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Abstract

If massive neutrinos are Majorana particles, then the lepton number should be violated in

nature and neutrino-antineutrino oscillations να ↔ νβ (for α, β = e, µ, τ) will definitely take

place. In the present paper, we study the properties of CP violation in neutrino-antineutrino

oscillations with the non-unitary leptonic flavor mixing matrix, which is actually a natural

prediction in the canonical seesaw model due to the mixing between light and heavy Majorana

neutrinos. The oscillation probabilities P (να → νβ) and P (να → νβ) are derived, and the

CP asymmetries Aαβ ≡ [P (να → νβ) − P (να → νβ)]/[P (να → νβ) + P (να → νβ)] are

also calculated. Taking into account current experimental bounds on the leptonic unitarity

violation, we show that the CP asymmetries induced by the non-unitary mixing parameters

can significantly deviate from those in the limit of a unitary leptonic flavor mixing.
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1 Introduction

Neutrino oscillation experiments have provided us with very convincing evidence that neutrinos

are actually massive and lepton flavors are significantly mixed [1, 2]. In order to accommodate

tiny neutrino masses, one can naturally extend the Standard Model (SM) by introducing three

right-handed neutrino singlets NiR (for i = 1, 2, 3). After the spontaneous breaking of the SM

gauge symmetry, the overall neutrino mass term can be written as [3]

Lν = −1

2

(
νL N

C
R

)( 0 MD

MT
D MR

)(
νCL
NR

)
+ h.c. , (1.1)

where νCL ≡ CνL
T and NC

R ≡ CNR

T
with C ≡ iγ2γ0 stand respectively for the charge conjugates

of the left-handed and right-handed neutrino fields, MD for the Dirac neutrino mass matrix, and

MR for the Majorana mass matrix of right-handed neutrino singlets. In the flavor basis where the

charged-lepton mass matrix Ml = Diag{me,mµ,mτ} is diagonal with mα (for α = e, µ, τ) being

the charged-lepton masses, one can diagonalize the 6× 6 neutrino mass matrix in Eq. (1.1) by a

6× 6 unitary matrix via(
V R

S U

)†(
0 MD

MT
D MR

)(
V R

S U

)∗
=

(
M̂ν 0

0 M̂R

)
, (1.2)

where M̂ν ≡ Diag{m1,m2,m3} and M̂R ≡ Diag{M1,M2,M3} with mi and Mi (for i = 1, 2, 3)

being the masses of three light and heavy Majorana neutrinos, respectively. Obviously, all the

3×3 matrices V , R, S and U themselves are not unitary but satisfy the unitarity conditions, such

as V V † + RR† = 1 and V S† + RU † = 0. In the mass basis, the charged-current interaction for

both light and heavy Majorana neutrinos turns out to be

Lcc =
g√
2

(e µ τ)
L
V γµ

ν1ν2
ν3


L

W−
µ +

(
e µ τ

)
L
Rγµ

N1

N2

N3


L

W−
µ

+ h.c. , (1.3)

where the non-unitary matrix V will be involved in the production and detection of light neutrinos,

and responsible for the leptonic flavor mixing in the neutrino-neutrino (i.e., να → νβ and να → νβ)

and neutrino-antineutrino (i.e., να → νβ and να → νβ) oscillations.

In this canonical type-I seesaw model [4–8], the effective Majorana mass matrix of three light

neutrinos is given by Mν ≡ V M̂νV
T ≈ −MDM

−1
R MT

D , so the tiny Majorana masses of ordinary

neutrinos νi can be attributed to the large masses of heavy Majorana neutrinos Ni. If the masses of

heavy Majorana neutrinos are around a superhigh-energy scale O(MR) ∼ 1014 GeV, then the light

Majorana neutrino masses correctly reach the sub-eV level O(Mν) ∼ 0.1 eV for O(MD) ∼ 102 GeV

at the electroweak scale. Consequently, the unitarity violation of the leptonic flavor mixing matrix

V is highly suppressed, namely, 1 − V V † = RR† with R ∼ O(MDM
−1
R ) ∼ 10−12 [9]. Generally

speaking, the absolute scale of the heavy Majorana neutrino masses cannot be uniquely fixed. As

has been pointed out in Ref. [10], if there exists some symmetry guaranteeing MDM
−1
R MT

D = 0,

then the tiny Majorana neutrino masses of νi are vanishing at the tree level, but they can be
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radiatively generated. In this case, the light-heavy mixing matrix R ∼ O(MDM
−1
R ) could be as

sizable as 10−2 for O(MR) ∼ 10 TeV or even lower. In such low-scale type-I seesaw models, the

heavy Majorana neutrinos are hopefully accessible to the high-energy collider experiments [11–

14], and the resonant leptogenesis mechanism [15] works well to account for the cosmological

matter-antimatter asymmetry [16–18]. On the other hand, the leptonic unitarity violation will

receive stringent bounds from electroweak precision data, lepton-flavor-violating decays of charged

leptons, and neutrino oscillation experiments [19–22].

In Ref. [23], it has been recognized that the non-unitarity of the leptonic flavor mixing matrix

V brings in extra sources of CP violation, which can be probed in future long-baseline accelerator

neutrino oscillation experiments [24–28]. In this work, we concentrate on the CP violation induced

by the non-unitary flavor mixing matrix V in the neutrino-antineutrino oscillations. The motiva-

tion for such an investigation is two-fold. First, since it was suggested by Pontecorvo in 1957 [29]

that neutrino-antineutrino conversions might occur, there has been great progress in understand-

ing the basic properties of massive neutrinos. Now we know that neutrino-antineutrino oscillations

definitely indicate the lepton number violation, and thus take place only if massive neutrinos are

Majorana particles [30]. Therefore, it is interesting to examine neutrino-antineutrino oscillations

in the type-I seesaw model where neutrinos are indeed Majorana particles and the flavor mixing

matrix is intrinsically non-unitary. Second, there exist extensive studies of neutrino-antineutrino

oscillations with a unitary flavor mixing matrix [31–42]. On the one hand, although the oscillation

amplitudes are in reality significantly suppressed by the tiny ratios of neutrino masses to neutrino

beam energies, the CP asymmetries depend on the Majorana CP-violating phases as well and

possess intriguing properties [40, 41]. For this reason, we are curious about how different the CP

violation with a non-unitary mixing matrix is from that with a unitary one, and how large the

deviations can be in light of the latest experimental bounds on unitarity violation. In connection

with neutrino-antineutrino oscillations and CP violation, we briefly comment on the oscillations

of heavy Majorana neutrinos in the seesaw model [43] and the resonantly-enhanced CP violation

if two heavy Majorana neutrinos become nearly degenerate in mass [44].

The remaining part of this paper is organized as follows. In Sec. 2, we give some helpful remarks

on the conventional parametrizations of a non-unitary mixing matrix, and clarify the relationship

between the Hermitian parametrization and the lower-triangular one. Then, the CP asymmetries

for neutrino-antineutrino oscillations with a non-unitary mixing matrix are calculated in Sec. 3,

and compared with those in the unitary limit. A brief discussion about neutrino-antineutrino

oscillations and CP asymmetries for heavy Majorana neutrinos is also given. We summarize

our main results in Sec. 4. Finally, some details about the QR factorization are presented in

Appendix A, and the CP asymmetries in neutrino-antineutrino oscillations with a unitary mixing

matrix are collected in Appendix B.

2 Non-unitary Mixing Matrix

Before calculating the να ↔ νβ oscillation probabilities, we first carry out a comparative study of

the existing parametrizations for a non-unitary mixing matrix. As is well known [19,20], the 3×3

non-unitary mixing matrix V can be decomposed into the product of a Hermitian matrix and a
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unitary matrix, namely,

V = (1− η) · V ′ , (2.1)

where η is Hermitian and V ′ is unitary. Mathematically, this is just a direct consequence of the

polar decomposition theorem. In the present case, the 3 × 3 Hermitian matrix η measures the

strength of unitarity violation, and thus has been strictly constrained by current experimental

observations, as we shall explain later on.

On the other hand, it has been proposed that the non-unitary mixing matrix V can also be

decomposed as below [21,22]

V =

α11 0 0

α21 α22 0

α31 α32 α33

 · Ṽ ≡ T · Ṽ , (2.2)

where T is by definition a lower-triangular matrix and Ṽ is a unitary matrix. Notice that the

matrix elements of T have been explicitly given in Eq. (2.2), where αji = 0 (for 1 ≤ j < i ≤ 3),

αii (for i = 1, 2, 3) are real and positive numbers, whereas αji (for 1 ≤ i < j ≤ 3) are complex

numbers. In fact, the decomposition in Eq. (2.2) is known as the QR factorization of an arbitrary

3× 3 complex matrix. It is worthwhile to stress that the unitary matrix V ′ in Eq. (2.1) and Ṽ in

Eq. (2.2) must be different, since the associated Hermitian matrix (1−η) and the lower-triangular

matrix T cannot be exactly identical.

An immediate question is then how the decompositions in Eq. (2.1) and Eq. (2.2) are related

to each other. Such a correspondence can be established by performing the QR factorization of

the Hermitian matrix (1− η). Following the standard procedure, as summarized in Appendix A,

we can obtain

1− η ≈

1− ηee 0 0

−2η∗eµ 1− ηµµ 0

−2η∗eτ −2η∗µτ 1− ηττ

 ·
 1 −ηeµ −ηeτ

+η∗eµ 1 −ηµτ
+η∗eτ +η∗µτ 1

 , (2.3)

where all the higher-order terms of O(|ηαβ|2) for α, β = e, µ, τ have been omitted in the lower-

triangular matrix and the unitary matrix on the right-hand side. Substituting Eq. (2.3) into

Eq. (2.1) and comparing the latter with Eq. (2.2), one can arrive at

T ≈

1− ηee 0 0

−2η∗eµ 1− ηµµ 0

−2η∗eτ −2η∗µτ 1− ηττ

 , Ṽ ≈

 1 −ηeµ −ηeτ
+η∗eµ 1 −ηµτ
+η∗eτ +η∗µτ 1

V ′ . (2.4)

Some comments on the relations in Eq. (2.4) are in order. The triangular parametrization of V in

Eq. (2.2) can be related to the Hermitian parametrization in Eq. (2.1) by identifying α11 = 1−ηee,
α22 = 1− ηµµ and α33 = 1− ηττ for three diagonal elements, and α21 = −2η∗eµ, α31 = −2η∗eτ and

α32 = −2η∗µτ for three nonzero off-diagonal elements. This identification has already been observed

in Refs. [22, 25]. However, it should be further noticed that the unitary matrices V ′ and Ṽ will

differ by some corrections of O(|ηαβ|) [25]. On this point, we make two helpful remarks.
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• As shown in Ref. [19–22], the most stringent constraints on the unitarity violation arise from

the electroweak precision data on the lepton universality and lepton-flavor-violating decays

of charged leptons. No matter which process is considered, the non-unitary mixing matrix

will always be involved as the combination
(
V V †

)
αβ

, implying that the unitary matrix V ′

in the Hermitian parametrization of V in Eq. (2.1) will be cancelled out. This also happens

for Ṽ in the triangular parametrization in Eq. (2.2). Therefore, the experimental constraints

on the unitarity violation in these two different parametrizations will be equivalent after the

identification of T in Eq. (2.4) is taken into account.

• Once neutrino flavor oscillations are considered, it will be in principle problematic to take

the standard parametrization for both V ′ and Ṽ and identify the corresponding mixing

angles and CP-violating phases [25]. As indicated in Eq. (2.4), the difference between them

is on the order of O(|ηαβ|). Hence it is hopefully possible to distinguish between the mixing

parameters in V ′ and those in Ṽ in future neutrino oscillation experiments. This is because

the oscillation probabilities depend on the mixing matrix V itself instead of the combination

V V †. Nevertheless, the parameters |ηαβ| have been restricted by the electroweak precision

data to be smaller than O(10−3), which are too small to be essentially observed in current

neutrino oscillation experiments. After the latest experimental constraints on ηαβ are taken

into account, it is rather safe to ignore their corrections to the unitary matrix Ṽ in the

triangular parametrization.

Although the triangular parametrization of the non-unitary mixing matrix V in Eq. (2.2) is just

a straightforward implication of the QR factorization, it has actually been obtained for the first

time in Refs. [45, 46], where the full parametrization of the 6 × 6 unitary matrix in Eq. (1.2) is

proposed and the triangular parametrization of the 3× 3 sub-matrix V naturally emerges.

For later convenience, we shall adopt a specific parametrization of the non-unitary mixing

matrix V and explain current experimental constraints on the parameters of unitarity violation.

First, the Hermitian parametrization in Eq. (2.1) as advocated in Ref. [19] will be implemented,

and the parameters characterizing the unitarity violation are three real numbers {ηee, ηµµ, ηττ} and

three complex ones {ηeµ, ηeτ , ηµτ}. Furthermore, as mentioned in Sec. 1, the unitarity condition

V V † = 1−RR† holds in the type-I seesaw model, so we can observe that
(
V V †

)
αα

= 1− (|Rα1|2 +

|Rα2|2 + |Rα3|2) ≤ 1. On the other hand, we have
(
V V †

)
αα

= 1− 2ηαα +
(
|ηαe|2 + |ηαµ|2 + |ηατ |2

)
.

Thus ηαα > 0 must be satisfied for |ηαβ| � 1. The global-fit analysis of these parameters in light

of the electroweak precision data has been performed in Ref. [22] and the final bounds in the

general seesaw model have been obtained at the 2σ level, viz.

0 ≤ ηee < 1.25× 10−3 , 0 ≤ ηµµ < 2.21× 10−4 , 0 ≤ ηττ < 2.81× 10−3 ; (2.5)

and

|ηeµ| < 1.20× 10−5 , |ηeτ | < 1.35× 10−3 , |ηµτ | < 6.13× 10−4 . (2.6)

The second step is to translate the above bounds on |ηαβ| into those on αij (for 1 ≤ j ≤ i ≤ 3).

This can be simply achieved by using the first equality in Eq. (2.4). At the 2σ level, we have

0.99875 < α11 ≤ 1 , 0.99978 < α22 ≤ 1 , 0.99719 < α33 ≤ 1 ; (2.7)
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and

|α21| < 2.40× 10−5 , |α31| < 2.70× 10−3 , |α32| < 1.23× 10−3 . (2.8)

The derived bounds on |αij| are well consistent with those given in Ref. [26]. It is worth mentioning

that we shall define αij ≡ |αij|eiφij for 1 ≤ j < i ≤ 3 and these three phases {φ21, φ31, φ32} are

completely unconstrained by the electroweak precision data and lepton-flavor-violating decays. In

the following discussions, these phases will be taken to be free parameters. Finally, as mentioned

before, it is reasonable to ignore the difference between V ′ and Ṽ in light of the current bounds

on |ηαβ| in Eq. (2.6). Therefore, both V ′ and Ṽ can be identified with the mixing matrix in the

unitary limit, and we choose the standard parametrization of the unitary matrix Ṽ as advocated

by the Particle Data Group [1], i.e.,

Ṽ =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23eiδ +c12c23 − s12s13s23eiδ c13s23
+s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

 ·
eiρ 0 0

0 eiσ 0

0 0 1

 , (2.9)

where cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13, 23) have been defined. Three neutrino mixing

angles {θ12, θ13, θ23} and the Dirac-type CP-violating phase δ, together with two neutrino mass-

squared differences, can be extracted from the global-fit analysis of neutrino oscillation data [47],

while two Majorana-type CP-violating phases {ρ, σ} ∈ [0, π) are essentially free. For illustration,

we take the best-fit values from the global-fit results, namely,

θ12 = 33.4◦ , δ = 195◦ ,

θ23 = 49.0◦ , ∆m2
21 = +7.42× 10−5 eV2

θ13 = 8.57◦ , ∆m2
31 = +2.51× 10−3 eV2 , (2.10)

for the normal neutrino mass ordering (NO) with m1 < m2 < m3;

θ12 = 33.5◦ , δ = 286◦ ,

θ23 = 49.3◦ , ∆m2
21 = +7.42× 10−5 eV2

θ13 = 8.61◦ , ∆m2
32 = −2.50× 10−3 eV2 , (2.11)

for the inverted neutrino mass ordering (IO) with m3 < m1 < m2. Note that the neutrino mass-

squared differences have been defined as ∆m2
ji ≡ m2

j −m2
i for ji = 21, 31, 32. In our numerical

calculations in the next section, we shall use the allowed ranges of the non-unitary parameters in

Eqs. (2.7) and (2.8), and the best-fit values of the ordinary mixing parameters in Eq. (2.10) in the

NO case or those in Eq. (2.11) in the IO case.

3 CP Asymmetries

3.1 General Remarks

3.1.1 Neutrino-neutrino Oscillations

Once three ordinary neutrinos mix with extra heavy fermions, the flavor mixing matrix appearing

in the leptonic charged-current interaction will be non-unitary [48]. The phenomenology of non-

unitary leptonic flavor mixing has been studied extensively in the literature [19,49–56]. Now that
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the flavor mixing matrix is non-unitary, it will be more convenient to introduce the neutrino flavor

eigenstates |να〉 for α = e, µ, τ , i.e.,

|να〉 =
1√

(V V †)αα

∑
i

V ∗αi|νi〉 , (3.1)

which have been properly normalized. Though neutrino mass eigenstates are orthonormal, namely,

〈νj|νi〉 = δij, the neutrino flavor eigenstates are not orthogonal in the sense that 〈νβ|να〉 6= 0 holds

for α 6= β, but 〈να|να〉 = 1 for α = e, µ, τ . Following Refs. [19,45], one can solve the Schrödinger-

like equation for the time-evolved neutrino flavor eigenstate |να(t)〉 and then calculate the neutrino-

neutrino oscillation amplitudes 〈νβ|να(t)〉 at t ≈ L with L being the distance between the neutrino

source and the detector. Therefore, the oscillation probabilities P (να → νβ) ≡ |〈νβ|να(L)〉|2 in

the presence of a non-unitary mixing matrix are given by [45]

P
(
να → νβ

)
=

3∑
i=1

|Vαi|
2
∣∣Vβi∣∣2 + 2

∑
i<j

Re
[
VαiV

∗
αjV

∗
βiVβj

]
cosFji + 2

∑
i<j

J ijαβ sinFji

(V V †)αα (V V †)ββ
, (3.2)

where the Jarlskog-like rephasing invariants J ijαβ ≡ Im
[
VαiV

∗
αjV

∗
βiVβj

]
have been defined (for i, j =

1, 2, 3) in a similar way to those for a unitary flavor mixing matrix [57,58] and Fji ≡ ∆m2
jiL/(2E)

for ji = 21, 31, 32 are the oscillation phases. It is worthwhile to notice that the sign in front

of the last term in the numerator on the right-hand side of Eq. (3.2) is different from that in

Ref. [45], where sinFij for ij = 12, 23, 13 have been used. As is well known, for a unitary mixing

matrix, the rephasing invariants J ijαβ are all equal up to a minus sign, implying that there is one

unique Jarlskog invariant, usually denoted as J . In contrast, for a non-unitary mixing matrix V ,

the unitarity conditions are no longer applicable, but the identities J ijαβ = −J ijβα = −J jiαβ = J jiβα
together with J ijαα = J iiαβ = 0 hold for α, β = e, µ, τ and i, j = 1, 2, 3 according to the definition

of J ijαβ. Hence it is easy to verify that there are totally nine independent Jarlskog-like rephasing

invariants J ijαβ in the non-unitary case.

By using the triangular parametrization of V in Eq. (2.2), together with Ṽ in Eq. (2.9), one

can write down the explicit expressions of nine independent J ijαβ. However, the exact expressions

are lengthy and too complicated to be useful. In consideration of s213 ≈ 0.022 and |αji| � 1 (for

1 ≤ i < j ≤ 3), we can safely neglect the higher-order terms and derive the approximate analytical

expressions of J ijαβ. By employing the Jarlskog invariant J ≈ s12c12s13s23c23 sin δ, we find that

there are only seven independent Jarlskog-like invariants. More explicitly, we have

J23
eµ ≈ J31

eµ ≈ α2
11α

2
22J , J12

eµ ≈ J23
eµ − α2

11 |α21|α22s12c12c23 sinφ21 , (3.3)

for (α, β) = (e, µ),

J23
τe ≈ J31

τe ≈ α2
11α

2
33J , J12

τe ≈ J23
τe − α2

11 |α31|α33s12c12s23 sinφ31 , (3.4)

for (α, β) = (τ, e), and

J12
µτ ≈ α2

22α
2
33J − α2

22 |α31|α33s12c12s23c
2
23 sinφ31 ,

J23
µτ ≈ J12

µτ − α2
22 |α32|α33c

2
12s23c23 sinφ32 , J31

µτ ≈ J12
µτ + α2

22 |α32|α33s
2
12s23c23 sinφ32 , (3.5)
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for (α, β) = (µ, τ). With the above Jarlskog-like invariants, one can compute the CP asymmetries

for the probabilities of neutrino-neutrino να → νβ oscillations and antineutrino-antineutrino να →
νβ oscillations. With a trivial CP-violating phase δ = 0 or π, we have J = 0 as in the unitary case

with CP conservation. In the non-unitary case, although we have J 23
eµ ≈ J 31

eµ ≈ J 23
τe ≈ J 31

τe ≈ 0,

CP violation is still present due to other non-vanishing Jarlskog-like parameters in Eqs. (3.3)-

(3.5). Further discussions about how to probe the non-unitarity induced CP violation in neutrino

oscillation experiments can be found in Refs. [23–28].

3.1.2 Neutrino-antineutrino Oscillations

As for the neutrino-antineutrino oscillations, there exist already extensive discussions in Refs. [31,

33,40] in the case of a unitary mixing matrix. In the non-unitary case, the amplitudes need to be

modified as

A
(
να → νβ

)
=

K√
(V V †)αα (V V †)ββ

3∑
i=1

V ∗αiV
∗
βi

mi

E
exp

(
−i
m2
iL

2E

)
, (3.6)

A
(
να → νβ

)
=

K√
(V V †)αα (V V †)ββ

3∑
i=1

VαiVβi
mi

E
exp

(
−i
m2
iL

2E

)
, (3.7)

where K and K are the kinematical factors satisfying the identity |K| =
∣∣K∣∣. The oscillation

amplitudes are obviously suppressed by the small ratios mi/E (for i = 1, 2, 3) due to the helicity

mismatches between neutrinos and antineutrinos. Therefore, given the amplitudes in Eqs. (3.6)

and (3.7), the probabilities of neutrino-antineutrino oscillations and their CP-conjugate counter-

parts are found to be

P
(
να → νβ

)
=

|K|2

(V V †)αα (V V †)ββ

[∣∣〈m〉αβ∣∣2
E2

− 4
∑
i<j

mimj

E2
Cijαβ sin2

Fji
2

+ 2
3∑
i<j

mimj

E2
V ijαβ sinFji

]
,

(3.8)

P
(
να → νβ

)
=

∣∣K∣∣2
(V V †)αα (V V †)ββ

[∣∣〈m〉αβ∣∣2
E2

− 4
∑
i<j

mimj

E2
Cijαβ sin2

Fji
2
− 2

3∑
i<j

mimj

E2
V ijαβ sinFji

]
,

(3.9)

where Cijαβ ≡ Re
[
VαiVβiV

∗
αjV

∗
βj

]
and V ijαβ ≡ Im

[
VαiVβiV

∗
αjV

∗
βj

]
have been introduced, and the

effective neutrino masses 〈m〉αβ ≡ Vα1Vβ1m1 +Vα2Vβ2m2 +Vα3Vβ3m3 (for α, β = e, µ, τ) have been

defined. Then, the CP asymmetries for neutrino-antineutrino oscillations turn out to be

Aαβ ≡
P
(
να → νβ

)
− P

(
να → νβ

)
P
(
να → νβ

)
+ P

(
να → νβ

) =

2
∑
i<j

mimjV
ij
αβ sinFji

∣∣〈m〉αβ∣∣2 − 4
∑
i<j

mimjC
ij
αβ sin2

Fji
2

, (3.10)

where the normalization factors (V V †)αα(V V †)ββ due to the non-unitarity of the mixing matrix are

cancelled out. It is worthwhile to mention that the CP asymmetries Aαβ in Eq. (3.10) are formally
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the same as those derived in Refs. [40,41] in the unitary case, but with a non-unitary flavor mixing

matrix V involved in the parameters Cijαβ ≡ Re
[
VαiVβiV

∗
αjV

∗
βj

]
and V ijαβ ≡ Im

[
VαiVβiV

∗
αjV

∗
βj

]
.

Furthermore, although the normalization factors (V V †)αα(V V †)ββ are cancelled out in the CP

asymmetries, they do appear in the oscillation probabilities. For instance, they will lead to the

corrections to the zero-distance effects for L = 0, namely,

P (να → νβ) = P (να → νβ) =
|K|2

(V V †)αα (V V †)ββ

∣∣〈m〉αβ∣∣2
E2

. (3.11)

Hence the zero-distance effects receive also the contributions from the non-unitarity of the flavor

mixing matrix, which has been observed in the case of neutrino-neutrino oscillations [19].

Since the CP asymmetries Aαβ in Eq. (3.10) depend crucially on the Jarlskog-like parameters

V ijαβ, it is necessary to examine the basic properties of the latter. First of all, according to their

definitions, the CP-conserving parameters Cijαβ and the CP-violating Jarlskog-like parameters V ijαβ
fulfill the following identities

Cijαβ = Cijβα = +Cjiαβ = +Cjiβα , (3.12)

V ijαβ = V ijβα = −Vjiαβ = −Vjiβα , (3.13)

where α, β = e, µ, τ and i, j = 1, 2, 3. Without the unitarity constraints from the mixing matrix V ,

one obtains totally 18 independent parameters V ijαβ, which can be regarded as the (α, β)-elements

of three real and symmetric 3× 3 matrices V12, V13 and V23.

To derive the explicit expressions of V ijαβ, one can insert the parametrization of the non-unitary

mixing matrix V in Eq. (2.2) and Eq. (2.9) into their definitions. Then, one can further subtract

the results in the unitary limit, which have already been calculated in Refs. [40,41] and collected

in Appendix B for reference. More explicitly, we introduce the differences between the expressions

in the non-unitary case and those in the unitary case, namely,

εijαβ ≡ V
ij
αβ − Ṽ

ij
αβ , (3.14)

where Ṽ ijαβ refer to the Jarlskog-like parameters in the unitary case. Notice that only nine out of

18 parameters Ṽ ijαβ are independent because of the unitarity of the flavor mixing matrix [40, 41],

which can be chosen to be Ṽ ijαα (for ij = 12, 13, 23 and α = e, µ, τ) and their expressions in terms of

mixing parameters are given in Appendix B. In consideration of current experimental constraints

on the unitarity-violating parameters summarized in Sec. 2 and s213 ∼ 10−2, we retain only the

leading-order terms in εijαβ, i.e.,

ε12ee =
(
α4
11 − 1

)
s212c

2
12c

4
13 sin 2(ρ− σ) , (3.15)

ε13ee =
(
α4
11 − 1

)
c212s

2
13c

2
13 sin 2(ρ+ δ) , (3.16)

ε23ee =
(
α4
11 − 1

)
s212s

2
13c

2
13 sin 2(σ + δ) , (3.17)

for (α, β) = (e, e);

ε12µµ ≈
(
α4
22 − 1

)
c223
[
s212c

2
12c

2
23 sin 2(ρ− σ) + 2J12

]
− 2 |α21|α3

22s12c12c
3
23Φ21 , (3.18)

ε13µµ ≈
(
α4
22 − 1

)
s223
[
s212c

2
23 sin 2ρ+ 2Jr sin(2ρ+ δ)

]
− 2 |α21|α3

22s12c12s
2
23c23 sin (2ρ+ φ21) , (3.19)

ε23µµ ≈
(
α4
22 − 1

)
s223
[
c212c

2
23 sin 2σ − 2Jr sin(2σ + δ)

]
+ 2 |α21|α3

22s12c12s
2
23c23 sin (2σ + φ21) ,(3.20)
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for (α, β) = (µ, µ);

ε12ττ ≈
(
α4
33 − 1

)
s223
[
s212c

2
12s

2
23 sin 2(ρ− σ)− 2J12

]
+ 2 |α31|α3

33s12c12s
3
23Φ31

−4 |α32|α3
33s

2
12c

2
12s

3
23c23 sin 2(ρ− σ) cosφ32 , (3.21)

ε13ττ ≈
(
α4
33 − 1

)
c223
[
s212s

2
23 sin 2ρ− 2Jr sin(2ρ+ δ)

]
+ 2 |α31|α3

33s12c12s23c
2
23 sin (2ρ+ φ31)

+2 |α32|α3
33s

2
12s23c23

[
s223 sin (2ρ− φ32)− c223 sin (2ρ+ φ32)

]
, (3.22)

ε23ττ ≈
(
α4
33 − 1

)
c223
[
c212s

2
23 sin 2σ + 2Jr sin(2σ + δ)

]
− 2 |α31|α3

33s12c12s23c
2
23 sin (2σ + φ31)

+2 |α32|α3
33c

2
12s23c23

[
s223 sin (2σ − φ32)− c223 sin (2σ + φ32)

]
, (3.23)

for (α, β) = (τ, τ). In the above formulas, we have introduced the reduced Jarlskog invariant

Jr ≡ J / sin δ ≈ s12c12s13s23c23 and

J12 ≡ Jr

[
c212 sin (2ρ− 2σ + δ)− s212 sin (2ρ− 2σ − δ)

]
, (3.24)

Φ21 ≡ c212 sin (2ρ− 2σ + φ21)− s212 sin (2ρ− 2σ − φ21) , (3.25)

Φ31 ≡ c212 sin (2ρ− 2σ + φ31)− s212 sin (2ρ− 2σ − φ31) . (3.26)

As shown in Appendix B, the nine off-diagonal parameters Ṽ12
αβ, Ṽ13

αβ and Ṽ23
αβ for (α, β) = (e, µ),

(e, τ) and (µ, τ) are not independent but related to Ṽ12
αα, Ṽ13

αα and Ṽ23
αα for α = e, µ, τ . In con-

trast, their counterparts in the non-unitary case are actually independent. In the leading-order

approximation, we obtain

ε12eµ ≈
(
1− α2

11α
2
22

)
c213
[
s212c

2
12

(
c223 − s213s223

)
sin 2(ρ− σ) + J12

]
+ α2

11 |α21|α22s12c12c23Φ21 , (3.27)

ε13eµ ≈
(
1− α2

11α
2
22

)
c213
[
Jr sin(2ρ+ δ)− c212s213s223 sin 2 (ρ+ δ)

]
, (3.28)

ε23eµ ≈
(
α2
11α

2
22 − 1

)
c213
[
Jr sin(2σ + δ)− s212s213s223 sin 2 (σ + δ)

]
, (3.29)

for (α, β) = (e, µ);

ε12eτ ≈
(
1− α2

11α
2
33

) [
s212c

2
12s

2
23 sin 2(ρ− σ)− J12

]
− α2

11 |α31|α33s12c12s23Φ31

+2α2
11 |α32|α33s

2
12c

2
12s23c23 sin 2(ρ− σ) cosφ32 , (3.30)

ε13eτ ≈
(
α2
11α

2
33 − 1

)
Jr sin(2ρ+ δ) + α2

11α33c12s13 {|α31| c12c23 sin (2ρ+ δ + φ31)

− |α32| s12
[
c223 sin (2ρ+ δ + φ32)− s223 sin (2ρ+ δ − φ32)

]}
, (3.31)

ε23eτ ≈
(
1− α2

11α
2
33

)
Jr sin(2σ + δ) + α2

11α33s12s13 {|α31| s12c23 sin (2σ + δ + φ31)

+ |α32| c12
[
c223 sin (2σ + δ + φ32)− s223 sin (2σ + δ − φ32)

]}
, (3.32)

for (α, β) = (e, τ);

ε12µτ ≈
(
α2
22α

2
33 − 1

) [
s212c

2
12s

2
23c

2
23 sin 2(ρ− σ)− J12 cos 2θ23

]
+ α2

22 |α31|α33s12c12s23c
2
23Φ31

−2α2
22 |α32|α33s

2
12c

2
12s23c

3
23 sin 2(ρ− σ) cosφ32 , (3.33)

ε13µτ ≈
(
1− α2

22α
2
33

) [
s212s

2
23c

2
23 sin 2ρ− Jr cos 2θ23 sin(2ρ+ δ)

]
−α2

22 |α31|α33s12c12s23c
2
23 sin (2ρ+ φ31)

+α2
22 |α32|α33s

2
12s23c23

[
c223 sin (2ρ+ φ32)− s223 sin (2ρ− φ32)

]
, (3.34)

ε23µτ ≈
(
1− α2

22α
2
33

) [
c212s

2
23c

2
23 sin 2σ + Jr cos 2θ23 sin(2σ + δ)

]
+α2

22 |α31|α33s12c12s23c
2
23 sin (2σ + φ31)

+α2
22 |α32|α33c

2
12s23c23

[
c223 sin (2σ + φ32)− s223 sin (2σ − φ32)

]
, (3.35)
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for (α, β) = (µ, τ). Some comments on the approximate formulas of εijαβ are helpful.

• In the absence of unitarity violation, i.e., αii = 1 (for i = 1, 2, 3) and |αij| = 0 (for ij =

21, 31, 32), one can immediately verify that all the parameters εijαβ vanish as they should. In

this case, the Jarlskog-like parameters V ijαβ are reduced to Ṽ ijαβ in the unitary limit.

• As far as the CP-violating phases {ρ, σ, δ} are concerned, we observe that only the phase

difference ρ − σ and the phase δ are involved in V12
αβ. In particular, V12

ee depends only on

the phase difference ρ− σ. Moreover, V13
αβ contain the CP-violating phases ρ and δ, whereas

V23
αβ are dependent on σ and δ. On the other hand, if we focus on the extra CP-violating

phases {φ21, φ31, φ32} from unitarity violation, the parametrization in Eq. (2.2) indicates

that the non-unitary phase φ21 is only involved in V ijeµ, V ijµµ and V ijµτ , while φ31 and φ32 are

only contained in V ijeτ , V ijττ and V ijµτ .

• A particularly interesting scenario is to assume all the ordinary CP-violating phases to be

trivial, i.e., ρ = σ = 0 (or π/2) and δ = 0 (or π). In this case, the Jarlskog-like parameters

Ṽ ijαβ in the unitary limit are all vanishing, so we have V ijαβ = εijαβ. With the help of the

approximate formulas for εijαβ, we can get

V12
ee ≈ V13

ee ≈ V23
ee ≈ V13

eµ ≈ V23
eµ ≈ 0 . (3.36)

In addition, the other non-vanishing Jarlskog-like parameters are given by

V12
µµ ≈ −2 |α21|α3

22s12c12c
3
23 sinφ21 , (3.37)

V13
µµ ≈ −V23

µµ ≈ −2 |α21|α3
22s12c12s

2
23c23 sinφ21, (3.38)

V12
ττ ≈ +2 |α31|α3

33s12c12s
3
23 sinφ31 , (3.39)

V13
ττ ≈ +2 |α31|α3

33s12c12s23c
2
23 sinφ31 − 2 |α32|α3

33s
2
12s23c23 sinφ32 , (3.40)

V23
ττ ≈ −2 |α31|α3

33s12c12s23c
2
23 sinφ31 − 2 |α32|α3

33c
2
12s23c23 sinφ32 , (3.41)

V12
eµ ≈ +α2

11 |α21|α22s12c12c23 sinφ21 , (3.42)

V12
eτ ≈ −α2

11 |α31|α33s12c12s23 sinφ31 , (3.43)

V13
eτ ≈ +α2

11α33c12s13 (|α31| c12c23 sinφ31 − |α32| s12 sinφ32) (3.44)

V23
eτ ≈ +α2

11α33s12s13 (|α31| s12c23 sinφ31 + |α32| c12 sinφ32) (3.45)

V12
µτ ≈ +α2

22 |α31|α33s12c12s23c
2
23 sinφ31 , (3.46)

V13
µτ ≈ −α2

22 |α31|α33s12c12s23c
2
23 sinφ31 + α2

22 |α32|α33s
2
12s23c23 sinφ32 , (3.47)

V23
µτ ≈ +α2

22 |α31|α33s12c12s23c
2
23 sinφ31 + α2

22 |α32|α33c
2
12s23c23 sinφ32 . (3.48)

It is evident that the CP asymmetries Aαβ in Eq. (3.10) are nonzero even with the trivial

values of CP-violating phases {ρ, σ, δ}. Except for Aee, all those CP asymmetries are purely

induced by the non-unitary parameters.

3.2 Minimal Seesaw Model

3.2.1 CP Asymmetries

In the previous discussions, one can recognize that there are quite a number of parameters in the

calculations of CP asymmetries Aαβ. In order to simplify the situation, we consider the so-called
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minimal seesaw model, which extends the SM with two right-handed neutrino singlets [59–65].

One salient feature of the minimal seesaw model is that the lightest neutrino mass is vanishing,

namely, m1 = 0 in the NO case or m3 = 0 in the IO case. Meanwhile, as the lightest neutrino is

massless, there exists only one Majorana-type CP-violating phase. For definiteness, we keep the

Majorana-type CP-violating phase σ in either NO or IO case. It should be kept in mind that σ

refers to the relative phase between the neutrino mass eigenstates |ν2〉 and |ν3〉 in the NO case,

whereas that between |ν2〉 and |ν1〉 in the IO case. In practice, we can simply set ρ = 0 in the

standard parametrization of Ṽ in Eq. (2.9).

In the NO case with m1 = 0, the expressions of CP-violating asymmetries Aαβ in Eq. (3.10)

are reduced to

Aαβ =
2V23

αβ sinF32∣∣∣∣√m2

m3

Vα2Vβ2 +

√
m3

m2

Vα3Vβ3

∣∣∣∣2 − 4 C23αβ sin2 F32

2

. (3.49)

Given m1 = 0, one can figure out m2/m3 =
√

∆m2
21/∆m

2
31 ≈ 0.172, where the best-fit values

∆m2
21 = 7.42 × 10−5 eV2 and ∆m2

31 = 2.51 × 10−3 eV2 have been input [47]. In the IO case with

m3 = 0, the CP asymmetries are given by

Aαβ =
2V12

αβ sinF21∣∣∣∣√m1

m2

Vα1Vβ1 +

√
m2

m1

Vα2Vβ2

∣∣∣∣2 − 4 C12αβ sin2 F21

2

, (3.50)

where the neutrino mass ratio can be estimated as m1/m2 =
√

(∆m2
32 + ∆m2

21)/∆m
2
32 ≈ 0.985

for the best-fit values ∆m2
21 = 7.42 × 10−5 eV2 and ∆m2

32 = −2.50 × 10−3 eV2. Note that two

nonzero neutrino masses m1 and m2 are nearly degenerate in the IO case. Once the other mixing

parameters in Vαi are known in either NO or IO case, one can easily calculate the CP asymmetries.

3.2.2 Numerical Results

We proceed with a numerical illustration for the CP asymmetries in the neutrino-antineutrino

oscillations with a non-unitary mixing matrix V in the framework of minimal seesaw model. First

of all, we have to specify the input values of all the parameters for our numerical calculations. The

CP asymmetries Aαβ depend on the mixing matrix V = T · Ṽ , for which we adopt the triangular

parametrization and impose the latest constraints on the unitarity violation [22] characterized by

the triangular matrix T . The 2σ allowed ranges of relevant non-unitary parameters have been

given in Eqs. (2.7) and (2.8), whereas three phases {φ21, φ31, φ32} are completely free. In addition,

the best-fit values for neutrino oscillation parameters from Ref. [47], i.e., Eqs. (2.10) and (2.11),

will be used in the NO and IO case, respectively. To clearly show the impact of non-unitary

parameters on the CP asymmetries, we define the working observable

εαβ ≡
Aαβ − Ãαβ
Ãαβ

× 100% , (3.51)

where the CP asymmetries in the unitary limit are denoted by Ãαβ. It is worthwhile to mention

that Ãαβ are computed in the same way as Aαβ in Eq. (3.49) or Eq. (3.50) but with T = 1 or
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Normal Ordering
δ = 195◦, σ = 0◦ δ = 195◦, σ = 45◦

εUαβ εLαβ εUαβ εLαβ
α, β = e, e 0% 0% 0% 0%

α, β = e, µ −0.008974% +0.008974% −0.001717% +0.001717%

α, β = e, τ +1.946% −1.948% +0.2681% −0.2698%

α, β = µ, µ +0.09932% −0.09932% +0.005116% −0.005116%

α, β = µ, τ −206.8% +206.8% −0.4555% +0.4564%

α, β = τ , τ −19.39% +19.40% +0.9050% −0.9000%

Inverted Ordering
δ = 286◦, σ = 0◦ δ = 286◦, σ = 45◦

εUαβ εLαβ εUαβ εLαβ
α, β = e, e 0% 0% 0% 0%

α, β = e, µ +0.02049% −0.02049% +0.002801% −0.002801%

α, β = e, τ −2.998% +2.994% +0.2408% −0.2483%

α, β = µ, µ −0.01942% +0.01942% −0.01444% +0.01444%

α, β = µ, τ −12.13% +12.02% −0.5561% +0.5401%

α, β = τ , τ +3.029% −3.028% −1.597% +1.626%

Table 1: The deviations of the CP asymmetries Aαβ with the non-unitary mixing matrix from

those Ãαβ in the unitary limit, where εUαβ ≡ (Amax
αβ −Ãαβ)/Ãαβ and εLαβ ≡ (Amin

αβ −Ãαβ)/Ãαβ have

been obtained by varying the non-unitary parameters within their 2σ ranges in Eqs. (2.7) and

(2.8), as well as the free phases {φ21, φ31, φ32}. In the NO case, the oscillation phase F32 = π/2

is taken and the best-fit values for neutrino mixing parameters in Eq. (2.10) are input. In the

IO case, we fix the oscillation phase F21 = π/2 and take the best-fit values for neutrino mixing

parameters in Eq. (2.11). In addition, σ = 0◦ and σ = 45◦ have been chosen for illustration.

equivalently V = Ṽ . In the NO case, we further fix the oscillation phase at F32 = π/2 and vary

the non-unitary parameters. When Aαβ reach their maxima Amax
αβ or minima Amin

αβ , we accordingly

obtain the upper limits εUαβ ≡ (Amax
αβ − Ãαβ)/Ãαβ or the lower limits εLαβ ≡ (Amin

αβ − Ãαβ)/Ãαβ. In

a similar way, F21 = π/2 is taken in the IO case, and εUαβ and εLαβ can be found. The final results

in the NO and IO cases are summarized in Table 1 for σ = 0◦ and σ = 45◦, where some interesting

observations can be made.

• From Table 1, one can observe that εUee = εLee = 0, namely, the CP asymmetry Aee is not

affected by unitarity violation. In order to understand this feature, we take α = β = e in

Eq. (3.10) and then arrive at

Aee =

∑
i<j

Im
[
V 2
eiV
∗2
ej

]
mimj sinFji∣∣∣∣∣

3∑
i=1

V 2
eimi

∣∣∣∣∣
2

− 4
∑
i<j

Re
[
V 2
eiV
∗2
ej

]
mimj sin2

Fji
2

, (3.52)

where the non-unitary mixing matrix is given by V = T · Ṽ . More explicitly, we have

Vei = α11Ṽei, indicating that the overall factor α4
11 in the numerator and the denominator of
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Eq. (3.52) will be exactly cancelled out. Consequently, one obtains Aee = Ãee, where Ãee is

calculated by using the unitary mixing matrix Ṽ .

• Comparing the expressions of V ijαβ with those of Ṽ ijαβ, one finds that the terms α2
ααα

2
ββṼ

ij
αβ,

where the subscripts of αββ for β = e, µ, τ should be identified as (e, µ, τ) = (1, 2, 3), play

the leading role in V ijαβ. Since αii < 1 holds for i = 1, 2, 3, the absolute value of α2
ααα

2
ββṼ

ij
αβ

will always be smaller than that of Ṽ ijαβ. If only such leading-order terms were taken into

account, εαβ would be negative. However, this is not the case, since the contributions from

the terms associated with
∣∣αij∣∣ and φij (for ij = 21, 31, 32) may also be important. For

this reason, the sign of εαβ can be either positive or negative due to the interplay between

different contributions.

• It should be noticed that |εUµτ | = |εLµτ | = 206.8% in the NO case with σ = 0◦ is remarkably

larger than others. Such an observation can be understood by examining the approximate

formula of εµτ , i.e.,

εµτ ≈ (α2
22α

2
33 − 1)− α2

22α33c12s23c23
|α31| s12c23 sinφ31 + |α32| c12 sinφ32

J cos 2θ23
, (3.53)

where Eq. (3.35) with σ = 0◦ and Ṽ23
µτ from Appendix B have been used. With the best-fit

values δ = 195◦ (i.e., sin δ ≈ −0.26) and θ23 = 49◦ (i.e., cos 2θ23 ≈ −0.14), one can see that

the denominator of the second term on the right-hand side of Eq. (3.53) could be comparable

to or even smaller than the numerator. However, this observation is not applicable to εαβ
in other flavors.

• One may also notice that εUαβ and εLαβ in the eµ and µµ flavors are much smaller than those in

other flavors in both NO and IO cases, no matter whether σ = 0◦ or 45◦ is assumed. From the

analytical formulas of εijαβ in Eqs. (3.18)-(3.35), we can see that εijeµ and εijµµ are determined

partially by the factors (1 − α2
11α

2
22) and (1 − α4

22), which are smaller than (1 − α2
11α

2
33),

(1− α2
22α

2
33) and (1− α4

33), since α22 and α11 are much closer to one than α33 is. As for the

contributions from the off-diagonal elements of T , the remaining terms in εijeµ and εijµµ are

proportional to |α21|, which is smaller by two orders of magnitude than |α31| and |α32|. The

latter two parameters appear in εijeτ , ε
ij
µτ and εijττ .

As we have briefly mentioned before, even if the ordinary CP-violating phases {δ, ρ, σ} take

trivial values, there still exists CP violation in neutrino-antineutrino oscillations due to the non-

unitary CP phases. In this special case with δ = σ = 0◦, the CP asymmetries Ãαβ in the minimal

seesaw model are accordingly vanishing, so the definitions of εαβ in Eq. (3.51) are no longer valid

and we just compute the maxima and minima of Aαβ. The numerical results are presented in

Table 2, where the input values are the same as in Table 1, except for δ and σ. Some comments

on the results in Table 2 are in order. In both NO and IO cases, one can observe that the CP

asymmetries Aeµ and Aµµ are much smaller than others, which are all at the 10−3 level. The

main reason for such a significant suppression is the fact that the experimental upper limit on

|α21| (i.e., . 10−5) is smaller by two orders of magnitude than that on |α31| or |α32| (e.g., . 10−3).

For example, we consider the CP asymmetry Aeµ in the NO case, which is mainly determined

14



CP Asymmetries
Normal Ordering Inverted Ordering

Amax
αβ Amin

αβ Amax
αβ Amin

αβ

α, β = e, e 0 0 0 0

α, β = e, µ +1.554× 10−5 −1.554× 10−5 +6.652× 10−5 −6.652× 10−5

α, β = e, τ +4.676× 10−3 −4.676× 10−3 +9.177× 10−3 −9.177× 10−3

α, β = µ, µ +6.422× 10−6 −6.422× 10−6 +1.406× 10−4 −1.406× 10−4

α, β = µ, τ +1.187× 10−3 −1.187× 10−3 +6.756× 10−3 −7.358× 10−3

α, β = τ , τ +3.744× 10−3 −3.744× 10−3 +8.713× 10−3 −8.713× 10−3

Table 2: The maxima and minima of the CP asymmetriesAαβ in neutrino-antineutrino oscillations

in the framework of minimal seesaw model with δ = σ = 0◦, where the other input values are the

same as in Table 1.

by the Jarlskog-like parameter V23
eµ. As indicated in Eq. (3.36), it is actually vanishing at the

leading order. The first-order correction gives rise to V23
eµ ≈ α2

11 |α21|α22s
2
12s13c

3
13s23 sinφ21, which

is doubly suppressed by |α21| and s13, leading to Aeµ ∼ 10−5 of the right order as shown in Table 2.

In a similar way, one can understand the suppression of Aeµ in the IO case, and Aµµ in both NO

and IO cases.

In the foregoing numerical calculations, we have fixed the oscillation phase F32 = π/2 and

F21 = π/2 in the NO and IO case, respectively. It will be interesting to see how the CP asymmetries

depend on L/E, where L is the baseline length and E is the neutrino beam energy. The final

results are shown in Fig. 1, where two plots in the left column refer to the NO case while those in

the right column to the IO case. Except for the oscillation phase, the other input values for relevant

parameters remain the same as in Table 2. In addition, the non-unitary phases {φ21, φ31, φ32} take

the values when the maxima Amax
αβ in Table 2 are reached. Most curves for the CP asymmetries

Aαβ in Fig. 1 show sizable deviations from the sinusoidal shape, as the denominator of Eq. (3.49)

or Eq. (3.50) depends on sin2(F32/2) or sin2(F21/2). Therefore, given the non-unitary phases and

other mixing parameters, one can choose an optimal value of L/E to maximize the CP asymmetry

Aαβ for a specific oscillation channel.

3.3 Heavy Majorana Neutrinos

Thus far we have focused only on the neutrino-antineutrino oscillations of three light Majorana

neutrinos, for which the oscillation probabilities are highly suppressed by the small ratios m2
i /E

2

and the sizes of CP asymmetries associated with the non-unitary mixing matrix are limited by

current experimental constraints on non-unitary mixing parameters. In this subsection, we make a

brief comparison between the neutrino-antineutrino oscillations for light Majorana neutrinos and

those for heavy Majorana neutrinos in the minimal seesaw model.

In Ref. [43], the collider signals of heavy Majorana neutrinos Ni in the seesaw model have

been examined and the neutrino-antineutrino oscillations of heavy Majorana neutrinos have been

studied in the framework of quantum field theories. The main idea is to probe the displaced

vertices induced by heavy Majorana neutrinos that are produced in the lepton-number-violating
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Figure 1: Illustration for the dependence of CP asymmetries Aαβ on L/E, where L is the baseline

length and E is the neutrino beam energy. Note that the mixing parameters are the same as those

adopted in Table 2, and three non-unitary CP phases {φ21, φ31, φ32} take the values at which

Aαβ = Amax
αβ in Table 2 are reached.

(LNV) processes W+ → l+αNi → l+α l
+
β jj and in the lepton-number-conserving (LNC) processes

W+ → l+αNi → l+α l
−
β jj, where the initial virtual gauge boson W+ is produced in the large hadron

colliders. The heavy neutrino-antineutrino oscillations could lead to an oscillating rate of LNV

and LNC events with respect to the distance between the production and decay vertices of heavy

Majorana neutrinos [43]. In the minimal seesaw model, for two heavy Majorana neutrinos of

an averaged mass (M1 + M2)/2 = 7 GeV and a tiny mass splitting determined by M2
2 −M2

1 =

1.04×10−11 GeV2, the neutrino-antineutrino oscillation length is estimated to be Losc ≈ 8.34 cm for

the Lorentz factor γ ≡ E/Mi ≈ 50. Furthermore, given that the uncertainties in the measurements

of the momenta of the final-state charged leptons and jets are respectively (0.5% − 1%) and

(5% − 30%) at the detectors, the neutrino-antineutrino oscillations can indeed be coherent. It

has been found in Ref. [43] that the probability of heavy neutrino-antineutrino oscillations in the

µµ-channel can reach 0.4 for the relevant CP-violating Majorana phase being fixed at π/3. Notice

that this probability has been obtained under the assumption that the spin correlation between

the particles at production and decay vertices can be neglected [43], so there is no suppression

by M2
i /E

2 = γ−2 at all. If the spin correlation is taken into account, the suppression factor

γ−2 ≈ 4× 10−4 is expected. However, compared to m2
i /E

2 ∼ 10−14 in the case of light Majorana
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neutrinos, such a suppression is much less significant.

Regarding the CP asymmetries in the neutrino-antineutrino oscillations of three light Majorana

neutrinos, they are also highly suppressed. In this connection, it is interesting to mention that the

CP asymmetries induced by heavy Majorana neutrinos could be resonantly enhanced, as observed

in Ref. [44]. For two nearly-degenerate heavy Majorana neutrinos, i.e., M2 −M1 ≡ ∆M ∼ Γi,

where Γi (for i = 1, 2) represent the decay widths of two heavy Majorana neutrinos, the CP

asymmetries between the LNV processes qq̄′ → W+∗ → l+αNi → l+α l
+
βW

− and their CP-conjugate

processes q̄q′ → W−∗ → l−αNi → l−α l
−
βW

+ at the CERN large hadron collider (LHC) could

be large. As demonstrated in Ref. [44], one of the most promising ways for observing the CP

asymmetries induced by heavy Majorana neutrinos at the LHC is to detect pp → e+µ+W−X

and its CP-conjugate process pp→ e−µ−W+X, where X denotes all possible final states and the

gauge bosons W± are assumed to decay hadronically. The corresponding CP asymmetry can be

defined as

ANCP =
σ (pp→ e+µ+W−X)−Kσ (pp→ e−µ−W+X)

σ (pp→ e+µ+W−X) +Kσ (pp→ e−µ−W+X)
, (3.54)

where K accounts for the difference in the production of W+ and W− in the high-energy proton-

proton collisions. For the mixing matrix R involved in the charged-current interaction of heavy Ma-

jorana neutrinos in Eq. (1.2), one can take the values of Rαi = 0.05 (for α = e, µ, τ and i = 1, 2), ex-

cept for Rµ2 = 0.05i and Rτ2 = −0.05, as in Scenario 3 in Ref. [44]. After imposing the kinematic

cuts on the transverse momenta pT > 15 GeV and on the pseudo-rapidity |η| > 2.5 globally for all

final-state particles, the cross sections σ (pp→ e+µ+W−X) and σ (pp→ e−µ−W+X) are found to

be in the range of [0.01, 10] fb for the heavy Majorana neutrino mass M1 ∈ [100, 500] GeV. Given

M1 = 200 GeV and ∆M ∼ 0.3 GeV, the CP asymmetry defined in Eq. (3.54) is ANCP ∼ −0.2 [44].

Although the non-unitarity induced CP asymmetries in neutrino-antineutrino oscillations of

three light Majorana neutrinos are practically tiny, the counterparts in the sector of heavy Majo-

rana neutrinos may be sizable. Furthermore, inspired by the neutrino-antineutrino oscillations of

heavy Majorana neutrinos investigated in Ref. [43] and the CP asymmetries in the LNV processes

mediated by heavy Majorana neutrinos studied in Ref. [44], one may explore the CP asymmetries

solely from heavy neutrino-antineutrino oscillations in the collider searches for heavy Majorana

neutrinos. As the mixing matrices V and R are intimately correlated in the seesaw model, it is

intriguing to carry out a global analysis of CP asymmetries in neutrino-antineutrino oscillations

for both light and heavy Majorana neutrinos. Such an analysis will be left for a future work.

4 Summary

In this paper, we have examined the CP asymmetries in the neutrino-antineutrino oscillations in

the presence of a non-unitary flavor mixing matrix. The main motivation for such a study is two-

fold. First, neutrino-antineutrino oscillations occur only when massive neutrinos are Majorana

particles. As in a class of seesaw models, three light neutrinos turn out to be Majorana particles,

and the flavor mixing matrix of three light neutrinos is intrinsically non-unitary. Second, the

non-unitarity of the mixing matrix brings in extra sources of CP violation, which is quite different

from the unitary case.
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By using the QR factorization, we establish the relation between the Hermitian parametrization

and the triangular parametrization of a non-unitary mixing matrix. Then, the CP asymmetries

in neutrino-antineutrino oscillations with a non-unitary mixing matrix are found to be essentially

governed by 18 independent Jarlskog-like parameters, whose analytical expressions at the leading

order are derived. Finally, implementing the latest experimental constraints on the leptonic uni-

tarity violation, we numerically compute the CP asymmetries in the minimal seesaw model, where

the number of model parameters can be further reduced. It is worthwhile to stress that even with

trivial values of ordinary CP-violating phases {ρ, σ, δ}, one can obtain nonzero CP asymmetries

due to the extra non-unitary CP phases {φ21, φ31, φ32}.
Current interest in neutrino-antineutrino oscillations is basically academic, as the oscillation

probabilities are highly suppressed by the squared mass-to-energy ratio m2
i /E

2 (e.g., ∼ 10−14 for

mi ∼ 0.1 eV and E ∼ 1 MeV). However, if three ordinary neutrinos are indeed massive Majorana

particles, then one has to experimentally measure two Majorana-type CP-violating phases as well.

In addition, the probabilities of heavy neutrino-antineutrino oscillations may not be suppressed,

as the masses of heavy Majorana neutrinos could be comparable to their momenta when they are

produced in the large hadron colliders [43]. For the CP asymmetries in the LNV processes induced

by heavy Majorana neutrinos at the large hadron colliders, they can be resonantly enhanced if the

mass splitting of two heavy Majorana neutrinos is on the same order of their decay widths [44].

As for the long-term plan, great efforts will be made in the experimental detection of neutrino-

antineutrino oscillations or other lepton-number- and CP-violating processes. Only in this way

can one completely determine the fundamental parameters associated with massive Majorana

neutrinos. In any case, our results on the basic properties of CP violation induced by leptonic

non-unitarity will be helpful.
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A QR Factorization

In this Appendix, we present some details of the QR factorization of an arbitrary 3× 3 complex

matrix into the product of a unitary matrix Q and an upper-triangular matrix R with non-negative

diagonal elements [66]. As mentioned in Sec. 2, by using the QR factorization, one can establish

the relationship between the Hermitian and triangular parametrizations of the non-unitary mixing

matrix V . For the Hermitian parametrization of V in Eq. (2.1), we can further decompose the

Hermitian matrix (1 − η) into a lower-triangular matrix and a unitary matrix by following the

strategy outlined below.
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First, the explicit expression of the Hermitian matrix (1− η) is given by

1− η =

1− ηee −ηeµ −ηeτ
−η∗eµ 1− ηµµ −ηµτ
−η∗eτ −η∗µτ 1− ηττ

 , (A.1)

of which three columns will be denoted by three vectors x1, x2 and x3. The first step is to find

out a unitary matrix U1 such that U1 ·x1 = a1e1, where a1 =
[
(1− ηee)2 + |ηeµ|2 + |ηeτ |2

]1/2
> 0 is

the modulus of the vector x1 and e1 ≡ (1, 0, 0)T is the basis vector. In general, one can explicitly

construct the unitary matrix U1 that transforms one given vector x1 to another target vector y1,

i.e., U1 · x1 = y1. First, define the phase ψ ≡ arg
(
x†1 · y1

)
∈ [0, 2π) and construct the auxiliary

vector ω1 ≡ eiψx1−y1. Then, the so-called Householder matrix is Uω1
≡ 1−2(ω†1·ω1)

−1ω1·ω
†
1, and

the desired unitary matrix is determined by U1 = eiψUω1
. One can easily prove that U1 · x1 = y1

as expected. In our case, we have x1 ≡ (1− ηee,−η∗eµ,−η∗eτ )T and y1 = a1e1, so the phase ψ = 0

is trivial and the unitary matrix U1 is found to be

U1 =
1

a1


1− ηee −ηeµ −ηeτ
−η∗eµ −1 + ηee +

|ηeτ |2

a1 − 1 + ηee
−

η∗eµηeτ
a1 − 1 + ηee

−η∗eτ −
ηeµη

∗
eτ

a1 − 1 + ηee
−1 + ηee +

|ηeµ|2

a1 − 1 + ηee

 , (A.2)

which is exact without any approximations.

Second, we transform the Hermitian matrix (1− η) via the unitary matrix U1 and then obtain

U1 · (1− η) =

a1 B1 B2

0 A11 A12

0 A21 A22

 , (A.3)

where the matrix elements are explicitly given by

B1 ≡
1

a1

(
−2ηeµ + ηeeηeµ + ηeµηµµ + ηeτη

∗
µτ

)
, (A.4)

B2 ≡
1

a1

(
−2ηeτ + ηeeηeτ + ηeτηττ + ηeµηµτ

)
, (A.5)

A11 ≡
1

a1

[∣∣ηeµ∣∣2 − (1− ηee)
(
1− ηµµ

)
+

(
1− ηµµ

)
|ηeτ |

2 + η∗eµηeτη
∗
µτ

a1 − (1− ηee)

]
, (A.6)

A22 ≡
1

a1

[
|ηeτ |

2 − (1− ηee) (1− ηττ ) +
(1− ηττ )

∣∣ηeµ∣∣2 + ηeµη
∗
eτηµτ

a1 − (1− ηee)

]
, (A.7)

A21 ≡
1

a1

[
ηeµη

∗
eτ + η∗µτ (1− ηee)−

ηeµη
∗
eτ

(
1− ηµµ

)
+
∣∣ηeµ∣∣2 η∗µτ

a1 − (1− ηee)

]
, (A.8)

A12 ≡
1

a1

[
η∗eµηeτ + ηµτ (1− ηee)−

η∗eµηeτ (1− ηττ ) + |ηeτ |
2 ηµτ

a1 − (1− ηee)

]
. (A.9)

Since the first column vector a1e1 of the new matrix on the right-hand side of Eq. (A.3) will not

be changed by any unitary transformations in the two-dimensional subspace, we can concentrate
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on the 3 × 3 unitary matrix U2 that can be reduced to 1 ⊕ V2, where 1 stands for the unit

matrix in the one-dimensional subspace and V2 for the 2 × 2 unitary matrix in the orthogonal

two-dimensional subspace. Similar to the previous procedure, we denote the two-dimensional

vector x′2 = (A11, A21)
T and the target vector y′2 = a2e

′
2 with a2 = (|A11|2 + |A21|2)1/2 > 0 and

e′2 ≡ (1, 0)T, and try to determine V2 such that V2 · x′2 = y′2. This can be achieved as follows.

First, define the phase ψ1 ≡ arg
(
x′†2 · y′2

)
, i.e. A11 = e−iψ1|A11|, and construct ω2 ≡ eiψ1x′2 − y′2.

Then, we get V2 ≡ eiψ1Vω2
with Vω2

≡ 1− 2(ω†2 · ω2)
−1ω2 · ω

†
2. More explicitly, we have

V2 =
eiψ1

a2

(
|A11| e−iψ1A∗21

eiψ1A21 − |A11|

)
. (A.10)

Now we make a further transformation of the matrix in Eq. (A.3) by using the unitary matrix

U2 ≡ 1⊕ V2, and arrive at

U2 · U1 · (1− η) =

a1 B1 B2

0 a2 (A∗11A12 + A∗21A22) /a2
0 0 A3

 , (A.11)

with A3 ≡ e2iψ1 (A21A12 − A11A22) /a2. The last step is to remove the phase ψ2 ≡ argA3 by using

the unitary matrix U3 = Diag{1, 1, e−iψ2}. Finally, we collect all the three unitary transformations

and complete the QR factorization, i.e.,

U3 · U2 · U1 · (1− η) =

a1 B1 B2

0 a2 (A∗11A12 + A∗21A22) /a2
0 0 |A3|

 ≡ R , (A.12)

where R is an upper-triangular matrix with real and positive diagonal elements. Therefore, the

QR factorization of the Hermitian matrix (1 − η) is given by 1 − η = Q · R, where the unitary

matrix reads Q = U †1 ·U
†
2 ·U

†
3 . As one can easily verify, the relation 1− η = Q ·R = R† ·Q† holds.

From the above discussions, it is straightforward to identity T = R† and Ṽ = Q† · V ′ in the

triangular parametrization in Eq. (2.2), where V ′ is the unitary matrix involved in the Hermitian

parametrization in Eq. (2.1). The nonzero matrix elements of T read

α11 = a1 =
√

(1− ηee)2 + |ηeµ|2 + |ηeτ |2 , (A.13)

α22 = a2 =
√
|A11|2 + |A21|2 , (A.14)

α33 = |A3| = |A21A12 − A11A22| /a2 , (A.15)

α21 = B∗1 =
(
−2η∗eµ + ηeeη

∗
eµ + η∗eµηµµ + η∗eτηµτ

)
/a1 , (A.16)

α31 = B∗2 =
(
−2η∗eτ + ηeeη

∗
eτ + η∗eτηττ + η∗eµη

∗
µτ

)
/a1 , (A.17)

α32 = (A11A
∗
12 + A21A

∗
22) /a2 , (A.18)

where the relevant parameters can be found in Eqs. (A.4)-(A.9). At the zeroth order of |ηαβ|, the

flavor mixing matrix V is actually unitary. In this case, we shall have V ≈ V ′ in the Hermitian

parametrization and V ≈ Ṽ in the triangular parametrization, because of 1− η ≈ 1 and T ≈ 1

20



at this order. In fact, we can directly calculate Q† = U3 · U2 · U1, which approximates to

Q† ≈

1 0 0

0 cos 2θ − sin 2θ

0 − sin 2θ − cos 2θ

 ·
1 0 0

0 cos 2θ − sin 2θ

0 − sin 2θ − cos 2θ

 = 1 , (A.19)

where sin2 θ ≡ |ηeµ|2/(|ηeµ|2 + |ηeτ |2) has been defined. To the first order of |ηαβ|, one obtains

U1 ≈

 1 −ηeµ −ηeτ
−η∗eµ cos 2θ − sin 2θ e−iϕ

−η∗eτ − sin 2θ eiϕ − cos 2θ

 , (A.20)

with ϕ ≡ arg(ηeµη
∗
eτ ),

U2 ≈

1 0 0

0 1 −ηµτ
0 −η∗µτ −1

 ·
1 0 0

0 cos 2θ − sin 2θ e−iϕ

0 − sin 2θ eiϕ − cos 2θ

 , (A.21)

and U3 = Diag{1, 1,−1}. Thus, at this order, we get

Q† = U3 · U2 · U1 ≈

 1 −ηeµ −ηeτ
+η∗eµ 1 −ηµτ
+η∗eτ +η∗µτ 1

 , (A.22)

which changes the Hermitian matrix (1− η) into the upper-triangular matrix

T † = Q† · (1− η) ≈

1− ηee −2ηeµ −2ηeτ
0 1− ηµµ −2ηµτ
0 0 1− ηττ

 . (A.23)

These are just the results presented in Eqs. (2.3) and (2.4).

B Jarlskog-like Parameters

In Refs. [40, 41], the CP asymmetries in neutrino-antineutrino oscillations have been studied and

the relevant Jarlskog-like parameters Ṽ ijαβ in the case of a unitary mixing matrix have been derived.

Since we attempt to make a comparison between the results in the unitary and non-unitary cases,

the explicit formulas of the Jarlskog-like parameters, which are calculated by using the unitary

mixing matrix Ṽ in Eq. (2.9), will be collected in this Appendix. As the mixing matrix Ṽ is

unitary, one can prove the following identities [41]

Ṽ ijeµ =
1

2

(
Ṽ ijττ − Ṽ ijee − Ṽ ijµµ

)
, (B.1)

Ṽ ijeτ =
1

2

(
Ṽ ijµµ − Ṽ ijee − Ṽ ijττ

)
, (B.2)

Ṽ ijµτ =
1

2

(
Ṽ ijee − Ṽ ijµµ − Ṽ ijττ

)
, (B.3)
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which together with Ṽ ijαβ = Ṽ ijβα = −Ṽjiαβ = −Ṽjiβα and Ṽ iiαβ = 0 lead to only nine independent Ṽ ijαα
(for ij = 12, 13, 23 and α = e, µ, τ). In the standard parametrization of Ṽ , they can be explicitly

written as [41]

Ṽ12
ee = s212c

2
12c

4
13 sin 2(ρ− σ) , (B.4)

Ṽ13
ee = c212s

2
13c

2
13 sin 2(ρ+ δ) , (B.5)

Ṽ23
ee = s212s

2
13c

2
13 sin 2(σ + δ) , (B.6)

(B.7)

and

Ṽ12
µµ = s212c

2
12

(
c423 − 4s213s

2
23c

2
23 + s413s

4
23

)
sin 2(ρ− σ) + 2J12

(
c223 − s213s223

)
+s213s

2
23c

2
23

[
c412 sin 2(ρ− σ + δ) + s412 sin 2(ρ− σ − δ)

]
, (B.8)

Ṽ13
µµ = c213s

2
23

[
s212c

2
23 sin 2ρ+ 2Jr sin(2ρ+ δ) + c212s

2
13s

2
23 sin 2(ρ+ δ)

]
, (B.9)

Ṽ23
µµ = c213s

2
23

[
c212c

2
23 sin 2σ − 2Jr sin(2σ + δ) + s212s

2
13s

2
23 sin 2(σ + δ)

]
, (B.10)

and

Ṽ12
ττ = s212c

2
12

(
s423 − 4s213s

2
23c

2
23 + s413c

4
23

)
sin 2(ρ− σ)− 2J12

(
s223 − s213c223

)
+s213s

2
23c

2
23

[
c412 sin 2(ρ− σ + δ) + s412 sin 2(ρ− σ − δ)

]
, (B.11)

Ṽ13
ττ = c213c

2
23

[
s212s

2
23 sin 2ρ− 2Jr sin(2ρ+ δ) + c212s

2
13c

2
23 sin 2(ρ+ δ)

]
, (B.12)

Ṽ23
ττ = c213c

2
23

[
c212s

2
23 sin 2σ + 2Jr sin(2σ + δ) + s212s

2
13c

2
23 sin 2(σ + δ)

]
, (B.13)

where the reduced Jarlskog invariant Jr ≡ J / sin δ = s12c12s13c
2
13s23c23 and the definition of J12

in Eq. (3.24) have been used.
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