the branching partitions, that are relaxations of the true objective func-

tion, T (p), from below and above. These relaxations are made to ensure they will always

contain the entire objective function at all points in the parameter space. Within branch

b, the value min{Db(p) : p ∈ Bb} indicates the lowest value attained by the lower envelope;

thus, T = minb
{

min{Db(p) : p ∈ Bb}
}

represents the lowest value attained by the lower

envelope anywhere in the parameter space. Conversely, T = maxb
{

max{Db(p) : p ∈ Bb}
}

represents the highest value of the upper envelope. These extreme points on the dual

envelope, [T , T ], define the dual (outer) bounds. These are the reported causal bounds;

whatever the true sharp bounds, they must lie inside the dual bounds, even if the algorithm

has not run to completion. We let θ equal the bound width, or the difference between the

upper and lower dual bounds, and we define the worst-case looseness factor ε as the slack

(the difference in dual and primal bound widths) divided by the primal bound width.

The algorithm heuristically selects branches in the model space that appear promising,

and refines primal and dual bounds in turn. It first searches within the branch for an

admissible model; if found, and if the associated causal estimand is more extreme than

those previously encountered, it is stored as a new primal bound. Whatever the true

nonparametric sharp bounds, they must lie outside the primal bounds because the true
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bounds must contain the extreme models that define the primal bounds. Then, it divides

the branch into sub-branches and refines the dual envelope by tightening the piecewise

linear outer-approximation. The algorithm continuously prunes branches of Bb and Bb

that are inconsistent with specified constraints; it also continuously branches and refines

the bounds while θ and ε exceed specified thresholds.

Algorithm 2 Computing ε-sharp Bounds

Input: target T (p) and constraint relations C(p) in parameters p,
stopping thresholds εthresh and θthresh

Output: lower bound T , upper bound T , maximum looseness factor ε

Initialization
1: branches of parameter space: indexed partitions B ←

{
[0, 1]

#{p}
}

, B ←
{

[0, 1]
#{p}

}
2: dual (outer) bounds: indexed families of functions D ← {p 7→ −∞}, D ← {p 7→ +∞}
3: primal (inner) bounds: P = +∞ and P = −∞
4: bounds width: θ = +∞
5: bounds looseness factor ε = +∞

Spatial branch and bound
6: while ε > εthresh and θ > θthresh do
7: for extremum in min, max do

Select direction
8: if extremum is min then
9: set ∗ ← and 8 ← ≤

10: else if extremum is max then
11: set ∗ ← and 8 ← ≥
12: end if

Primal refinement
13: continue search for local extremum of T (p) s.t. C(p) is satisfied
14: if feasible point is found and T (p) 8 P ∗ then
15: update primal bound P ∗ ← T (p)
16: end if

Dual refinement
17: select outermost branch b = arg extremumb′

{
extremum{D∗b′(p) : p ∈ B∗b′}

}
18: pop B∗b from B∗ and subpartition it, pop D∗b (p) from D∗
19: for each subpartition B∗b′ in B∗b do
20: push new branch B∗b′ into B∗
21: find linear function D∗b′ s.t. D∗b′(p) 8 T (p) for all p ∈ B∗b′
22: push linear programming relaxation D∗b′ into D
23: end for

Prune branches that cannot widen bounds
24: for each b in 1, . . . , |B∗| do
25: if P ∗ 8 extremum{D∗b (p) : p ∈ B∗b} or C(p) = False for all p ∈ B∗b then
26: pop B∗b from B∗, pop D∗b from D∗
27: end if
28: end for

29: end for

Check progress
30: T ← minb {min{Db(p) : p ∈ Bb}}, T ← maxb

{
max{Db(p) : p ∈ Bb}

}
31: θ ← T − T
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32: ε← θ/(P − P )− 1
33: end while

34: return T , T , ε

B Proofs

Proof of Proposition 1.

Proof. We adapt the proof of Finkelstein et al. (2021) to account for counterfactuals as

follows. First, we define one-step-ahead counterfactuals, Vi,j
(
pa(Vi,j) = a

)
, to be those

where all main parents of a variable are subject to intervention pa(Vi,j) = a. Next, we note

that all other counterfactuals and factuals in the full data law are deterministic functions

of one-step-ahead variables, after fixing Ui. Therefore it is sufficient to reason about only

one-step-ahead variables; intervention on other variables is irrelevant to the full data law.

Because the likelihoods of multi-district graphs factorize as the likelihoods of the dis-

tricts after intervention on their parents (Richardson et al., 2017), we can consider single-

district graphs without loss of generality. In multi-district graphs, the bound obtained

below can be applied within each district.

Each main variable Vi,j has |S(pa(Vi,j))| one-step-ahead counterfactuals, corresponding

to possible manipulations of its parents. Each one-step-ahead counterfactual Vi,j
(
pa(Vi,j) =

a
)

has a cardinality equal to those of the corresponding main variable |S(Vi,j)|. Therefore,

the collection of a single variable’s one-step-ahead counterfactuals
{
Vi,j
(
pa(Vi,j) = a

)
, Vi,j

(
pa(Vi,j) = a′

)
, . . .

}
can take on |S(Vi,j)||S(pa(Vi,j))| possible values, and there are d ≡

∏
Vi,j∈Vi

|S(Vi,j)||S(pa(Vi,j))|

values that the full collection of all one-step-ahead variables can take. Any model over

this full collection must be a subset of the d − 1 simplex. We let V
(
pa(V )

)
denote the

collection of one-step-ahead variables.

Suppose the disturbances Ui are enumerated as {Ui,1, . . . , Ui,K}. We will now show

that each Ui,k can be assumed to be discrete without altering the model for V
(
pa(V )

)
and therefore the full data law. First, for each value uk in the domain of Ui,k, we define the

distribution Puk

(
V
(
pa(V )

))
=
∫
u\k

P
(
V
(
pa(V )

)
| u\k, uk

)
P (u\k), where u\k denotes
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all disturbances other than uk. This fixes Ui,k at the value uk, modifying the distribution

over V
(
pa(V )

)
.

We now make two observations. First, the model for V
(
pa(V )

)
contains Puk for any

uk, because Ui,k is not restricted by the model and is therefore permitted to have a point-

mass distribution at uk. Second, the expected value of Puk with respect to Ui,k recovers

the original marginal distribution P
(
V
(
pa(V )

))
, which is therefore in the convex hull of

the set of distributions S(Puk) ≡ {Puk | uk ∈ S(Ui,k)}.

Carathéodory’s Theorem (1907) states that for any point P in the convex hull of a set S

in a space of dimension d−1, there exists a set of d−1 points {Puk1 , . . . , Pukd−1
} and weights

{w1, . . . , wd−1} such that P =
∑d−1

`=1 w`Pui` . It then follows directly that any distribution in

the marginal model over V
(
pa(V )

)
when latent variables have unrestricted cardinality is

also in the marginal model over V
(
pa(V )

)
when latent variables have cardinality restricted

to
∏

Vi,j∈Vi
|S(Vi,j)||S(pa(Vi,j))| − 1 or higher.

Proof of Proposition 2

Proof. Using the approach developed in Evans (2018) and generalized to arbitrary graphs

in Finkelstein et al. (2021), we can obtain a functional model that is non-restrictive of the

causal model of G over observed variables. In such a model, each Vi,`(a`) is determined by

by values of the disturbances Ui. By assumption, G is in canonical form, rendering all dis-

turbances marginally independent. The proposition then follows from standard probability

calculus.

Proof of Proposition 3

Proof. Under the conditions specified, no element in C involves a function of Ui,k. It follows

that whether the disturbances lead to C is not a function of the value of Ui,k. As a result,

a sum over all parameters of the distribution of Ui,k can be factored out of the product

in Equation 2. By the definition of probability distributions, this sum will be equal to 1,

rendering the parameters irrelevant to the polynomial.
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Proof of Proposition 4

Proof. Each of the nested Markov parameters corresponds to the probability that ran-

dom variables in a single district take certain values after an intervention on parents of

the district. It follows from Proposition 3 that no disturbances outside the district cor-

responding to the nested Markov parameter will appear in the polynomialization of that

parameter. From this, it then follows that no disturbances in different districts will interact

in constraints corresponding to nested Markov parameters. By Proposition 2, the degree

of a polynomialization of the probability of the event is at most the number of relevant

disturbances.

C Uncertainty

In this appendix, we provide details on our approach to quantifying the uncertainty of

bounds based on estimated empirical inputs, Ê =
[
Ê`

]
. Recall that the estimated bounds

are obtained from a polynomial program using equality constraints of the form

polynomialize
(
g`(PV ) = Ê`

)
, which is equivalent to polynomial-fractionalize

(
g`(PV )

)
=

Ê`. Here, Ê` is the noisily estimated empirical quantity and polynomial-fractionalize
(
g`(PV )

)
is the reexpression of that same quantity in terms of principal strata sizes. At a high level,

we will proceed by constructing confidence regions CRα(Ê) such that Pr
(
E ∈ CRα(Ê)

)
≥

α. To obtain confidence bounds, we then replace empirical equality constraints with a looser

version that accounts for sampling variation, of the form polynomial-fractionalize
(
g`(PV )

)
∈

CRα(Ê).

Observe that because the main variables are discrete, Ê is a realization of a multino-

mial proportion. In what follows, we will assume that empirical evidence arises from a

single multinomial distribution, such as a single-world marginal distribution; if multiple in-

dependent sets of empirical evidence about differing quantities are available, the procedure

generalizes straightforwardly by repeating the procedure within each set and combining the

results appropriately.
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Based on this idea, we examine two methods for constructing CRα(Ê). Drawing on

Malloy et al. (2020), we first consider a “Bernoulli-KL” approach that constructs separate

confidence regions for each observable atomic event, Pr(Vi = v), treating it as a “success”

in a Bernoulli distribution. The approach rotates through all possible v and combines

the event-specific regions using a result on the Kullback-Leibler divergence of sampling

distributions to the underlying population distribution. The Bernoulli-KL method produces

a confidence region for single-world distributions that is guaranteed to have conservative

coverage for the multinomial proportion in finite samples.

Let k ∈ {1, . . . , K} index possible atomic events, and denote the probability of the k-th

event as pk = Pr(Vi = vk). Empirical frequencies are denoted p̂k. For the Bernoulli-KL

method, we will develop a confidence region of the form CRα(Ê) =
⋂K
k=1

[
p
k
, pk

]
, noting

that each pk can be polynomialized. A visualization of the resulting region is given in

Figure 2(b).

We now describe how p
k

and pk can be calculated to ensure that Pr(E ∈ CRα(Ê)) ≥ α.

At a high level, we will do so by analyzing each of the K observable events as a Bernoulli

distribution. Taking each p̂k estimate as given, we identify regions of the unknown pk from

which the observed p̂k diverge substantially. Equation 11 of Malloy et al. (2020) provides

bounds on the sampling probability of observing KL ([1− p̂k, p̂k], [1− pk, pk]) in excess of

some threshold, where KL
(
[1− p̂k, p̂k], [1− pk, pk]

)
= p̂k log p̂k

pk
+ (1− p̂k) log 1−p̂k

1−pk
.

In turn, these bounds imply regions of pk that can be conservatively rejected. Let p
k

be given by the solution to KL
(
[1− p̂k, p̂k], [1− pk, pk]

)
= 1

N
log 2K

1−α subject to p
k
∈ [0, p̂k].

Similarly, let pk be given by KL
(
[1− p̂k, p̂k], [1− pk, pk]

)
= 1

N
log 2K

1−α subject to pk ∈ [p̂k, 1].

It can be seen from Malloy et al. (2020) that when constructing p
k

and pk in this way,

Pr
(⋂K

k=1 pk ∈ [p
k
, pk]

)
≥ α over repeated samples.

Our second approach uses an asymptotic confidence region based on the multivariate

Gaussian limiting distribution of the multinomial proportion, N
(
p, diag(p)− pp>

)
(Bien-

aymé, 1838). Because the multinomial proportion must sum to unity, this distribution is de-

generate, and it is often more convenient to work with its first K−1 elements, p\K . We con-
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Figure 9: Polynomial confidence regions in a binary graph. Panel (a) presents a
causal graph in which binary X causes binary Y , but both are confounded by an unobserved
U . N = 1, 000 observations are drawn from this DGP, producing an empirical distribution
with proportions 1

N

∑N
i=1 1(Xi = x, Yi = y). Panels (b–c) depict confidence regions for

Pr(Xi = 0, Yi = 0), Pr(Xi = 0, Yi = 1), and Pr(Xi = 1, Yi = 0); the final category,
Pr(Xi = 1, Yi = 1) (not depicted), must sum to unity. Panel (b) shows the Bernoulli-
KL confidence region, which is conservative in finite samples and can be polynomialized
as a set of linear inequalities. Panel (c) shows the Gaussian confidence region, which is
asymptotically valid and can be polynomialized as a single convex quadratic inequality.

U

X Y

(a) (b) (c)

struct the asymptotic confidence region as (p̂\K − p\K)>
(

diag(p̂\K)− p̂\Kp̂
>
\K

)−1

(p̂\K −

p\K) ≤ z, where z is an appropriate critical value of the χ2 distribution. A visualization of

the resulting region is given in Figure 2(c). As before, each element in p is polynomializ-

able, leading to a single confidence constraint that can be straightforwardly incorporated

into the optimization routine.

For ease of reference, we duplicate Figure 2 in Figure 9, below. This figure depicts

these regions visually for a simple two-node graph, shown in Figure 9(a). The resulting

Bernoulli-KL and Gaussian confidence regions are depicted in Figure 9(b–c).

Finally, we describe how arbitrary confidence regions, such as the optimal level-set re-

gions of Malloy et al. (2020) or the exact finite-sample regions of Kuchibhotla et al. (2021),

can be polynomialized. At a high level, the proposed method uses a circumscribing poly-

tope, adding faces along the region’s principal axes until the desired tightness is achieved.

One possible approach to doing so is to enumerate candidate p along a fine grid, assess

each candidate for membership in the confidence region, and compute the convex hull of
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the non-rejected points. This procedure produces a system of linear inequalities describing

the hull facets. However, it is infeasible for even moderately sized problems, as the time

complexity of hull construction can grow exponentially in the dimension of the space, K

(Ottmann et al., 1995). Our approach builds on this basic intuition of circumscribing a

complex confidence region with a larger, more tractable polytope. We compute the principal

components of the non-rejected points, then identify the two extreme non-rejected points

along each axis. Each principal axis is the normal vector for two boundary planes, and each

extreme point along that axis defines an boundary plane offset. By repeating this procedure

along each principal axis, we obtain a circumscribing confidence region, a parallelepiped

that contains the KL confidence region. The gap between the two confidence regions can be

rapidly approximated by using number of grid points that lie in the inscribing region but

not the original confidence region. By slicing the simplex along additional directions, such

as convex combinations of principal axes, this gap can be tightened to arbitrary precision.

The resulting polytope defines a system of linear inequalities that can then be incorporated

into the polynomial program.

D Details of Simulated Models

In this section, we detail all models presented in Section 8. For simplicity, all main variables

in these models are binary. Simulation parameters are described in terms of principal strata.

Principal strata can take one of three forms, depending on the number of parents of the

relevant variable. Below, we provide compact notation for referring to these principal

strata. Subsequent sections report strata probabilities for each simulation, including joint

distributions over strata for multiple variables where confounding exists.

1. Variables with no parents, which have two strata. Consider a hypothetical

variable Xi with no parents, as in Figure 5(a). We use x0 to denote units with

Xi(∅) = 0 and x1 to denote Xi(∅) = 1.

2. Variables with a single parent, which have four strata. Consider a hypotheti-
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cal variable Yi influenced by parent Xi, also depicted in Figure 5(a). For compactness,

we adopt the convention that counterfactual manipulations of parent variables are

presented in the form yYi(Xi=0),Yi(Xi=1). For example, (i) we use y00 to denote “never

takers” with example, Yi(Xi = 0) = 0 and Yi(Xi = 1) = 0. Similarly, (ii) y01 denotes

“compliers” with Yi(Xi = 0) = 0 and Yi(Xi = 1) = 1, (iii) y10 denotes “defiers”

with Yi(Xi = 0) = 1 and Yi(Xi = 1) = 0, and y11 denotes “always takers” with

Yi(Xi = 0) = 1 and Yi(Xi = 1) = 1.

3. Variables with two parents, which have sixteen strata. Consider a hypothet-

ical variable Yi influenced by parents Zi and Xi, as in Figure 3(a). Extending the

convention described above, we denote these in compact forms ranging from y0000 to

y1111. Specific definitions are provided in Table 2.
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Table 2: Principal strata for a variable Yi with two parents, Zi and Xi. Each row
corresponds to a strata, with compact names given in the first column. For each strata,
counterfactual values of Yi are given in subsequent columns.

Yi(Zi = 0, Xi = 0) Yi(Zi = 0, Xi = 1) Yi(Zi = 1, Xi = 0) Yi(Zi = 1, Xi = 1))
y0000 0 0 0 0
y1000 1 0 0 0
y0100 0 1 0 0
y1100 1 1 0 0
y0010 0 0 1 0
y1010 1 0 1 0
y0110 0 1 1 0
y1110 1 1 1 0
y0001 0 0 0 1
y1001 1 0 0 1
y0101 0 1 0 1
y1101 1 1 0 1
y0011 0 0 1 1
y1011 1 0 1 1
y0111 0 1 1 1
y1111 1 1 1 1
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D.1 Noncompliance Simulation

In this section, we describe the DGP for our noncompliance simulation analyzed in Sec-

tion 8.1. The DGP follows the model of Figure 3(b), reproduced below for ease of reference.

Simulation parameters are reported in terms of the joint distribution over principal strata.

Figure 10: DGP with noncompliance.

U

Z X Y

Strata for Z:

z0 0.649335

z1 0.350665

Strata for X and Y :

y00 y10 y01 y11

x00 0.000757 0.013034 0.006125 0.002606

x10 0.004541 0.074105 0.034526 0.014387

x01 0.026040 0.418847 0.195419 0.082264

x11 0.004534 0.073950 0.034123 0.014742

D.2 Outcome-Based Selection Simulation

In this section, we describe the DGP for our outcome-based selection simulation, analyzed

in Section 8.3 and Figure 6(a). The DGP follows the model of Figure 5(a), reproduced below

for ease of reference. Simulation parameters are reported in terms of the joint distribution

over principal strata.
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U

X Y S

Strata for X and Y

y00 y10 y01 y11

x0 0.124855 0 0.249647 0.124847

x1 0.125375 0 0.249851 0.125425

Strata for S

S10 0.50052

S01 0.49948

D.3 Measurement Error Simulation

In this section, we describe the DGP for our measurement error simulation, analyzed in

Section 8.3 and Figure 6(b). The DGP follows the model of Figure 5(b), reproduced below

for ease of reference. Simulation parameters are reported in terms of the joint distribution

over principal strata.

UX

Y Y ∗

Strata for X

x0 0.499442

x1 0.500558
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Strata for Y and Y ∗

Y ∗00 Y ∗10 Y ∗01 Y ∗11

y00 0 0.167269 0 0

y10 0 0 0 0

y01 0 0.165838 0.500388 0

y11 0 0.166505 0 0

D.4 Outcome Missingness Simulation

In this section, we describe the DGP for our outcome missingness simulation, analyzed in

Section 8.3 and Figure 6(c). The DGP follows the model of Figure 5(c), reproduced below

for ease of reference. Simulation parameters are reported in terms of the joint distribution

over principal strata.

X

Y RY Y ∗

Strata for X

x0 0.499159

x1 0.500841

Strata for Y

y00 0.166371

y10 0

y01 0.666851

y11 0.166778
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Strata for R

r0000 0

r1000 0

r0100 0.250368

r1100 0.249910

r0010 0

r1010 0

r0110 0

r1110 0

r0001 0

r1001 0

r0101 0.250154

r1101 0

r0011 0

r1011 0

r0111 0

r1111 0.249568

D.5 Joint Missingness Simulation

In this section, we describe the DGP for our joint missingness simulation, analyzed in

Section 8.3 and Figure 6(d). The DGP follows the model of Figure 5(d), reproduced below

for ease of reference. Simulation parameters are reported in terms of the joint distribution

over principal strata.

X RX X∗

Y RY Y ∗
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Strata for X

x0 0.43464

x1 0.56536

Strata for Y

y00 0.485336

y10 0.253616

y01 0.003768

y11 0.257279

Strata for Rx

rx,0 0.470201

rx,1 0.529798

Strata for Ry

ry,0000 0

ry,1000 0

ry,0100 0.162045

ry,1100 0

ry,0110 0.177470

ry,0001 0.107010

ry,1001 0.120311

ry,0101 0.255778

ry,1101 0.081733

ry,0011 0

ry,1011 0

ry,0111 0.095652

ry,1111 0
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