
Instance-Based Neural Dependency Parsing

Hiroki Ouchi1,3 Jun Suzuki2,3 Sosuke Kobayashi2,4
Sho Yokoi2,3 Tatsuki Kuribayashi2,5 Masashi Yoshikawa2,3 Kentaro Inui2,3

1 NAIST 2 Tohoku University 3 RIKEN 4 Preferred Networks, Inc. 5 Langsmith, Inc.
hiroki.ouchi@is.naist.jp, sosk@preferred.jp,

{jun.suzuki,yokoi,kuribayashi,yoshikawa,inui}@tohoku.ac.jp

Abstract

Interpretable rationales for model predic-
tions are crucial in practical applications.
We develop neural models that possess an
interpretable inference process for depen-
dency parsing. Our models adopt instance-
based inference, where dependency edges
are extracted and labeled by comparing
them to edges in a training set. The training
edges are explicitly used for the predictions;
thus, it is easy to grasp the contribution of
each edge to the predictions. Our experi-
ments show that our instance-based models
achieve competitive accuracy with standard
neural models and have the reasonable plau-
sibility of instance-based explanations.

1 Introduction

While deep neural networks have improved pre-
diction accuracy in various tasks, rationales under-
lying the predictions have been more challenging
for humans to understand (Lei et al., 2016). In
practical applications, interpretable rationales play
a crucial role in driving humans’ decisions and
promoting human-machine cooperation (Ribeiro
et al., 2016). From this perspective, the utility of
instance-based learning (Aha et al., 1991), a tra-
ditional machine learning method, has been real-
ized again (Papernot and McDaniel, 2018).

Instance-based learning is a method that learns
similarities between training instances and infers
a value or class for a test instance on the basis
of similarities against the training instances. On
the one hand, standard neural models encode all
the knowledge in the parameters, making it chal-
lenging to determine what knowledge is stored
and used for predictions (Guu et al., 2020). On
the other hand, models with instance-based infer-
ence explicitly use training instances for predic-
tions and can exhibit the instances that signifi-
cantly contribute to the predictions. The instances

play a role of an explanation to the question: why
did the model make such a prediction? This type
of explanation is called instance-based explana-
tion (Caruana et al., 1999; Baehrens et al., 2010;
Plumb et al., 2018), which facilitates the users’
understandings of model predictions and allows
users to make decisions with higher confidence
(Kolodneer, 1991; Ribeiro et al., 2016).

It is not trivial to combine neural networks with
instance-based inference processes while keeping
high prediction accuracy. Recent studies in image
recognition seek to develop such methods (Wang
et al., 2014; Hoffer and Ailon, 2015; Liu et al.,
2017; Wang et al., 2018; Deng et al., 2019). This
paradigm is called deep metric learning. Com-
pared to image recognition, there are much fewer
studies on deep metric learning in natural language
processing (NLP). As a few exceptions, Wiseman
and Stratos (2019) and Ouchi et al. (2020) devel-
oped neural models that have an instance-based in-
ference process for sequence labeling tasks. They
reported that their models have high explainability
without sacrificing the prediction accuracy.

As a next step from targeting consecutive to-
kens, we study instance-based neural models for
relations between discontinuous elements. To
correctly recognize relations, systems need to cap-
ture associations between elements. As an exam-
ple of relation recognition, we address dependency
parsing, where systems seek to recognize binary
relations between tokens (hereafter edges). Tra-
ditionally, dependency parsers have been a useful
tool for text analysis. An unstructured text of in-
terest is parsed, and its structure leads users to a
deeper understanding of the text. By successfully
introducing instance-based models to dependency
parsing, users can extract dependency edges along
with similar edges as a rationale for the parse,
which further helps the process of text analysis.

In this paper, we develop new instance-based
neural models for dependency parsing, equipped

ar
X

iv
:2

10
9.

13
49

7v
1

 [
cs

.C
L

]
 2

8
Se

p
20

21

with two inference modes: (i) explainable mode
and (ii) fast mode. In the explainable mode, our
models make use of similarities between the can-
didate edge and each edge in a training set. By
looking at the similarities, users can quickly check
which training edges significantly contribute to the
prediction. In the fast mode, our models run as fast
as standard neural models, while general instance-
based models are much slower than standard neu-
ral models because of the dependence on the num-
ber of training instances. The fast mode is moti-
vated by the actual situation: in many cases, users
want only predictions, and when the predictions
seem suspicious, they want to check the ratio-
nales. So, the fast mode does not offer rationales,
but instead, it enables faster parsing that outputs
exactly the same predictions as the explainable
mode. Users can freely switch between the ex-
plainable and fast modes according to their pur-
poses. This property is realized by taking advan-
tage of the linearity of score computation in our
models and avoids comparing a candidate edge to
each training edge one by one for computing the
score at test time (see Section 4.4 for details).

Our experiments on multilingual datasets show
that our models can achieve competitive accuracy
with standard neural models. In addition, we shed
light on the plausibility of instance-based expla-
nations, which has been underinvestigated in de-
pendency parsing. We verify whether our models
meet a minimal requirement related to the plau-
sibility (Hanawa et al., 2021). Additional anal-
ysis reveals the existence of hubs (Radovanovic
et al., 2010), a small number of specific training
instances that often appear as nearest neighbors,
and that hubs have a terrible effect on the plausi-
bility. Our main contributions are as follows:

• This is the first work to develop and study
instance-based neural models1 for depen-
dency parsing (Section 4);

• Our empirical results show that our instance-
based models achieve competitive accuracy
with standard neural models (Section 6.1);

• Our analysis reveals that L2-normalization
for edge representations suppresses the hubs’
occurrence, and as a result, succeeds in im-
proving the plausibility of instance-based ex-
planations (Sections 6.2 and 6.3).

1Our code is publicly available at
https://github.com/hiroki13/
instance-based-dependency-parsing

2 Related Work

2.1 Dependency Parsing
There are two major paradigms for dependency
parsing (Kübler et al., 2009): (i) transition-based
paradigm (Nivre, 2003; Yamada and Matsumoto,
2003) and (ii) graph-based paradigm (McDon-
ald et al., 2005). Recent literature often adopts
the graph-based paradigm and achieves high ac-
curacy (Dozat and Manning, 2017; Zhang et al.,
2017; Hashimoto et al., 2017; Clark et al., 2018;
Ji et al., 2019; Zhang et al., 2020). The first-order
edge-factored models under this paradigm factor-
ize the score of a dependency tree into independent
scores of single edges (McDonald et al., 2005).
The score of each edge is computed on the ba-
sis of its edge feature. This decomposable prop-
erty is preferable for our work because we want to
model similarities between single edges. Thus, we
adopt the basic framework of the first-order edge-
factored models for our instance-based models.

2.2 Instance-Based Methods in NLP
Traditionally, instance-based methods (memory-
based learning) have been applied to a variety
of NLP tasks (Daelemans and Van den Bosch,
2005), such as part of speech tagging (Daele-
mans et al., 1996), NER (Tjong Kim Sang,
2002; De Meulder and Daelemans, 2003; Hen-
drickx and van den Bosch, 2003), partial pars-
ing (Daelemans et al., 1999; Sang, 2002), phrase-
structure parsing (Lebowitz, 1983; Scha et al.,
1999; Kübler, 2004; Bod, 2009), word sense dis-
ambiguation (Veenstra et al., 2000), semantic role
labeling (Akbik and Li, 2016), and machine trans-
lation (MT) (Nagao, 1984; Sumita and Iida, 1991).

Nivre et al. (2004) proposed an instance-based
(memory-based) method for transition-based de-
pendency parsing. The subsequent actions of a
transition-based parser are selected at each step
by comparing the current parser configuration to
each of the configurations in the training set. Here,
each parser configuration is treated as an instance
and plays a role of rationales for predicted actions
but not for predicted edges. Generally, parser con-
figurations are not directly mapped to each pre-
dicted edge one by one, so it is troublesome to
interpret which configurations significantly con-
tribute to edge predictions. By contrast, since we
adopt the graph-based one, our models can nat-
urally treat each edge as an instance and exhibit
similar edges as rationales for edge predictions.

https://github.com/hiroki13/instance-based-dependency-parsing
https://github.com/hiroki13/instance-based-dependency-parsing

2.3 Instance-Based Neural Methods in NLP

Most of the studies above were published be-
fore the current deep learning era. Very recently,
instance-based methods have been revisited and
combined with neural models in language mod-
eling (Khandelwal et al., 2019), MT (Khandelwal
et al., 2020), and question answering (Lewis et al.,
2020). They augment a main neural model with
a non-parametric sub-module that retrieves aux-
iliary objects, such as similar tokens and docu-
ments. Guu et al. (2020) proposed to parameterize
and learn the sub-module for a target task.

These studies assume a different setting from
ours. There is no ground-truth supervision sig-
nal for retrieval in their setting, so they adopt non-
parametric approaches or indirectly train the sub-
module to help a main neural model from the su-
pervision signal of the target task. In our setting,
the main neural model plays a role in retrieval and
is directly trained with ground-truth objects (anno-
tated dependency edges). Thus, our findings and
insights are orthogonal to theirs.

2.4 Deep Metric Learning

Our work can be categorized into the deep metric
learning research in terms of the methodological
perspective. Although the origins of metric learn-
ing can be traced back to some earlier work (Short
and Fukunaga, 1981; Friedman et al., 1994; Hastie
and Tibshirani, 1996), the pioneering work is Xing
et al. (2002).2 Since then, many methods using
neural networks for metric learning have been pro-
posed and studied.

Deep metric learning methods can be catego-
rized into two classes from the training loss per-
spective (Sun et al., 2020): (i) learning with class-
level labels and (ii) learning with pair-wise la-
bels. Given class-level labels, the first one learns
to classify each training instance to its target
class with a classification loss, e.g., Neighbour-
hood Component Analysis (NCA) (Goldberger
et al., 2005), L2-constrained softmax loss (Ran-
jan et al., 2017), SpereFace (Liu et al., 2017),
CosFace (Wang et al., 2018), and ArcFace (Deng
et al., 2019). Given pair-wise labels, the sec-
ond one learns pair-wise similarity (the similar-
ity between a pair of instances), e.g., contrastive
loss (Hadsell et al., 2006), triplet loss (Wang et al.,
2014; Hoffer and Ailon, 2015), N-pair loss (Sohn,

2If you would like to know the history of metric learning
in more detail, please read Bellet et al. (2013).

2016), and Multi-similarity loss (Wang et al.,
2019). Our method is categorized into the first one
because it adopts a classification loss (Section 4).

2.5 Neural Models Closely Related to Ours

Among the metric learning methods above,
NCA (Goldberger et al., 2005) shares the same
spirit as our models. In this framework, models
learn to map instances with the same label to the
neighborhood in a feature space. Wiseman and
Stratos (2019) and Ouchi et al. (2020) developed
NCA-based neural models for sequence labeling.
We discuss the differences between their models
and ours later in more detail (Section 4.5).

3 Dependency Parsing Framework

We adopt a two-stage approach (McDonald et al.,
2006; Zhang et al., 2017): we first identify depen-
dency edges (unlabeled dependency parsing) and
then classify the identified edges (labeled depen-
dency parsing). More specifically, we solve edge
identification as head selection and solve edge
classification as multi-class classification.3

3.1 Edge Identification

To identify unlabeled edges, we adopt the head se-
lection approach (Zhang et al., 2017), in which a
model learns to select the correct head of each to-
ken in a sentence. This simple approach enables us
to train accurate parsing models in a GPU-friendly
way. We learn the representation for each edge to
be discriminative for identifying correct heads.

Let x = (x0, x1, . . . , xT) denote a tokenized
input sentence, where x0 is a special ROOT token
and x1, . . . , xT are original T tokens, and 〈xj , xi〉
denote an edge from head token xj to dependent
token xi. We define the probability of token xj
being the head of token xi in the sentence x as:

P (xj |xi) =
exp(shead(xj , xi))∑T
k=0 exp(shead(xk, xi))

. (1)

Here, the scoring function shead can be any neural
network-based scoring function (see Section 4.1).

3Although some previous studies adopt multi-task learn-
ing methods for edge identification and classification tasks
(Dozat and Manning, 2017; Hashimoto et al., 2017), we inde-
pendently train a model for each task because the interaction
effects produced by multi-task learning make it challenging
to analyze models’ behaviors.

At inference time, we choose the most likely
head ŷi for each token xi4:

ŷi = argmax
xk : 0≤k≤T

P (xk|xi). (2)

At training time, we minimize the negative log-
likelihood of training data:

L = −
|D|∑
n=1

T (n)∑
i=1

logP (y
(n)
i |x

(n)
i). (3)

Here, D = {x(n),y(n), r(n)}|D|n=1 is a training set,
where x(n)i ∈ x(n) is each input token, y(n)i ∈ y(n)

is the gold (ground-truth) head for token x(n)i , and
r
(n)
i ∈ r(n) is the label for edge 〈y(n)i , x

(n)
i 〉.

3.2 Label Classification

We adopt a simple multi-class classification ap-
proach for labeling each unlabeled edge. We de-
fine the probability that each of all possible labels
r ∈ R will be assigned to the edge 〈xj , xi〉:

P (r|xj , xi) =
exp(slabel(r, xj , xi))∑

r′∈R
exp(slabel(r

′, xj , xi))
. (4)

Here, the scoring function slabel can be any neural
network-based scoring function (see Section 4.2).

At inference time, we choose the most likely
class label from the set of all possible labelsR:

r̂ = argmax
r∈R

P (r|ŷi, xi). (5)

Here, ŷi is the head token identified by a head se-
lection model.

At training time, we minimize the negative log-
likelihood of training data:

L = −
|D|∑
n=1

T (n)∑
i=1

logP (r
(n)
i |y

(n)
i , x

(n)
i). (6)

Here, r(n)i ∈ R is the gold (ground-truth) relation
label for gold edge 〈y(n)i , x

(n)
i 〉.

4While this greedy formulation has no guarantee to pro-
duce well-formed trees, we can produce well-formed ones by
using the Chu-Liu-Edmonds algorithm in the same way as
Zhang et al. (2017). In this work, we would like to focus on
the representation for each edge and evaluate the goodness
of the learned edge representation one by one. With such a
motivation, we adopt the greedy formulation.

4 Instance-Based Scoring Methods

For the scoring functions in Eqs. 1 and 4, we de-
scribe our proposed instance-based models.

4.1 Edge Scoring

We would like to assign a higher score to the cor-
rect edge than other candidates (Eq. 1). Here, we
compute similarities between each candidate edge
and ground-truth edges in a training set (hereafter
training edge). By summing the similarities, we
then obtain the score that indicates how likely the
candidate edge is the correct one.

Specifically, we first construct a set of training
edges, called the support set, A(D):

A(D) = {〈yi, xi〉 | xi ∈ x, yi ∈ y,

(x,y, r) ∈ D}. (7)

Here, yi is the ground-truth head token of token xi.
We then compute and sum similarities between a
candidate edge and each edge in the support set:

shead(xj , xi) =
∑

〈x`,xk〉∈A(D)

sim(h〈j,i〉,h〈`,k〉). (8)

Here, h〈j,i〉,h〈`,k〉 ∈ Rd are d-dimensional edge
representations (Section 4.3), and sim is a simi-
larity function. Following recent studies of deep
metric learning, we adopt the dot product and the
cosine similarity:

simdot(a, b) = a>b,

simcos(a, b) = τa>u bu,

au = a/‖a‖,
bu = b/‖b‖.

As you can see, the cosine similarity is the same
as the dot product between two unit vectors: i.e.,
‖au‖ = ‖bu‖ = 1. As we will discuss later
in Section 6.3, this property suppresses the oc-
currence of hubs, compared with the dot prod-
uct between unnormalized vectors. Note that, fol-
lowing the previous studies of deep metric learn-
ing (Wang et al., 2018; Deng et al., 2019), we
rescale the cosine similarity by using the scaling
factor τ (0 ≤ τ), which works as the temperature
parameter in the softmax function.5

5In our preliminary experiments, we set τ by selecting
a value from {16, 32, 64, 128}. As a result, whichever we
chose, the prediction accuracy was stably better than τ = 1.

4.2 Label Scoring

Similarly to the scoring function above, we also
design our instance-based label scoring function
slabel in Eq. 4. We first construct a support set
A(D; r) for each relation label r ∈ R:

A(D; r) = {〈yi, xi〉 | xi ∈ x, yi ∈ y, ri ∈ r,

(x,y, r) ∈ D, ri = r}. (9)

Here, only the edges with label r are collected
from the training set. We then compute and sum
similarities between a candidate edge and each
edge of the support set:

slabel(r, xj , xi) =
∑

〈x`,xk〉∈A(D;r)

sim(h〈j,i〉,h〈`,k〉). (10)

Here is the intuition: if the edge is more similar to
the edges with label r than those with other labels,
the edge is more likely to have the label r.

4.3 Edge Representation

In the proposed models (Eqs. 8 and 10), we use d-
dimensional edge representations. We define the
representation for each edge 〈xj , xi〉 as follows:

h〈j,i〉 = f(hdep
i ,hhead

j). (11)

Here, hdep,hhead ∈ Rd are d-dimensional feature
vectors for the dependent and head, respectively.
These vectors are created from a neural encoder
(Section 5.2). When designing f , it is desirable
to capture the interaction between the two vectors.
By referring to the insights into feature represen-
tations of relations on knowledge bases (Bordes
et al., 2013; Yang et al., 2015; Nickel et al., 2016),
we adopt a multiplicative composition, a major
composition technique for two vectors6:

f (hdep
i ,hhead

j) := W (hdep
i � hhead

j).

Here, the interaction between hdep
i and hhead

j is
captured by element-wise multiplication�. These
are composed into one vector, which is then trans-
formed by a weight matrix W ∈ Rd×d into h〈j,i〉.

6In our preliminary experiments, we also tried an addi-
tive composition and the concatenation of the two vectors.
The accuracies by these techniques for unlabeled dependency
parsing, however, were both about 20%, which is much infe-
rior to that by the multiplicative composition.

4.4 Fast Mode

Do users want rationales for all the predictions?
Maybe not. In many cases, all they want to do is
to parse sentences as fast as possible. Only when
they find a suspicious prediction, they will check
the rationale for it. To fulfill the demand, our
parser provides two modes: (i) explainable mode
and (ii) fast mode. The explainable mode, as de-
scribed in the previous subsections, enables to ex-
hibit similar training instances as rationales, but its
time complexity depends on the size of the training
set. By contrast, the fast mode does not provide ra-
tionales, but instead, it enables faster parsing than
the explainable mode and outputs exactly the same
predictions as the explainable mode. Thus, at test
time, users can freely switch between the modes:
e.g., they first use the fast mode, and if they find
a suspicious prediction, then they will use the ex-
plainable mode to obtain the rationale for it.

Formally, if using the dot product and cosine
similarity for similarity function in Eq. 8, the ex-
plainable mode can be rewritten as the fast mode:

shead(xj , xi) =
∑

〈x`,xk〉∈A(D)

h>〈j,i〉h〈`,k〉

= h>〈j,i〉
∑

〈x`,xk〉∈A(D)

h〈`,k〉

= h>〈j,i〉h
sum
A(D), (12)

where hsum
A(D) :=

∑
〈x`,xk〉∈A(D) h〈`,k〉. In this

way, once you sum all the vectors in the train-
ing set h〈`,k〉 (〈x`, xk〉 ∈ A(D)), you can reuse
the summed vector without searching the training
set again. At test time, you can precompute this
summed vector hsum

A(D) before running the model
on a test set, which reduces the exhaustive similar-
ity computation over the training set to the simple
dot product between the two vectors h>〈j,i〉h

sum
A(D).

7

4.5 Relations to Existing Models

The closest models to ours. Wiseman and
Stratos (2019) and Ouchi et al. (2020) proposed an
instance-based model using Neighbourhood Com-
ponents Analysis (NCA) (Goldberger et al., 2005)
for sequence labeling. Given an input sentence of
T tokens, x = (x1, . . . , xT), the model first com-
putes the probability that a token (or span) xi ∈ x
in the sentence selects each of all the tokens in the

7In the same way as Eq. 12, we can transform slabel in
Eq. 10 to the fast mode.

training set xj ∈ xD as its neighbor:

P (xj |xi) =
exp(sim(xj , xi))∑

xk∈xD

exp(sim(xk, xi))
.

The model then constructs a set of only the tokens
xj associated with a label y: X (xD; y) = {xj |
xj ∈ xD, yj = y}, and computes the probability
that each token xi will be assigned a label y:

P (y|xi) =
∑

xj∈X (D;y)

P (xj , xi).

The point is that while our models first sums
the similarities (Eq 8) and then put the summed
score into exponential form as exp(shead(xj , xi)),
their model puts each similarity into exponential
form as exp(sim(xk, xi)) before the summation.
The different order of using exponential function
makes it impossible to rewrite their model as the
fast mode, so their model always has to compare a
token xi to each of the training set xj ∈ xD. This
is the biggest difference between their model and
ours. While we leave the performance comparison
between the NCA-based models and ours for fu-
ture work, our models have an advantage over the
NCA-based models in that our models offer two
options, the explainable and fast modes.

Standard models using weights. Typically,
neural models use the following scoring functions:

shead(xj , xi) = w>h〈j,i〉, (13)

slabel(r, xj , xi) = w>r h〈j,i〉. (14)

Here, w ∈ Rd is a learnable weight vector and
wr ∈ Rd is a learnable weight vector associated
with label r ∈ R. In previous work (Zhang et al.,
2017), this form is used for dependency parsing.
We call such models weight-based models. Caru-
ana et al. (1999) proposed to combine weight-
based models with instance-based inference: at in-
ference time, the weights are discarded, and only
the trained encoder is used to extract feature rep-
resentations for instance-based inference. Such
combination has been reported to be effective for
image recognition (Ranjan et al., 2017; Liu et al.,
2017; Wang et al., 2018; Deng et al., 2019). In de-
pendency parsing, there has been no investigation
on it. Since such a combination can be a promising
method, we investigate its utility (Section 6).

Language Treebank Family Order Train

Arabic PADT non-IE VSO 6.1k
Basque BDT non-IE SOV 5.4k
Chinese GSD non-IE SVO 4.0k
English EWT IE SVO 12.5k
Finnish TDT non-IE SVO 12.2k
Hebrew HTB non-IE SVO 5.2k
Hindi HDTB IE SOV 13.3k
Italian ISDT IE SVO 13.1k
Japanese GSD non-IE SOV 7.1k
Korean GSD non-IE SOV 4.4k
Russian SynTagRus IE SVO 48.8k
Swedish Talbanken IE SVO 4.3k
Turkish IMST non-IE SOV 3.7k

Table 1: Dataset information. “Family” indicates if
Indo-European (IE) or not. “Order” indicates dominant
word orders according to WALS (Haspelmath et al.,
2005). “Train” is the number of training sentences.

5 Experimental Setup

5.1 Data

We use English PennTreebank (PTB) (Mar-
cus et al., 1993) and Universal Dependencies
(UD) (McDonald et al., 2013). Following previ-
ous studies (Kulmizev et al., 2019; Smith et al.,
2018; de Lhoneux et al., 2017), we choose a vari-
ety of 13 languages8 from the UD v2.7. Table 1
shows information about each dataset. We follow
the standard training-development-test splits.

5.2 Neural Encoder Architecture

To compute hdep and hhead (in Eq. 11), we adopt
the encoder architecture proposed by Dozat and
Manning (2017). First, we map the input sequence
x = (x0, . . . , xT)

9 to a sequence of token repre-
sentations, htoken

0:T = (htoken
0 , . . . ,htoken

T), each of
which is htoken

t = [et; ct; bt], where et, ct, and bt
are computed by word embeddings10, character-
level CNN, and BERT (Devlin et al., 2019)11, re-

8These languages have been selected by considering the
perspectives of different language families, different morpho-
logical complexity, different training sizes and domains.

9We use the gold tokenized sequences in PTB and UD.
10For PTB, we use 300 dimensional GloVe (Penning-

ton et al., 2014). For UD, we use 300 dimensional fast-
Text (Grave et al., 2018). During training, we fix them.

11We first conduct subword segmentation for each token of
the input sequence. Then, the BERT encoder takes as input
the subword-segmented sequences and computes the repre-
sentation for each subword. Here, we use the (last layer) rep-
resentation of the first subword within each token as its token
representation. For PTB, we use “BERT-Base, Cased.” For
UD, we use “BERT-Base, Multilingual Cased.”

spectively. Second, the sequence htoken
0:T is fed

to bidirectional LSTM (BiLSTM) (Graves et al.,
2013) for computing contextual ones: hlstm

0:T =
(hlstm

0 , . . . ,hlstm
T) = BiLSTM(htoken

0:T). Finally,
hlstm
t ∈ R2d is transformed as hdep

t = W dephlstm
t

and hhead
t = W headhlstm

t , where W dep ∈ Rd×2d

and W head ∈ Rd×2d are parameter matrices.

5.3 Mini-Batching

We train models with the mini-batch stochastic
gradient descent method. To make the current
mini-batch at each time step, we follow a stan-
dard technique for training instance-based mod-
els (Hadsell et al., 2006; Oord et al., 2018).

At training time, we make the mini-batch
that consists of query and support sentences at
each time step. A model encodes the sentences
and the edge representations used for computing
similarities between each candidate edge in the
query sentences and each gold edge in the sup-
port sentences. Here, due to the memory lim-
itation of GPUs, we randomly sample a sub-
set from the training set at each time step: i.e.,
(x(n),y(n), r(n)) ∼ Uniform(D). In edge iden-
tification, for query sentences, we randomly sam-
ple a subset D′q of N sentences from D. For sup-
port sentences, we randomly sample a subset D′s
of M sentences from D, and construct and use
the support set A(D′s) instead of A(D) in Eq. 7.
In label classification, we would like to guaran-
tee that the support set in every mini-batch always
contains at least one edge for each label. To do
so, we randomly sample a subset A′(D; r) of U
edges from the support set for each label r: i.e.,
〈y(n)i , x

(n)
i 〉 ∼ Uniform(A(D; r)) in Eq. 9. Note

that each edge 〈y(n)i , x
(n)
i 〉 is in the n-th sentence

x(n) in the training set D, so we put the sentence
x(n) into the mini-batch to compute the represen-
tation for 〈y(n)i , x

(n)
i 〉. Actually, we use N = 32

query sentences in both edge identification and la-
bel classification, M = 10 support sentences in
edge identification12, and U = 1 support edge
(sentence) for each label in label classification13.

At test time, we encode each test (query) sen-
tence and compute the representation for each can-
didate edge on-the-fly. The representation is then
compared to the precomputed support edge repre-
sentation, hsum

A(D) in Eq 12. To precompute hsum
A(D),

we first encode all the training sentences and ob-
12As a result, the whole mini-batch size is 32 + 10 = 42.
13When U = 1, the whole mini-batch size is 32 + |R|.

Name Value

Word Embedding GloVe (PTB) / fastText (UD)
BERT BERT-Base
CNN window size 3
CNN filters 30
BiLSTM layers 2
BiLSTM units 300 dimensions
Optimization Adam
Learning rate 0.001
Rescaling factor τ 64
Dropout ratio {0.1, 0.2, 0.3}

Table 2: Hyperparameters used in the experiments.

tain the edge representations. Then, in edge iden-
tification, we sum all of them and obtain one sup-
port edge representation hsum

A(D). In label classifi-
cation, similarly to hsum

A(D), we sum only the edge
representations with label r and obtain one support
representation for each label hsum

A(D;r)
14.

5.4 Training Configuration
Table 2 lists the hyperparameters. To optimize the
parameters, we use Adam (Kingma and Ba, 2014)
with β1 = 0.9 and β2 = 0.999. The initial learn-
ing rate is η0 = 0.001 and is updated on each
epoch as ηt = η0/(1+ρt), where ρ = 0.05 and t is
the epoch number completed. A gradient clipping
value is 5.0 (Pascanu et al., 2013). The number
of training epochs is 100. We save the parameters
that achieve the best score on each development
set and evaluate them on each test set. It takes less
than one day to train on a single GPU, NVIDIA
DGX-1 with Tesla V100.

6 Results and Discussion

6.1 Prediction Accuracy on Benchmark Tests
We report averaged unlabeled attachment scores
(UAS) and labeled attachment scores (LAS)
across three different runs of the model train-
ing with random seeds. We compare 6 systems,
each of which consists of two models for edge
identification and label classification, respectively.
For reference, we list the results by the graph-
based parser with BERT in Kulmizev et al. (2019),
whose architecture is the most similar to ours.

Table 3 shows UAS and LAS by these sys-
tems. The systems WWd and WWc are the stan-
dard ones that consistently use the weight-based

14The total number of the support edge representations is
equal to the size of the label set |R|.

Learning Weight-based Weight-based Instance-based
Inference Weight-based Weight-based Instance-based Instance-based
Similarity dot dot cos dot cos dot cos

System ID Kulmizev+’19 WWd WWc WId WIc IId IIc

PTB-English – 96.4/95.3 96.4/95.3 96.4/94.4 93.0/91.8 96.4/95.3 96.4/95.3
UD-Average – /84.9 89.0/85.6 89.0/85.6 89.0/85.2 83.0/79.5 89.3/85.7 89.0/85.5

UD-Arabic – /81.8 87.8/82.1 87.8/82.1 87.8/81.6 84.9/79.0 88.0/82.1 87.6/81.9
UD-Basque – /79.8 84.9/81.1 84.9/80.9 84.9/80.6 82.0/77.9 85.1/80.9 85.0/80.8
UD-Chinese – /83.4 85.6/82.3 85.8/82.4 85.7/81.6 80.9/77.3 86.3/82.8 85.9/82.5
UD-English – /87.6 90.9/88.1 90.7/88.0 90.9/87.8 88.1/85.3 91.1/88.3 91.0/88.2
UD-Finnish – /83.9 89.4/86.6 89.1/86.3 89.3/86.1 84.1/81.2 89.6/86.6 89.4/86.4
UD-Hebrew – /85.9 89.4/86.4 89.5/86.5 89.4/85.9 82.7/79.7 89.8/86.7 89.6/86.6
UD-Hindi – /90.8 94.8/91.7 94.8/91.7 94.8/91.4 91.4/88.0 94.9/91.8 94.9/91.6
UD-Italian – /91.7 94.1/92.0 94.2/92.1 94.1/91.9 91.5/89.4 94.3/92.2 94.1/92.0
UD-Japanese – /92.1 94.3/92.8 94.5/93.0 94.3/92.7 92.5/90.9 94.6/93.1 94.4/92.8
UD-Korean – /84.2 88.0/84.4 87.9/84.3 88.0/84.2 84.3/80.4 88.1/84.4 88.2/84.5
UD-Russian – /91.0 94.2/92.7 94.1/92.7 94.2/92.4 57.7/56.5 94.3/92.8 94.1/92.6
UD-Swedish – /86.9 90.3/87.6 90.3/87.5 90.4/87.1 88.6/85.8 90.5/87.5 90.4/87.5
UD-Turkish – /64.9 73.0/65.3 73.2/65.4 73.1/64.5 69.9/61.9 73.7/65.5 72.9/64.7

Table 3: Comparison between weight-based and instance-based systems. Cells show unlabeled attachment scores
(UAS) before the slash and labeled attachment scores (LAS) after the slash on each test set. System IDs stand for
the first letters of the options: e.g., WId stands for “W”eight-based learning and “I”nstance-based inference using
the “d”ot product. The system ID, Kulmizev+’19, is the graph-based parser with BERT in Kulmizev et al. (2019).

Weight-Based Instance-Based
dot cos dot cos
WWd WWc IId IIc

Emails 81.7 81.7 81.6 81.4
Newsgroups 83.1 83.3 83.1 82.9

Reviews 88.5 88.7 88.7 88.8
Weblogs 81.9 80.9 80.9 81.9

Average 83.8 83.7 83.6 83.8

Table 4: UAS in out-of-domain settings, where each
model is trained on the source domain “Yahoo! An-
swers" and tested on each of the four target domains.

scores (Eqs. 13 and 14) during learning and in-
ference. Between these systems, the difference
of the similarity functions does not make a gap
in the accuracies. In other words, the dot prod-
uct and the cosine similarity are on par in terms
of the accuracies. The systems WId and WIc use
the weight-based scores during learning and the
instance-based ones during inference. While the
system WId using dot achieved competitive UAS
and LAS to those by the standard weight-based
system WWd, the system WIc using cos achieved
lower accuracies than those by the system WWc.
The systems IId and IIc consistently use the
instance-based scores during learning and infer-

M
1 10 100 ALL

Emails 81.5 81.4 81.5 81.5
Newsgroups 82.8 83.0 82.9 82.9

Reviews 88.7 88.7 88.8 88.8
Weblogs 81.8 82.1 82.0 81.9

Average 83.7 83.8 83.8 83.8

Table 5: UAS by the instance-based system using the
cosine similarity (IIc) and randomly sampled M sup-
port training sentences.

ence. Both of them succeeded in keeping compet-
itive accuracies with those by the standard weight-
based ones WWd and WWc.

Out-of-domain robustness. We evaluate the ro-
bustness of our instance-based models in out-of-
domain settings by using the five domains of UD-
English: we train each model on the training set of
the source domain “Yahoo! Answers” and test it
on each test set of the target domains, Emails,
Newsgroups, Reviews and Weblogs. As
Table 4 shows, the out-of-domain robustness of
our instance-based models is comparable to the
weight-based models. This tendency is observed
when using different source domains.

wrote novels
This candidate “wrote → novels” is a dependency
because it is similar to “published → books”

TEST obj

published books

TRAIN obj

wrote novels

TEST obj

the novels

TRAIN det

This candidate “wrote → novels” is a dependency
because it is similar to “novels → the”

Figure 1: Valid (") and invalid (%) examples of unla-
beled edges for the identical subclass test.

Sensitivity of M for inference. In the experi-
ments above, we used all the training sentences for
support sentences at test time. What if we reduce
the number of support sentences? Here, in the
same out-of-domain settings above, we evaluate
the instance-based system using the cosine sim-
ilarity IIc with M support sentences randomly
sampled at each time step. Intuitively, if using a
smaller number of randomly sampled support sen-
tences (e.g., M = 1), the prediction accuracies
would drop. Surprisingly, however, Table 5 shows
that the accuracies do not drop even if reducingM .
This tendency is observed when using the other
three systems WId, WIc and IId. One possible
reason for it is that the feature space is appropri-
ately learned: i.e., because positive edges are close
to each other and far from negative edges in the
feature space, the accuracies do not drop even if
randomly sampling a single support sentence and
using the edges.

6.2 Sanity Check for Plausible Explanations

It is an open question how to evaluate the “plau-
sibility” of explanations: i.e., whether or not the
retrieved instances as explanations are convinc-
ing for humans. As a reasonable compromise,
Hanawa et al. (2021) designed the identical sub-
class test for evaluating the plausibility. This
test is based on a minimal requirement that inter-
pretable models should at least satisfy: training
instances to be presented as explanations should
belong to the same latent (sub)class as the test in-
stance. Consider the examples in Figure 1. The
predicted unlabeled edge “wrote→ novels” in the
test sentence has the (unobserved) latent label,
obj. To this edge, two training instances are given
as explanations: the above one seems more con-

Weight-Based Instance-Based
dot cos dot cos

System ID WId WIc IId IIc

PTB-English 1.8 67.5 7.0 71.6
UD-English 16.4 51.5 3.9 54.0

Table 6: Results of the identical subclass test. Each
cell indicates labeled attachment scores (LAS) on each
development set. All the models are trained with head
selection supervision and without labeling supervision.

vincing than the below one because “published→
books” has the same latent label, obj, as that of
“wrote → novels” while “novels → the” has the
different one, det. As these show, the agreement
between the latent classes are likely to correlate
with plausibility. Note that this test is not perfect
for the plausibility assessment, but it works as a
sanity check for verifying whether models make
obvious violations in terms of plausibility.

This test can be used for assessing unlabeled
parsing models because the (unobserved) relation
labels can be regarded as the latent subclasses of
positive unlabeled edges. We follow three steps;
(i) identifying unlabeled edges in a development
set; (ii) retrieving the nearest training edge for
each identified edge; (iii) calculating LAS, i.e.,
if the labels of the query and retrieved edges are
identical, we regard them as correct.15

Table 6 shows LAS on PTB and UD-English.
The systems using instance-based inference with
the cosine similarity, WIc and IIc, succeeded in
retrieving the support training edges with the same
label as the queries. Surprisingly, the system IIc
achieved over 70% LAS on PTB without label su-
pervision. The results suggest that systems using
instance-based inference with the cosine similarity
meet the minimal requirement, and the retrieved
edges are promising as plausible explanations.

To facilitate the intuitive understanding of
model behaviors, we show actual examples of the
retrieved support edges in Table 7. As the first
query-support pair shows, for query edges whose
head or dependent is a function word (e.g., if), the
training edges with the same (unobserved) label
tend to be retrieved. On the other hand, as the sec-
ond pair shows, for queries whose head is a noun
(e.g., appeal), the edges whose head is also a noun
(e.g., food) tend to be retrieved regardless of dif-
ferent latent labels.

15If the parsed edge is incorrect, we regard it as incorrect.

Query Support

If you are unsure ... If you feel this ...

... your appeal is The food was ...

Table 7: Examples of support edges retrieved by
the instance-based system using the cosine similarity
(IIc). The first query-support pair has the same (un-
observed) label mark. The query of the second pair
has nmod:poss although the support has det.

Query Support

Jennifer M. Anderson ... ROOT Please find ...

..., after all ... ROOT Please find ...

Table 8: Examples of unlabeled support training edges
retrieved by the WId system (weight-based learning
and instance-based inference with the dot product) for
each query. Regardless of the very different queries,
the same support edge was retrieved.

6.3 Geometric Analysis on Feature Spaces
The identical subclass test suggests a big differ-
ence between the feature spaces learned by using
the dot product and the cosine similarity. Here we
look into them in more detail.

6.3.1 Observation of Nearest Neighbors
First, we look into training edges retrieved as near-
est support ones. Specifically, we use the edges
in the UD-English development set as queries and
retrieve the top k similar support edges in the
UD-English training set. Table 8 shows the ex-
amples retrieved by the WId system. Here, the
same support edge, 〈ROOT, find〉, was retrieved
for the different queries, 〈Jennifer, Anderson〉 and
〈all, after〉. As this indicates, when using the dot
product as the similarity function, a small num-
ber of specific edges are extremely often selected
as support ones for any queries. Such edges are
called hubs (Radovanovic et al., 2010). This phe-
nomenon is not desirable for users in terms of the
plausible interpretation of predictions. If a system
always exhibits the same training instance(s) as ra-
tionales for predictions, users are likely to doubt
the system’s validity.

System ID sim N10 Instances

WId dot 19,407 〈ROOT, find〉
WIc cos 82 〈help, time〉
IId dot 22,493 〈said, airlifted〉
IIc cos 34 〈force, Israel〉

Table 9: Examples of the highest N10 unlabeled sup-
port training edges in UD-English.

6.3.2 Quantitative Measurement of Hubness

Second, we quantitatively measure the hubness
of each system. Specifically, for the hubness,
we measure the k-occurrences of instance x,
Nk(x) (Radovanovic et al., 2010; Schnitzer et al.,
2012). In the case of our dependency parsing ex-
periments, Nk(x) indicates the number of times
each support training edge x occurs among the
k nearest neighbors of all the query edges. The
support training edges with an extremely high Nk

value can be regarded as hubs. In this study, we
set k = 10 and measure N10(x) of unlabeled sup-
port training edges. For query edges, we use the
UD-English development set that contains 25, 148
edges. For support edges, we use the UD-English
training set that contains 204, 585 edges.

Table 9 shows the highest N10 support training
edges. In the case of the system WId, the unla-
beled support edge 〈ROOT, find〉 appeared 19, 407
times in the 10 nearest neighbors of the 25, 148
query edges. A similar tendency was observed in
the instance-based system using the dot product
IId. By contrast, in the case of the systems using
the cosine similarity, WIc and IIc, it was not ob-
served that specific support edges were retrieved
so often. In Figure 2, we plot the top 100 support
training edges in terms of N10 with log10 scale.
The N10 distributions of the systems using the dot
product, WId and IId, look very skew; that is,
hubs emerge. This indicates that when using the
dot product, a small number of specific support
training edges appear in the nearest neighbors so
often, regardless of query edges.

To sum up, systems using instance-based infer-
ence and the dot product are often in trouble with
hubs and have difficulty retrieving plausible sup-
port edges for predictions. The occurrence of hubs
are likely to be related to the norms of edge rep-
resentations since L2-normalization for the edges
in the cosine similarity tends to suppress hubs’ oc-
currence. We leave a more detailed analysis of the
cause of hubs’ occurrence for future work.

lo
g 1
0
N 1

0

Rank

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 11 21 31 41 51 61 71 81 91

WId (Weight+dot)
WIc (Weight+cos)
IId (Instance+dot)
IIc (Instance+cos)

Figure 2: Ranking of the 100 highest N10 unlabeled
support training edges in UD-English.

7 Conclusion

We have developed instance-based neural depen-
dency parsing systems, each of which consists of
our edge identification model and our label clas-
sification model (Section 4). We have analyzed
them from the perspectives of the prediction ac-
curacy and the explanation plausibility. The first
analysis shows that our instance-based systems
and achieve competitive accuracy with weight-
based neural ones (Section 6.1). The second indi-
cates that our instance-based systems using the co-
sine similarity (L2-normalization for edge repre-
sentations) meet the minimal requirement of plau-
sible explanations (Section 6.2). The additional
analysis reveals that when using the dot prod-
uct, hubs emerge, which degrades the plausibil-
ity (Section 6.3). One interesting future direction
is investigating the cause of hubs’ occurrence in
more detail. Another direction is using the learned
edge representations in downstream tasks, such as
semantic textual similarity.

Acknowledgments

The authors are grateful to the anonymous re-
viewers and the Action Editor who provided
many insightful comments that improve the pa-
per. Special thanks also go to the members of
Tohoku NLP Laboratory for the interesting com-
ments and energetic discussions. The work of
H.Ouchi was supported by JSPS KAKENHI Grant
Number 19K20351. The work of J.Suzuki was
supported by JST Moonshot R&D Grant Num-
ber JPMJMS2011 (fundamental research) and
JSPS KAKENHI Grant Number 19H04162. The
work of S.Yokoi was supported by JST ACT-X
Grant Number JPMJAX200S, Japan. The work
of T.Kuribayashi was supported by JSPS KAK-

ENHI Grant Number 20J22697. The work of
M.Yoshikawa was supported by JSPS KAKENHI
Grant Number 20K23314. The work of K.Inui
was supported by JST CREST Grant Number JP-
MJCR20D2, Japan.

References

David W Aha, Dennis Kibler, and Marc K Albert.
1991. Instance-based learning algorithms. Ma-
chine learning, 6(1):37–66.

Alan Akbik and Yunyao Li. 2016. K-SRL:
Instance-based learning for semantic role label-
ing. In Proceedings of COLING, pages 599–
608.

David Baehrens, Timon Schroeter, Stefan Harmel-
ing, Motoaki Kawanabe, Katja Hansen, and
Klaus-Robert MÃžller. 2010. How to explain
individual classification decisions. Journal
of Machine Learning Research, 11(Jun):1803–
1831.

Aurélien Bellet, Amaury Habrard, and Marc Seb-
ban. 2013. A survey on metric learning for fea-
ture vectors and structured data. arXiv preprint
arXiv:1306.6709.

Rens Bod. 2009. From exemplar to grammar: A
probabilistic analogy-based model of language
learning. Cognitive Science, 33(5):752–793.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling
multi-relational data. Proceedings of NIPS,
26:2787–2795.

Rich Caruana, Hooshang Kangarloo, John David
Dionisio, Usha Sinha, and David Johnson.
1999. Case-based explanation of non-case-
based learning methods. In Proceedings of the
AMIA Symposium, page 212.

Kevin Clark, Minh-Thang Luong, Christopher D.
Manning, and Quoc Le. 2018. Semi-supervised
sequence modeling with cross-view training. In
Proceedings of EMNLP, pages 1914–1925.

Walter Daelemans and Antal Van den Bosch.
2005. Memory-based language processing.
Cambridge University Press.

https://www.aclweb.org/anthology/C16-1058
https://www.aclweb.org/anthology/C16-1058
https://www.aclweb.org/anthology/C16-1058
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217

Walter Daelemans, Sabine Buchholz, and Jorn
Veenstra. 1999. Memory-based shallow pars-
ing. In EACL 1999: CoNLL-99 Computational
Natural Language Learning.

Walter Daelemans, Jakub Zavrel, Peter Berck, and
Steven Gillis. 1996. MBT: A memory-based
part of speech tagger-generator. In Proceedings
of Fourth Workshop on Very Large Corpora.

Fien De Meulder and Walter Daelemans. 2003.
Memory-based named entity recognition using
unannotated data. In Proceedings of HLT-
NAACL, pages 208–211.

Jiankang Deng, Jia Guo, Niannan Xue, and Ste-
fanos Zafeiriou. 2019. Arcface: Additive an-
gular margin loss for deep face recognition. In
Proceedings of CVPR, pages 4690–4699.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of NAACL-HLT,
pages 4171–4186.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In Proceedings of ICLR.

Jerome H Friedman et al. 1994. Flexible metric
nearest neighbor classification. Technical re-
port.

Jacob Goldberger, Geoffrey E Hinton, Sam T
Roweis, and Ruslan R Salakhutdinov. 2005.
Neighbourhood components analysis. In Pro-
ceedings of NIPS, pages 513–520.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta,
Armand Joulin, and Tomas Mikolov. 2018.
Learning word vectors for 157 languages. In
Proceedings of LREC.

Alan Graves, Navdeep Jaitly, and Abdel-rahman
Mohamed. 2013. Hybrid speech recognition
with deep bidirectional LSTM. In Proceedings
of Automatic Speech Recognition and Under-
standing (ASRU), 2013 IEEE Workshop.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong
Pasupat, and Ming-Wei Chang. 2020. Realm:
Retrieval-augmented language model pre-
training. arXiv preprint arXiv:2002.08909.

Raia Hadsell, Sumit Chopra, and Yann LeCun.
2006. Dimensionality reduction by learning an
invariant mapping. In Proceedings of CVPR,
volume 2, pages 1735–1742. IEEE.

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and
Kentaro Inui. 2021. Evaluation of similarity-
based explanations. In Proceedings of ICLR.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa
Tsuruoka, and Richard Socher. 2017. A joint
many-task model: Growing a neural network
for multiple NLP tasks. In Proceedings of
EMNLP, pages 1923–1933.

Martin Haspelmath, Matthew S Dryer, David Gil,
and Bernard Comrie. 2005. The world atlas of
language structures.

Trevor Hastie and Robert Tibshirani. 1996. Dis-
criminant adaptive nearest neighbor classifica-
tion and regression. In Proceedings of NIPS,
pages 409–415.

Iris Hendrickx and Antal van den Bosch. 2003.
Memory-based one-step named-entity recogni-
tion: Effects of seed list features, classifier
stacking, and unannotated data. In Proceedings
of CoNLL, pages 176–179.

Elad Hoffer and Nir Ailon. 2015. Deep metric
learning using triplet network. In International
Workshop on Similarity-Based Pattern Recogni-
tion, pages 84–92. Springer.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-
based dependency parsing with graph neural
networks. In Proceedings of ACL, pages 2475–
2485.

Urvashi Khandelwal, Angela Fan, Dan Juraf-
sky, Luke Zettlemoyer, and Mike Lewis. 2020.
Nearest neighbor machine translation. arXiv
preprint arXiv:2010.00710.

Urvashi Khandelwal, Omer Levy, Dan Juraf-
sky, Luke Zettlemoyer, and Mike Lewis. 2019.
Generalization through memorization: Nearest
neighbor language models. In Proceedings of
ICLR.

D.P. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

https://www.aclweb.org/anthology/W96-0102
https://www.aclweb.org/anthology/W96-0102
https://www.aclweb.org/anthology/W03-0435
https://www.aclweb.org/anthology/W03-0435
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.cs.toronto.edu/~hinton/absps/nca.pdf
https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=9uvhpyQwzM_
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/D17-1206
https://www.aclweb.org/anthology/W03-0427
https://www.aclweb.org/anthology/W03-0427
https://www.aclweb.org/anthology/W03-0427
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237

Janet L Kolodneer. 1991. Improving human de-
cision making through case-based decision aid-
ing. AI magazine, 12(2):52–52.

Sandra Kübler. 2004. Memory-based parsing,
volume 7.

Sandra Kübler, Ryan McDonald, and Joakim
Nivre. 2009. Dependency parsing. Synthe-
sis lectures on human language technologies,
1(1):1–127.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre.
2019. Deep contextualized word embeddings in
transition-based and graph-based dependency
parsing-a tale of two parsers revisited. In
Proceedings of EMNLP-IJCNLP, pages 2755–
2768.

Michael Lebowitz. 1983. Memory-based parsing.
Artificial Intelligence, 21(4):363–404.

Tao Lei, Regina Barzilay, and Tommi Jaakkola.
2016. Rationalizing neural predictions. In Pro-
ceedings of EMNLP, pages 107–117.

Patrick Lewis, Ethan Perez, Aleksandara Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau
Yih, Tim Rocktäschel, et al. 2020. Retrieval-
augmented generation for knowledge-intensive
nlp tasks. arXiv preprint arXiv:2005.11401.

Miryam de Lhoneux, Sara Stymne, and Joakim
Nivre. 2017. Old school vs. new school: Com-
paring transition-based parsers with and without
neural network enhancement. In The 15th Tree-
banks and Linguistic Theories Workshop (TLT),
pages 99–110.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li,
Bhiksha Raj, and Le Song. 2017. Sphereface:
Deep hypersphere embedding for face recogni-
tion. In Proceedings of CVPR, pages 212–220.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313–330.

Ryan McDonald, Kevin Lerman, and Fernando
Pereira. 2006. Multilingual dependency anal-
ysis with a two-stage discriminative parser. In
Proceedings of CoNLL-X, pages 216–220.

Ryan McDonald, Joakim Nivre, Yvonne
Quirmbach-Brundage, Yoav Goldberg, Di-
panjan Das, Kuzman Ganchev, Keith Hall, Slav
Petrov, Hao Zhang, Oscar Täckström, Claudia
Bedini, Núria Bertomeu Castelló, and Jungmee
Lee. 2013. Universal Dependency annotation
for multilingual parsing. In Proceedings of
ACL, pages 92–97.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajič. 2005. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of HLT-EMNLP, pages 523–
530.

Makoto Nagao. 1984. A framework of a mechan-
ical translation between Japanese and English
by analogy principle.

Maximilian Nickel, Lorenzo Rosasco, and
Tomaso Poggio. 2016. Holographic embed-
dings of knowledge graphs. In Proceedings of
AAAI, volume 30.

Joakim Nivre. 2003. An efficient algorithm for
projective dependency parsing. In Proceedings
of the eighth international conference on pars-
ing technologies, pages 149–160.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Pro-
ceedings of CoNLL, pages 49–56.

Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. 2018. Representation learning with
contrastive predictive coding. arXiv preprint
arXiv:1807.03748.

Hiroki Ouchi, Jun Suzuki, Sosuke Kobayashi, Sho
Yokoi, Tatsuki Kuribayashi, Ryuto Konno, and
Kentaro Inui. 2020. Instance-based learning
of span representations: A case study through
named entity recognition. In Proceedings of
ACL, pages 6452–6459.

Nicolas Papernot and Patrick McDaniel. 2018.
Deep k-nearest neighbors: Towards confident,
interpretable and robust deep learning. arXiv
preprint arXiv:1803.04765.

Razvan Pascanu, Tomas Mikolov, and Yoshua
Bengio. 2013. On the difficulty of training
recurrent neural networks. In Proceedings of
ICML, pages 1310–1318.

https://doi.org/10.18653/v1/D16-1011
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/W06-2932
https://www.aclweb.org/anthology/W06-2932
https://www.aclweb.org/anthology/P13-2017
https://www.aclweb.org/anthology/P13-2017
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
http://www.mt-archive.info/Nagao-1984.pdf
http://www.mt-archive.info/Nagao-1984.pdf
http://www.mt-archive.info/Nagao-1984.pdf
https://www.aclweb.org/anthology/W04-2407
https://doi.org/10.18653/v1/2020.acl-main.575
https://doi.org/10.18653/v1/2020.acl-main.575
https://doi.org/10.18653/v1/2020.acl-main.575

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of
EMNLP, pages 1532–1543.

Gregory Plumb, Denali Molitor, and Ameet S Tal-
walkar. 2018. Model agnostic supervised local
explanations. In Proceedings of NIPS, pages
2515–2524.

Milos Radovanovic, Alexandros Nanopoulos, and
Mirjana Ivanovic. 2010. Hubs in space:
Popular nearest neighbors in high-dimensional
data. Journal of Machine Learning Research,
11(sept):2487–2531.

Rajeev Ranjan, Carlos D Castillo, and Rama Chel-
lappa. 2017. L2-constrained softmax loss for
discriminative face verification. arXiv preprint
arXiv:1703.09507.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Ex-
plaining the predictions of any classifier. In
Proceedings of KDD, pages 1135–1144.

Erik F Tjong Kim Sang. 2002. Memory-based
shallow parsing. Journal of Machine Learning
Research, 2:559–594.

Remko Scha, Rens Bod, and Khalil Sima’An.
1999. A memory-based model of syntactic
analysis: data-oriented parsing. Journal of Ex-
perimental & Theoretical Artificial Intelligence,
11(3):409–440.

Dominik Schnitzer, Arthur Flexer, Markus Schedl,
and Gerhard Widmer. 2012. Local and global
scaling reduce hubs in space. Journal of Ma-
chine Learning Research, 13(10).

R Short and Keinosuke Fukunaga. 1981. The opti-
mal distance measure for nearest neighbor clas-
sification. IEEE transactions on Information
Theory, 27(5):622–627.

Aaron Smith, Miryam de Lhoneux, Sara Stymne,
and Joakim Nivre. 2018. An investigation of
the interactions between pre-trained word em-
beddings, character models and pos tags in de-
pendency parsing. In Proceedings of EMNLP,
pages 2711–2720.

Kihyuk Sohn. 2016. Improved deep metric learn-
ing with multi-class n-pair loss objective. In
Proceedings of NIPS, pages 1857–1865.

Eiichiro Sumita and Hitoshi Iida. 1991. Experi-
ments and prospects of example-based machine
translation. In Proceedings of ACL, pages 185–
192.

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi
Zhang, Liang Zheng, Zhongdao Wang, and
Yichen Wei. 2020. Circle loss: A unified per-
spective of pair similarity optimization. In Pro-
ceedings of CVPR, pages 6398–6407.

Erik F. Tjong Kim Sang. 2002. Memory-based
named entity recognition. In Proceedings of
CoNLL.

Jorn Veenstra, Antal Van den Bosch, Sabine Buch-
holz, Walter Daelemans, et al. 2000. Memory-
based word sense disambiguation. Computers
and the Humanities, 34(1):171–177.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji,
Dihong Gong, Jingchao Zhou, Zhifeng Li, and
Wei Liu. 2018. Cosface: Large margin cosine
loss for deep face recognition. In Proceedings
of CVPR, pages 5265–5274.

Jiang Wang, Yang Song, Thomas Leung, Chuck
Rosenberg, Jingbin Wang, James Philbin,
Bo Chen, and Ying Wu. 2014. Learning fine-
grained image similarity with deep ranking. In
Proceedings of CVPR, pages 1386–1393.

Xun Wang, Xintong Han, Weilin Huang, Dengke
Dong, and Matthew R Scott. 2019. Multi-
similarity loss with general pair weighting for
deep metric learning. In Proceedings of CVPR,
pages 5022–5030.

Sam Wiseman and Karl Stratos. 2019. Label-
agnostic sequence labeling by copying nearest
neighbors. In Proceedings of ACL, pages 5363–
5369.

Eric Xing, Michael Jordan, Stuart J Russell, and
Andrew Ng. 2002. Distance metric learn-
ing with application to clustering with side-
information. In Proceedings of NIPS, vol-
ume 15, pages 521–528.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Sta-
tistical dependency analysis with support vec-
tor machines. In Proceedings of the eighth in-
ternational conference on parsing technologies,
pages 195–206.

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/981344.981368
https://doi.org/10.3115/981344.981368
https://doi.org/10.3115/981344.981368
https://www.aclweb.org/anthology/W02-2025
https://www.aclweb.org/anthology/W02-2025
https://www.aclweb.org/anthology/P19-1533
https://www.aclweb.org/anthology/P19-1533
https://www.aclweb.org/anthology/P19-1533

Bishan Yang, Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. 2015. Embedding en-
tities and relations for learning and inference in
knowledge bases.

Xingxing Zhang, Jianpeng Cheng, and Mirella La-
pata. 2017. Dependency parsing as head selec-
tion. In Proceedings of EACL, pages 665–676.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020.
Efficient second-order TreeCRF for neural de-
pendency parsing. In Proceedings of ACL,
pages 3295–3305.

https://www.aclweb.org/anthology/E17-1063
https://www.aclweb.org/anthology/E17-1063
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302

