
ar
X

iv
:2

10
9.

13
66

2v
4

 [
ee

ss
.S

Y
]

 4
 F

eb
 2

02
3

DeepPSL: End-to-end perception and reasoning

Sridhar Dasaratha1 , Sai Akhil Puranam1 , Karmvir Singh Phogat1 , Sunil Reddy
Tiyyagura1 , Nigel Duffy2

1 EY Global Delivery Services India LLP
2 Ernst & Young (EY) LLP USA

{Sridhar.Dasaratha,Sai.Puranam,Karmvir.Phogat}@gds.ey.com,
Sunil.Tiyyagura@gds.ey.com, Nigel.P.Duffy@ey.com

Abstract

We introduce DeepPSL a variant of probabilistic
soft logic (PSL) to produce an end-to-end train-
able system that integrates reasoning and percep-
tion. PSL represents first-order logic in terms of a
convex graphical model – hinge-loss Markov ran-
dom fields (HL-MRFs). PSL stands out among
probabilistic logic frameworks due to its tractabil-
ity having been applied to systems of more than
1 billion ground rules. The key to our approach
is to represent predicates in first-order logic using
deep neural networks and then to approximately
back-propagate through the HL-MRF and thus train
every aspect of the first-order system being repre-
sented. We believe that this approach represents
an interesting direction for the integration of deep
learning and reasoning techniques with applica-
tions to knowledge base learning, multi-task learn-
ing, and explainability. Evaluation on three differ-
ent tasks demonstrates that DeepPSL significantly
outperforms state-of-the-art neuro-symbolic meth-
ods on scalability while achieving comparable or
better accuracy.

1 Introduction

Many machine learning problems involve rich
and structured domains with numerous dependen-
cies between its elements. Statistical relational
learning (SRL) [Richardson and Domingos, 2006;
Koller et al., 2007] methods seek to represent these de-
pendencies and create graphical models using rule based
representations. A fundamental challenge faced by SRL
approaches is balancing scalability with the expressivity of
the dependency structure.

[Bach et al., 2017] introduced HL-MRFs a class of prob-
abilistic graphical models that are both tractable and ex-
pressive enabling scalable modelling of rich structured
data. In addition they provide a powerful formalism,
probabilistic soft logic (PSL) that can define the HL-
MRF using first order logic and introduce a scalable in-
ference algorithm. The continuous nature of HL-MRFs
enable PSL to scale beyond what was previously feasi-
ble for SRL frameworks [Augustine and Getoor, 2018]. Us-

ing PSL, problems with tens of millions of ground rules
have been solved in minutes [Kouki et al., 2017]. Recent
advances using tandem inference make inference tractable
even for extremely large systems (billions of random vari-
ables) [Srinivasan et al., 2020]. The PSL technique has
been successfully applied to problems from various do-
mains ranging from knowledge extraction [Rospocher, 2018],
cyberattack prediction [Perera et al., 2018], relational fair-
ness [Farnadi et al., 2018], enrichment of product graphs
[Gandoura et al., 2020] to hybrid recommender systems
[Rodden et al., 2020].

While PSL has significantly advanced SRL methods, there
have also been remarkable advances in the field of perception
driven by deep learning methods. It would be highly desirable
to integrate these perception capabilities into the PSL frame-
work: however currently there is no mechanism to provide
this integration. We tackle this challenge with DeepPSL, an
end-to-end integration of PSL with deep learning thus achiev-
ing a major enhancement of PSL capabilities. DeepPSL fully
inherits the scalability of PSL both during inference and train-
ing.

The first order expressions in PSL are built from predicates
that capture the truth of an assertion with soft truth values
in [0,1]. For instance, “HasClaws” and “HasStripes” could
be predicates that represent whether claws and stripes are
detected in an image. Given some mechanism to compute
these truth values and combined with knowledge of animal
attributes, PSL can infer whether a specific animal is present
in the image. On the other hand neural nets (NN) can learn to
identify animals directly from an image, typically from large
quantities of training data.

With DeepPSL we integrate these two approaches: some
of the predicates are replaced by neural nets and the input
data (for e.g., text or image) is processed through a NN to
generate the predicate values which are then used by PSL for
inference. End-to-end training of this architecture on training
data for a given task then permits the NN to learn concepts
without any data on the concept itself. In contrast to PSL
where one must define the predicate, the training in DeepPSL
directly learns predicates that are optimized for the task at
hand. Further, these concepts can now be utilized in other
tasks where we may have only limited or no task specific data.

Training of this architecture poses significant challenges as
it requires back-propagation through an HL-MRF that does

http://arxiv.org/abs/2109.13662v4

not have continuous derivatives. This optimization problem
cannot be solved by adapting existing convex optimization
methods but solving it is critical to integrating deep learning
and PSL. The key contribution of our work is a novel and non-
obvious approach to back-propagate through the HL-MRF to
learn the parameters of these deep networks. The proposed
algorithm enables end-to-end training of DeepPSL which in
turn helps fully realize the benefits of the proposed architec-
ture.

We evaluate the efficacy and performance of DeepPSL on
three different tasks: digit addition, semi-supervised classifi-
cation and entity resolution. Experiment results demonstrate
the superior scalability of DeepPSL over other state-of-the-art
neuro-symbolic approaches while achieving similar or better
accuracy.

2 Related Work

Relational Neural machine (RNM) [Marra et al., 2020], an
extension of Deep logic models (DLM) [Marra et al., 2019],
model reasoning using a Markov random field and back-
propagate through that field to learn underlying neural mod-
els. Unlike DeepPSL, RNMs do not require backpropaga-
tion through an argmin and do not allow any learned val-
ues to be used directly in logical rules. Rather they add
potentials that couple the learned values to output variables
which must be either observed or latent in the Markov ran-
dom field potentially resulting in a large increase in the
number of latent variables. DLM and RNM are related to
semantic-based regularization [Diligenti et al., 2017], logic
tensor networks [Donadello et al., 2017] and neural logic ma-
chines [Dong et al., 2019] which allow logical constraints to
constrain the learning of deep networks.

Neural theorem prover [Rocktäschel and Riedel, 2016]

is an end- to-end differentiable prover. TensorLog
[Cohen et al., 2020] is a recent framework to reuse the deep
learning infrastructure of TensorFlow to perform probabilis-
tic logical reasoning. Neither of these methods model pred-
icates using deep learning. [Hu et al., 2016] presents an it-
erative distillation method that transfers structured informa-
tion of first-order logic rules into the weights of the NNs.
[Gridach, 2020] generalized the approach to include rules
built using PSL.

DeepProbLog [Manhaeve et al., 2018] augments the
probabilistic logic programming language ProbLog
[Raedt et al., 2007] by incorporating neural predicates,
and makes predictions by employing marginal inference
and sampling. DeepProbLog and other methods such as
NeurASP [Yang et al., 2020] do not scale well as they rely
on the computationally expensive possible world seman-
tics. DeepStochLog [Winters et al., 2022] achieves better
scalability as compared to DeepProbLog and NeurASP
using stochastic definite clause grammars. In contrast,
DeepPSL scales to significantly larger systems with millions
of ground rules by leveraging the continuous nature of
HL-MRFs that cast MAP inference as a convex optimization
problem. [Pryor et al., 2022] propose a neuro-symbolic
approach based on an energy based modeling extension
of the PSL framework. Their work uses a novel ”energy

loss” that doesn’t require back propagating through a convex
optimization problem. Our approach allows for arbitrary
convex differentiable loss functions including all of the most
commonly used losses.

End-to-end training of a DeepPSL model requires solv-
ing a bi-level optimization problem. The techniques
discussed in [Sinha et al., 2017; Ghadimi and Wang, 2018;
Dempe, 2018] for solving a bi-level optimization com-
putes gradient of the loss function which needs computa-
tion of inverse of the Hessian that is expensive to com-
pute at each iteration. Other methods consider neural net-
work layers consisting of a variety of optimization prob-
lems: argmin and argmax problems [Gould et al., 2016],
quadratic programming problems [Amos and Kolter, 2017;
Lee et al., 2019], convex problems [Agrawal et al., 2019],
cone programs [Agrawal et al., 2020]. All of these meth-
ods require that the optimization functions have continuous
derivatives and make use of second derivatives to allow back-
propagation through the optimization problems. HL-MRFs
do not have continuous derivatives and therefore are not
amenable to these approaches.

3 Background

3.1 HL-MRFs: Hinge Loss Markov Random
Fields

HL-MRFs are defined with k continuous potentials φ =
{φ1, . . . , φk} of the form:

φj(x,y) = (max{lj(x,y), 0})
pj (1)

where φj is a potential function of n free random variables
y = {y1, . . . , yn} conditioned on n′ observed random vari-
ables x = {x1, . . . , xn′ }, each random variable can take soft
values between [0, 1]. The function lj is linear in y and x

and pj ∈ {1, 2}. 1 Collecting the definitions from above, a
hinge-loss energy function f is defined as

fθ(x,y) =

k
∑

j=1

θjφj(x,y) (2)

where θ = (θ1, . . . , θk) and θj is a positive weight corre-
sponding to the potential function φj . A HL-MRF over ran-
dom variables y and conditioned on random variables x is a
probability density defined as

P (y|x) =
1

Z(x)
exp (−fθ(x,y)) (3)

where Z(x) is the partition co-efficient. Maximum a poste-
riori (MAP) inference finds the most probable assignment to
the free variables y given the observed variables x. MAP
inference is done by maximizing the probability density
P (y|x) while satisfying the constraint that the random vari-
able y ∈ [0, 1]n. Since the normalizing function Z in (3)
is not a function of y, maximizing P (y|x) is equivalent to
minimizing the energy function f , i.e.,

argmax
y∈[0,1]n

P (y|x) ≡ argmin
y∈[0,1]n

fθ(x,y) (4)

1In this work, pj = 2 is used for quadratic hinge-loss.

Critically the function f is convex in y, for a given x, al-
lowing for tractable inference even for very large HL-MRFs.
In this study, the inference problem is solved by employing
stochastic gradient descent2 (SGD) algorithm. However, one
may employ other alternative algorithms such as distributed
optimization algorithm, alternating direction method of mul-
tipliers (ADMM), as discussed in [Bach et al., 2017].

3.2 PSL rules

PSL uses first order logic as a template language for HL-
MRFs. A PSL program defines a set of rules in first order
logic. These rules in the PSL program are grounded over the
base of ground atoms each of which represents an observation
or unknown of interest. These ground atoms are associated
with random variables (x,y) and can take any value in [0, 1].
Each ground rule is then translated into a weighted hinge-loss
potential. The sum of these potentials defines a HL-MRF, and
minimizing the HL-MRF conditioned over x gives values for
the inferred predicates y.

It is beyond the scope of this paper to provide a detailed
description of how first order logic rules are used as a tem-
plate language for HL-MRFs, see [Bach et al., 2017] for fur-
ther details.

4 DeepPSL

4.1 Deep Learning based Predicates

The key difference between PSL and DeepPSL is that some
of the predicates are modeled with deep neural networks
(DNNs). In PSL, the observed predicates x are available
through a knowledge base, while in DeepPSL a feature vector
u is processed through DNNs to compute some of the predi-
cates. Typically, there is no data available on these predicates
to learn their corresponding DNNs. Hence, end-to-end train-
ing of DeepPSL system is needed to learn these predicates.

4.2 Learning

The key problem that needs to be solved is to determine how
to train this system end-to-end. In the proposed DeepPSL
framework, the features u are first processed through a neu-
ral net with tunable weights ω to generate estimates of x
which are predicates for the PSL. The estimates of predi-
cates in the DeepPSL are modeled by a deep neural network
p(u;ω). These predicates then go through PSL inference to
produce the final values of the random variables y. For end-
to-end training, we need to enable backpropagation through
the PSL inference. Since PSL inference is a convex optimiza-
tion problem, there is no direct way to backpropagate and up-
date the weights of the predicate network. We now describe
our solution to address this problem.

Optimization objective

The prime objective of training this end-to-end learning
model is to determine weights w = (ω, θ) such that the HL-
MRFs inference yields variables y which are close to their
true values ŷ in the training data. These free variables y

2The SGD optimization in PSL suffers from a drawback that hard
constraints cannot be strictly enforced. However, this limitation can
be circumvented by employing ADMM in place of SGD.

represent the outputs of DeepPSL. For example, a y might
represent a belief that a given image contains a zebra.

We want to obtain good outputs or predictions where
“good” is measured by a loss relative to their true values ŷ.
We restrict our analysis here to HL-MRFs in which all y cor-
respond to outputs.

In order to measure if the inferred values y are close
enough to the true values ŷ; let us consider a differentiable
convex loss function:

R
n × R

n ∋ (ŷ,y) 7→ L(ŷ,y) ∈ R (5)

The DeepPSL inference problem (4) is approximated with
soft constraints 3 and w = (ω, θ) as

y∗ = argmin
y

f̃(u,w,y) (6)

where

f̃(u,w,y) =fθ(p(u;ω),y) +

n
∑

i=1

γi(max{0,−yi})
2

+

n
∑

i=1

γi(max{0, yi − 1})2

with fixed γi, γi > 0. Therefore, the weight training problem
is set up as a nonlinear optimization

min
w,y

L(ŷ,y)

subject to y = argmin
ȳ

f̃(u,w, ȳ)
(7)

Gradient Following Algorithm

We develop a gradient descent procedure for solving the non-
linear optimization (7). This task is challenging because we
need to back-propagate through the argmin. The most di-

rect approach involves inverting the Hessian ∇yy f̃(u,w,y)
which is not well-defined for HL-MRFs as they do not have
continuous derivatives.

We take an alternative approach which avoids this pitfall.
We assume that the functionsL and f are differentiable. Fur-

thermore, we assume that the gradient ∇y f̃ and the neu-
ral network p are locally Lipschitz continuous. In general,
DNNs are designed to be trained using gradient based tech-
niques and that requires DNNs to be locally Lipschitz con-
tinuous, see [Rockafellar, 1981; Scaman and Virmaux, 2018;
Jordan and Dimakis, 2020]. Therefore, these assumptions are
general enough and the proposed technique is applicable to a
wide class of problems.

Consider the neural network weights wt−1 such that yt =

argminy f̃(u,wt−1,y). The objective is to find a wt such
that

L(ŷ,yt+1) < L(ŷ,yt) where yt+1 = argmin
y

f̃(u,wt,y)

To this end, we first linearly approximate the constraint

ỹt+1 = argminy f̃(u,w,y) in the neighborhood of yt by

3The constraints in (4) are incorporated using Lagrange multipli-
ers in a fairly standard way.

using continuous dependence4 of ỹt+1 on w and that is given
by

ỹt+1 = yt − δ∇y f̃(u,w,yt) (8)

for sufficiently small δ > 0. Therefore, using the approxi-
mation (8), the optimization (7), in the neighborhood of yt,
translates to

argmin
w

L(ŷ,yt − δ∇y f̃(u,w,yt)) (9)

and that is linearly approximated, in the neighborhood of yt,
to

wt = argmax
w

∇y f̃(u,w,yt) · ∇yL(ŷ,yt) (10)

It is worth noting that if ∇y f̃(u,wt,yt) · ∇yL(ŷ,yt) >
0 then L(ŷ, ỹt+1) < L(ŷ,yt). On the other hand if

∇y f̃(u,wt,yt) · ∇yL(ŷ,yt) ≤ 0 then local optimality is
attained at wt−1. Furthermore, to ensure constraint satisfac-
tion at each iteration, the local linear approximation ỹt+1 is
replaced with the inference optimization

yt+1 = argmin
y

f̃(u,wt,y) (11)

Recall that limh→0
g(v+hz)−g(v)

h
= ∇g(v) · z and therefore,

(10) can be rewritten as

wt = argmin
w

f̃(u,w,yt − α∇yL(ŷ,yt))− f̃(u,w,yt)

(12)
for sufficiently small α > 0.

Regularization

A PSL potential φj corresponding to a rule j, defined in (1),
translates in DeepPSL setup to

φj(u,ω,y) = max (lj(p(ω;u),y), 0)pj

where lj is a linear function, pj ∈ {1, 2}, p(ω;u) is a neural
network with weights ω and input u. Note that, for a certain
ω̃, the potential φj does not trigger, i.e.,

φj(ū, ω̃, ȳ) = 0 for any ū ∈ D and ȳ ∈ [0, 1]n

where D is the dataset, and therefore, there will be no updates
to the neural network weights ω̃ from the potential φj . This
loss of weight updates might lead to locally optimal solutions
to the training optimization (7), and that may be avoided by
adding a penalty term to the optimization (12) for each poten-
tial φj as

ψj(u,ω,y) = µ (lj(p(u;ω),y))2 with µ > 0 (13)

The penalty term ψj penalizes the objective function, in case,
the hinge loss potential φj does not trigger. The optimization
(12) with the regularizer is given by

wt = argmin
w

f̃(u,w,yt − α∇yL(ŷ,yt))

− f̃(u,w,yt) + µΩ(u,w,yt) (14)

4Please note that, in general, convexity of a differentiable
function f is not sufficient to ensure continuous dependence of

argmin
y
f̃(u,w,y) on w. However, argmin

y
f̃(u,w,y) +

ν||y−yt||
2 for any ν > 0 is augmented to ensure uniqueness of the

solution and so continuous dependence on w.

where

Ω(u,w,yt) =

k
∑

j=1

ψj(u,ω,yt−α∇yL(ŷ,yt))−ψj(u,ω,yt)

for k potentials, and µ > 0 .
These two optimizations (11) and (14) are executed alter-

natively until convergence in Algorithm 1.

Algorithm 1 Joint optimization: backpropagating loss to the
neural network

Initialization: t = 1;α, η, µ > 0;N, T ≥ 1.

Neural network weights w0 are initialized using standard
techniques.

while t ≤ T do

yt = argminy f̃(u,wt−1,y) {MAP inference}

wt = wt−1

for i = 1, . . . , N do

wt −= η∇wt

[

f̃(u,wt,yt − α∇yL(ŷ,yt))

− f̃(u,wt,yt) + µΩ(u,wt,yt)
]

end for

t = t+ 1
end while

4.3 Scalability

DeepPSL fully inherits the scalability of PSL, that is, they
have the same Big O behavior.The first step in DeepPSL in-
ference consists of a forward pass through the NNs to com-
pute the groundings, only adding time linear in number of
ground terms. The second step is standard PSL inference,
that is extremely efficient and scales linearly in number of
potentials, see Section 3.1.

DeepPSL training requires alternate execution of gradient
descent step for minimizing loss (14) and an inference step.
The gradient descent step can become memory intensive. As
the loss function can be rewritten as summation of losses for
each of the grounding, we address the problem using gradi-
ent accumulation. Weight updates are made after accumu-
lating gradients from all the grounded potentials. Preserving
the inherent scalability of PSL inference and addressing the
challenges during training makes DeepPSL highly scalable.

5 Experimental Evaluation

We evaluate DeepPSL on three tasks – T1: a digit addition
task that shows that DeepPSL can learn predicates that are
hard to specify in PSL, T2: a document classification rela-
tional problem that is of moderate scale and T3: a challeng-
ing large scale entity resolution problem. We compare our
method with state-of-the-art neuro-symbolic methods and in
some cases, with other methods that are more specific to the
task. Each of these tasks contains train, validation and test
splits in the corresponding dataset(s). We select the model
and hyper-parameters, see Table 1, that give the highest per-
formance on the validation set. The selected model is then

evaluated on the test set to report the performance. The per-
formance metric is reported with a 95% confidence interval,
calculated by repeating each experiment multiple times. The
experiments are performed on a MacBook Pro with 2.6GHz
Intel i7 processor having 6 cores.

Table 1: Hyperparameters used for DeepPSL

Inference parameters T1 T2 T3

Optimizer SGD SGD SGD
Learning rate 5e−3 5e−3 1e−2
Loss change threshold 1e−6 5e−3 1e−1
Max iterations 5000 1000 5000
γi, γi 20 20 20

Training Parameters ⋆

Optimizer Adagrad Adam Adagrad
α 5e−5 1 5e−3
µ 1e−3 12e−2 0
Update steps (N) 2 10 2
Epochs (T) 10 75 100

⋆ Rule weights are initialized randomly by drawing samples from

a normal distribution N (1.0, 0.1).

5.1 T1: Addition of handwritten digits

The goal of this task is to predict the sum of digits present
in two MNIST images5 [Manhaeve et al., 2018], a relatively
simpler problem that is already well addressed by several
neuro-symbolic methods. Note that the training data provides
only the sum of the digits, and the digit labels are not pro-
vided. Hence, it is not possible to directly learn or specify a
predicate to classify individual images, making it difficult for
PSL to solve this problem. We investigate whether DeepPSL
can learn the image predicate and achieve performance com-
parable to other neuro-symbolic approaches.

The datasets for this problem are generated following the
procedure described in [Winters et al., 2022]. Rules provided
in Figure 1 are used to add two digits in DeepPSL system.
We use the predicate DIGIT, a convolutional neural network
(CNN), to recognize the digits present in the input images
(Img1, Img2). DeepPSL is trained end-to-end to learn the
rule weights as well as the CNN parameters, by minimizing
the cross-entropy loss between the inferred sums (S) and the
ground truth.

The CNN consists of two convolution (CONV) layers with
32 and 64 filters of size 3 and stride 1 with ELU activation.
Max pool layer with size 2 is applied on the output of last
CONV layer. This is followed by two fully connected layers
with 128 and 10 nodes on which ELU and softmax activa-
tions are applied respectively. A batch size of 16 is used for
training. The learning rate for rule weights and CNN are de-
cayed for the 10 epochs according to η = η0/(E + 1) where,
η0 (5e−4 for rule weights and 1e−3 for CNN parameters) is
the initial learning rate and E is the epoch number (starting

5A detailed explanation on digit addition problem may be found
in [Manhaeve et al., 2018].

with 0). A weight decay of 1e−7 is used for CNN parameters
from the second epoch of training. Weight decay is not used
for rule weights. In the ruleset, the summation constraint is
implemented as a soft constraint with a fixed weight 10.

Addition of handwritten digits rules

θ1 :DIGIT(Img1, D1) ∧ DIGIT(Img2, D2) ∧ (Img1¬ = Img2) → SUM(S)̂2

θ2 :DIGIT(Img1, D1) ∧ DIGIT(Img2, D2) ∧ (Img1¬ = Img2) → ¬SUM(S)̂2

Summation Constraint

SUM(+S) = 1

Figure 1: DeepPSL rule set for addition of handwritten digits

The average classification accuracy of DeepPSL over 10
runs is shown in Table 2. The performance numbers for other
methods are obtained from [Winters et al., 2022]. We also
evaluate the CNN corresponding to DIGIT predicate on the
test split of MNIST data set. The CNN achieves an accuracy
of 98.2% demonstrating that DeepPSL could successfully
learn the predicate even without any explicit data and thus
achieves performance comparable to other neuro-symbolic
methods.

Table 2: Test accuracy on addition of handwritten digits

NeurASP DeepProbLog DeepStochLog DeepPSL

97.3± 0.3 97.2± 0.5 97.9± 0.1 96.2± 0.2

5.2 T2: Semi-supervised Classification

The goal is to classify unlabeled documents in citation net-
works given some documents that are labeled. The prob-
lem is more challenging than task T1 as there is significantly
more relational information available, which in turn poses
a challenge to the scalability of neuro-symbolic methods.
We use data from the Cora and Citeseer scientific datasets
[Yang et al., 2016]. The Cora dataset contains 2708 docu-
ments in 7 categories, with 5429 citation links, and each doc-
ument is represented by indicating the absence or presence
of the corresponding word from a dictionary of 1433 unique
words. Similarly, the Citeseer dataset contains 3327 docu-
ments in 6 categories, with 4591 citation links, and each doc-
ument is represented by indicating the absence or presence
of the corresponding word from a dictionary of 3703 unique
words.

Table 3: Dataset splits for semi-supervised classification task

Dataset Nodes Split 1 Split 2
(Train/ Val/ Test) (Train/ Val/ Test)

Cora 2708 140/ 500/ 1000 1708/ 500/ 500
Citeseer 3327 120/ 500/ 1000 2327/ 500/ 500

The predicate CITE(A,B) defines a citation from node A
to node B, and the number of neighbors of A are nA =

|{B | CITE(B,A)}|. Furthermore, we define 2-hop neighbors
and 3-hop neighbors as, for any A! = B,

CITEP(A,B) = CITE(A,C) ∧ CITE(C,B) for any node C,

CITEQ(A,B) = CITEP(A,C) ∧ CITE(C,B) for any node C.

In the rule set shown in Figure 2, the predicates CITE,
CITEP and CITEQ are directly observed from the data. The
inferred predicate LABEL identifies the labels of the docu-
ments. The deep learning predicates NEURAL and SIMI-
LAR represent the neural net classifier output and the simi-
larity between documents, respectively.

Semi-supervised classification rules

θ1 :NEURAL(A, Y) → LABEL(A, Y)

θ2

nA

:LABEL(B, Y) ∧ SIMILAR(B, A) ∧ CITE(B, A) → LABEL(A, Y)

θ3

nA

:LABEL(B, Y) ∧ ¬SIMILAR(B, A) ∧ CITE(B, A) → ¬LABEL(A, Y)

θ4 :
1

|B|
NEURAL(+B, Y) → LABEL(A, Y){B : CITE(A, B)}

θ5 :
1

|B|
NEURAL(+B, Y) → LABEL(A, Y){B : CITEP(A, B)}

θ6 :
1

|B|
NEURAL(+B, Y) → LABEL(A, Y){B : CITEQ(A, B)}

Constraints

LABEL(A,+Y) = 1

Figure 2: DeepPSL rule set for semi-supervised classification

The predicate NEURAL is represented by a feedforward
neural network with an input layer that takes the document
features, followed by a hidden layer with 16 nodes (RELU
activation), a drop out layer with a rate of 0.2, and a final soft-
max layer with 7 nodes corresponding to the output classes.
The predicate LABEL is represented by a Siamese network
composed of two identical networks that share the first layer
of the feedforward network, and a distance layer with 16
nodes. We minimize cross entropy loss and use learning rate
2e−3 for rule weights and 2e−2 for NN parameters. The
weight decay parameter of Adam optimizer is set to 3e−4
(Split 1) and 3e−5 (Split 2), and is only used for NN pa-
rameters. The summation constraint is implemented as a soft
constraint with a fixed weight 20.

We compare the performance of DeepPSL against
various baselines on the Cora and Citeseer datasets, us-
ing randomly generated data splits described in Table
3. The results, presented in Table 4, show classification
class averaged accuracy on the test sets. The results
for GCN6 [Kipf and Welling, 2017], PSL and DeepPSL
are generated by running each method 100 times, while
the results for ManiReg [Belkin et al., 2006], SemiEmb
[Weston et al., 2012], LP [Zhu et al., 2003], DeepWalk
[Perozzi et al., 2014], ICA [Lu and Getoor, 2003], Planetoid
[Yang et al., 2016] are taken from [Kipf and Welling, 2017].
As DeepStochLog training was slow, we ran it only 5 times
and don’t report error bars. Both splits are evaluated for

6https://github.com/tkipf/gcn

GCN, PSL and DeepPSL while other results are reported
only for Split 1.

DeepPSL achieves the highest accuracy for both data sets
and both splits, outperforming DeepStochLog by a large mar-
gin and surpassing even methods that are specialized for
semi-supervised learning. The expressivity of PSL for rela-
tional systems enables DeepPSL to leverage the labels and
features of its neighbors, while the end-to-end training helps
optimize the weights of the neural predicates to maximize
classification accuracy. When compared to other neuro-
symbolic methods, DeepPSL demonstrates excellent scalabil-
ity. DeepProbLog , timed out for both networks while Deep-
StochLog training time was ∼ 50x that of DeepPSL.

Table 4: Classification accuracy on test nodes for Task T2

Algorithm Cora Citeseer

ManiReg 59.5 60.1
SemiEmb 59.0 59.6
LP 68.0 45.3
DeepWalk 67.2 43.2
ICA 75.1 69.1
Planetoid 75.7 64.7
DeepStochLog 69.4 65
DeepProbLog timeout timeout
GCN 80.08± 0.34 67.96± 0.32
PSL 62.97± 0.52 64.88± 0.38
DeepPSL 81.31± 0.28 69.11± 0.27

GCN(Split 2) 87.46± 0.30 75.96± 0.34
PSL(Split 2) 85.94± 0.28 75.66± 0.32
DeepPSL(Split 2) 88.94± 0.25 76.01± 0.31

5.3 T3: Entity Resolution

We perform entity resolution on CiteSeer database
[Bhattacharya and Getoor, 2007] using DeepPSL to identify
duplicate references to authors and published papers. As
the task requires predicting the edges between every pair of
author nodes and paper nodes in a large network, the problem
results in millions of ground rules posing a major challenge
for existing neuro-symbolic approaches.

The data consists of author names, paper titles and rela-
tional information such as authorship of papers. There are
around 3000 author references and 1500 paper references. We
use the train and test splits provided in PSL entity resolution
example.7 We extract a third of data in the provided train set
to create a validation set.

For this problem, pair-wise similarity of author names and
pair-wise similarity of paper titles provide key information
to identify duplicates. Traditionally, this similarity is com-
puted with hand crafted metrics and is used for inference. It
has been shown that the performance of different standard
string similarity metrics varies greatly based on the applica-
tion domain [Cheatham and Hitzler, 2013]. With DeepPSL,
we do not rely on pre-determined string similarity metrics.

7https://github.com/linqs/psl-examples/tree/master/entity-resolution

https://github.com/linqs/psl-examples/tree/master/entity-resolution

Rather, the system learns the optimal way to compute simi-
larities from the provided application specific data.

Entity resolution rules

θ1 :AUTHORNAME(A1, N1) ∧ AUTHORNAME(A2, N2) ∧ SIMNAME(N1, N2)

→ SAMEAUTHOR (A1, A2)̂2

θ2 :PAPERTITLE(P1, T1) ∧ PAPERTITLE(P2, T2) ∧ SIMTITLE(T1, T2)

→ SAMEPAPER (P1, P2)̂2

θ3 :AUTHORBLK(A1, B1) ∧ AUTHORBLK(A2, B1) ∧ AUTHOROF(A1, P1)∧

AUTHOROF(A2, P2) ∧ SAMEPAPER(P1, P2) → SAMEAUTHOR(A1, A2)̂2

θ4 :AUTHORBLK(A1, B) ∧ AUTHORBLK(A2, B) ∧ AUTHORBLK(A3, B)∧

SAMEAUTHOR (A1, A2) ∧ SAMEAUTHOR (A2, A3) ∧ (A1¬ = A3)∧

(A2¬ = A3) ∧ (A1¬ = A2) → SAMEAUTHOR(A1, A3)̂2

θ5 :¬SAMEAUTHOR(A1, A2)̂2

θ6 :¬SAMEPAPER (P1, P2)̂2

Identity Constraints

SAMEAUTHOR (A, A) = 1

SAMEPAPER (P, P) = 1

Figure 3: DeepPSL rule set for entity resolution

Rules7 in Figure 3 incorporate the author name and pa-
per title similarity values in conjunction with other relational
information to identify duplicates. The inferred predicates
SAMEAUTHOR and SAMEPAPER identify if authors and pa-
pers are same respectively. AUTHORNAME, PAPERTITLE,
AUTHOROF and AUTHORBLOCK are directly observed from
the data. In the DeepPSL system, we associate author name
similarity predicate SIMNAME and title similarity predicate
SIMTITLE with siamese networks[Koch et al., 2015]. The
NN to compute author name similarity takes 56 dimensional
character ([A-Za-z .,’]) based one hot encoding of the names
as input. NN for title similarity operates on mean of 300
dimensional vectors derived from GloVe embeddings (pre-
trained on Wikipedia 2014 and Gigaword5 corpus.8) of the
words in the title. Each twin in the architecture has a hid-
den layer of 50 nodes and distance layer of 50 nodes for both
NNs. We minimize cross entropy loss to learn rule weights
and weights of NNs for author name and paper title similari-
ties. During training of the DeepPSL system, we do not per-
form any sampling over the graph. We use learning rate of
5e−2 for NN parameters and 25e−3 for rule weights. Weight
decay is not used for rule weights but for NN parameters,
1e−3 is used. The identity constraints are implemented with
a fixed weight 10. The model which gives the highest average
of F1-scores for same author and same paper identification is
selected based on validation set.

After trivial potential removal, there are 6.5 million and
3.1 million ground rules during train and test respectively.
The scale of this relational problem is out of scope for
neural PLP approaches such as DeepProbLog. We at-
tempted a comparison with DeepStochLog9. However, Deep-
StochLog could not scale to the size of this problem, en-
countering memory errors and timing out even when us-
ing only a subset of the rules. We report performance of

8https://nlp.stanford.edu/projects/glove
9https://github.com/MLKULeuven/deepstochlog/tree/main/examples.

DeepPSL and PSL over 10 runs in Table 5. PSL setup
is built with same ruleset as in DeepPSL but the author
name and paper title similarities are computed using met-
rics mentioned in [Bhattacharya and Getoor, 2007]. PSL-A
uses Soft TFIDF with Jaro-Winkler [Cohen et al., 2003] for
both author name similarity and paper title similarity. PSL-
B uses Soft TFIDF for author names and cosine similarity
of GloVe based vectors for paper titles. We also experiment
with PSL setups using other standard similarity metrics (as
mentioned in [Cheatham and Hitzler, 2013; Gali et al., 2016;
Yih and Meek, 2007]): Cosine, Jaccard, Monge Elkan (with
Levenshtein). The PSL systems corresponding to these met-
rics are designated as PSL-C, PSL-J and PSL-M respectively.
In each of these setups, we use the same similarity metric for
computing author name and paper title similarities. Strings
are not preprocessed apart from tokenization when necessary.
Error bars are not reported for PSL as there is insignificant
variation across runs. DeepPSL outperforms all the PSL se-

Table 5: Performance on Task T3

Algorithm Author F1 score Paper F1 score

PSL-A 0.9271 0.8276
PSL-B 0.8958 0.8501
PSL-C 0.7852 0.7656
PSL-J 0.8073 0.7631
PSL-M 0.8008 0.8884
DeepStochLog timeout timeout
DeepPSL 0.9468± 0.0061 0.9228± 0.0036

tups for both author and paper entity resolution, see Table 5.
The PSL performance depends on the pre-determined sim-
ilarity metric used and it is hard to find a similarity metric
that yields the highest accuracy. DeepPSL achieves excellent
performance by directly learning optimal similarity functions
for the entity resolution task. Moreover, these results high-
light that DeepPSL scales to a difficult problem which proves
to be out of reach for competing methods.

6 Conclusions and Future Work

We introduced DeepPSL an end-to-end trainable system that
integrates reasoning and perception. We proposed a novel al-
gorithm to enable end-to-end training. Experimental results
on three different tasks demonstrated the broad applicability
of the method. DeepPSL scales to relational problems that
prove to be challenging for competing methods. DeepPSL
has some limitations. Firstly, as DeepPSL uses deep networks
to model predicates, learning is not convex, and therefore, the
proposed approach may suffer from local minima. While we
did not observe any significant sensitivity to local minima in
our experiments, further research is needed to understand this
better. Secondly, the work described in this article does not
address latent variables. Future work will report on exten-
sions of DeepPSL to the latent variable case.

Disclaimer

The views reflected in this article are the views of the authors
and do not necessarily reflect the views of the global EY or-

https://nlp.stanford.edu/projects/glove
https://github.com/ML KULeuven/deepstochlog/tree/main/examples

ganization or its member firms.

References

[Agrawal et al., 2019] Akshay Agrawal, Brandon Amos,
Shane Barratt, Stephen Boyd, Steven Diamond, and
J. Zico Kolter. Differentiable Convex Optimization Lay-
ers. In Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates Inc., 2019.

[Agrawal et al., 2020] Akshay Agrawal, Shane Barratt,
Stephen Boyd, Enzo Busseti, and Walaa M. Moursi. Dif-
ferentiating Through a Cone Program. arXiv; 1904.09043,
2020.

[Amos and Kolter, 2017] Brandon Amos and J Zico Kolter.
Optnet: Differentiable Optimization as a Layer in Neural
Networks. In International Conference on Machine Learn-
ing, pages 136–145. PMLR, 2017.

[Augustine and Getoor, 2018] E. Augustine and L. Getoor.
A Comparison of Bottom-Up Approaches to Grounding
for Templated Markov Random Fields. In SysML, 2018.

[Bach et al., 2017] Stephen H Bach, Matthias Broecheler,
Bert Huang, and Lise Getoor. Hinge-Loss Markov Ran-
dom Fields and Probabilistic Soft Logic. Journal of Ma-
chine Learning Research, 18:1–67, 2017.

[Belkin et al., 2006] Mikhail Belkin, Partha Niyogi, and
Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled exam-
ples. Journal of machine learning research, 7(11), 2006.

[Bhattacharya and Getoor, 2007] Indrajit Bhattacharya and
Lise Getoor. Collective Entity Resolution In Relational
Data. ACM Transactions on Knowledge Discovery from
Data, pages 1–36, 2007.

[Cheatham and Hitzler, 2013] Michelle Cheatham and Pas-
cal Hitzler. String Similarity Metrics for Ontology Align-
ment. In The Semantic Web – ISWC 2013, pages 294–309,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Cohen et al., 2003] W. Cohen, P. Ravikumar, and S. Fien-
berg. A Comparison of String Distance Metrics for Name-
Matching Tasks. In The IJCAI Workshop on Information
Integration on the Web (IIWeb), 2003.

[Cohen et al., 2020] William W. Cohen, Fan Yang, and
Kathryn Mazaitis. TensorLog: A Probabilistic Database
Implemented Using Deep-Learning Infrastructure. Jour-
nal of Artificial Intelligence Research, 67:285–325, 2020.

[Dempe, 2018] Stephan Dempe. Bilevel Optimization: The-
ory, Algorithms and Applications. TU Bergakademie
Freiberg, Fakultät für Mathematik und Informatik, 2018.

[Diligenti et al., 2017] Michelangelo Diligenti, Marco Gori,
and Claudio Saccà. Semantic-based regularization for
learning and inference. Artificial Intelligence, 244:143–
165, 2017.

[Donadello et al., 2017] Ivan Donadello, Luciano Serafini,
and Artur D’Avila Garcez. Logic Tensor Networks for Se-
mantic Image Interpretation. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence,
IJCAI’17, page 1596–1602. AAAI Press, 2017.

[Dong et al., 2019] Honghua Dong, Jiayuan Mao, Tian Lin,
Chong Wang, Lihong Li, and Denny Zhou. Neural Logic
Machines. In International Conference on Learning Rep-
resentations, 2019.

[Farnadi et al., 2018] Golnoosh Farnadi, Behrouz Babaki,
and Lise Getoor. Fairness in Relational Domains. In Pro-
ceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society, page 108–114, 2018.

[Gali et al., 2016] Najlah Gali, Radu Mariescu-Istodor, and
Pasi Franti. Similarity Measures for Title Matching. In
International Conference on Pattern Recognition (ICPR),
2016.

[Gandoura et al., 2020] Marouene Sfar Gandoura, Zo-
grafoula Vagena, and Nikolaos Vasiloglou. Human in the
Loop Enrichment of Product Graphs with Probabilistic
Soft Logic. In Proceedings of Knowledge Graphs and
E-commerce, KDD 20, 2020.

[Ghadimi and Wang, 2018] Saeed Ghadimi and Mengdi
Wang. Approximation Methods for Bilevel Programming.
arXiv preprint arXiv:1802.02246, 2018.

[Gould et al., 2016] Stephen Gould, Basura Fernando,
Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo. On Differentiating Parameterized Argmin
and Argmax Problems with Application to Bi-level
Optimization. arXiv; 1607.05447, 2016.

[Gridach, 2020] Mourad Gridach. A framework based on
(probabilistic) soft logic and neural network for NLP. Ap-
plied Soft Computing, 93:106232, 2020.

[Hu et al., 2016] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu,
Eduard Hovy, and Eric Xing. Harnessing Deep Neu-
ral Networks with Logic Rules. In Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2410–2420,
Berlin, Germany, August 2016. Association for Computa-
tional Linguistics.

[Jordan and Dimakis, 2020] Matt Jordan and Alexandros G
Dimakis. Exactly Computing the Local Lipschitz Con-
stant of ReLU Networks. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages
7344–7353, 2020.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-Supervised Classification with Graph Convolutional
Networks. In 5th International Conference on Learning
Representations, ICLR 2017. OpenReview.net, 2017.

[Koch et al., 2015] Gregory Koch, Richard Zemel, and Rus-
lan Salakhutdinov. Siamese Neural Networks for One-shot
Image Recognition. In ICML 2015 Deep Learning Wor-
shop, 2015.

[Koller et al., 2007] Daphne Koller, Nir Friedman, Lise
Getoor, and Ben Taskar. Graphical Models in a Nutshell.
Introduction to statistical relational learning, 43, 2007.

[Kouki et al., 2017] Pigi Kouki, Jay Pujara, Christopher
Marcum, Laura Koehly, and Lise Getoor. Collective en-
tity resolution in familial networks. In 2017 IEEE Inter-

national Conference on Data Mining (ICDM), pages 227–
236. IEEE, 2017.

[Lee et al., 2019] Kwonjoon Lee, Subhransu Maji, Avinash
Ravichandran, and Stefano Soatto. Meta-Learning with
Differentiable Convex Optimization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 10657–10665, 2019.

[Lu and Getoor, 2003] Qing Lu and Lise Getoor. Link-based
classification. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 496–
503. AAAI Press, 2003.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Du-
mancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. DeepProbLog: Neural Probabilistic Logic Pro-
gramming. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

[Marra et al., 2019] Giuseppe Marra, Francesco Giannini,
Michelangelo Diligenti, and Marco Gori. Integrating
Learning and Reasoning with Deep Logic Models. In Ma-
chine Learning and Knowledge Discovery in Databases -
European Conference, 2019, Proceedings, Part II, volume
11907, pages 517–532. Springer, 2019.

[Marra et al., 2020] Giuseppe Marra, Michelangelo Dili-
genti, Francesco Giannini, Marco Gori, and Marco Mag-
gini. Relational Neural Machines. In 24th European Con-
ference on Artificial Intelligence, 2020.

[Perera et al., 2018] Ian Perera, Jena Hwang, Kevin Bayas,
Bonnie Dorr, and Yorick Wilks. Cyberattack Prediction
Through Public Text Analysis and Mini-Theories. In 2018
IEEE International Conference on Big Data (Big Data),
pages 3001–3010. IEEE, 2018.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 701–710, 2014.

[Pryor et al., 2022] Connor Pryor, Charles Dickens, Eriq
Augustine, Alon Albalak, William Wang, and Lise Getoor.
NeuPSL: Neural Probabilistic Soft Logic. arXiv preprint
arXiv:2205.14268, 2022.

[Raedt et al., 2007] Luc De Raedt, Angelika Kimmig, and
Hannu Toivonen. ProbLog: A Probabilistic Prolog and
Its Application in Link Discovery. In 30th International
Joint Conference on Artificial Intelligence, pages 2462–
2467, 2007.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov Logic Networks. Machine
Learning, 62(1–2):107–136, February 2006.

[Rockafellar, 1981] RT Rockafellar. Favorable Classes of
Lipschitz Continuous Functions in Subgradient Optimiza-
tion. 1981.

[Rocktäschel and Riedel, 2016] Tim Rocktäschel and Sebas-
tian Riedel. Learning Knowledge Base Inference with
Neural Theorem Provers. In Proceedings of the 5th Work-
shop on Automated Knowledge Base Construction, pages

45–50, San Diego, CA, June 2016. Association for Com-
putational Linguistics.

[Rodden et al., 2020] Aaron Rodden, Tarun Salh, Eriq Au-
gustine, and Lise Getoor. VMI-PSL: Visual Model Inspec-
tor for Probabilistic Soft Logic. In Fourteenth ACM Con-
ference on Recommender Systems, pages 604–606, 2020.

[Rospocher, 2018] Marco Rospocher. An Ontology-Driven
Probabilistic Soft Logic Approach to Improve NLP Entity
Annotations. In International Semantic Web Conference,
pages 144–161. Springer, 2018.

[Scaman and Virmaux, 2018] Kevin Scaman and Aladin Vir-
maux. Lipschitz regularity of deep neural networks: anal-
ysis and efficient estimation. In Proceedings of the 32nd
International Conference on Neural Information Process-
ing Systems, pages 3839–3848, 2018.

[Sinha et al., 2017] Ankur Sinha, Pekka Malo, and Kalyan-
moy Deb. A Review on Bilevel Optimization: From Clas-
sical to Evolutionary Approaches and Applications. IEEE
Transactions on Evolutionary Computation, 22(2):276–
295, 2017.

[Srinivasan et al., 2020] Sriram Srinivasan, Eriq Augustine,
and Lise Getoor. Tandem Inference: An Out-of-Core
Streaming Algorithm for Very Large-Scale Relational In-
ference. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(06):10259–10266, 2020.

[Weston et al., 2012] Jason Weston, Frédéric Ratle, Hossein
Mobahi, and Ronan Collobert. Deep learning via semi-
supervised embedding. In Neural Networks: Tricks of the
Trade, pages 639–655, 2012.

[Winters et al., 2022] Thomas Winters, Giuseppe Marra,
Robin Manhaeve, and Luc De Raedt. Deepstochlog: Neu-
ral stochastic logic programming. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(9):10090–10100,
Jun. 2022.

[Yang et al., 2016] Zhilin Yang, William Cohen, and Ruslan
Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on ma-
chine learning, pages 40–48. PMLR, 2016.

[Yang et al., 2020] Zhun Yang, Adam Ishay, and Joohyung
Lee. NeurASP: Embracing Neural networks into Answer
Set Programming. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence,
IJCAI-20, pages 1755–1762. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2020.

[Yih and Meek, 2007] Wen-Tau Yih and Christopher Meek.
Improving Similarity Measures for Short Segments of
Text. In Proceedings of the 22nd National Conference
on Artificial Intelligence - Volume 2, AAAI’07, page
1489–1494. AAAI Press, 2007.

[Zhu et al., 2003] Xiaojin Zhu, Zoubin Ghahramani, and
John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th
International conference on Machine learning (ICML-03),
pages 912–919, 2003.

A DeepPSL Scalability

We demonstrate experimentally that DeepPSL fully inherits
the scalability of PSL, that is, they have the same Big O be-
havior. To this end, we perform run time and scalability anal-
ysis for semi-supervised classification task (T2) and entity
resolution task (T3). We report average training and inference
time (per epochs) of DeepPSL over 5 random training runs.
For task T2, we sampled five sub-graphs from the citation
network of Cora dataset and report their run time in Figure 4
and Table 6. For task T3, we sampled four sub-graphs from
the entity resolution dataset and report their run time in Fig-
ure 5 and Table 7. For both tasks, the results indicate that the
DeepPSL inference scales approximately linearly with num-
ber of ground rules.

The DeepPSL inference consists of two steps: The first
step is a forward pass through neural network to evaluate
neural predicates. The second step is standard PSL inference
for determining inferred predicates, that is extremely efficient
and scales linearly in number of ground rules. As discussed
in Section 3.1 and [Bach et al., 2017], PSL inference easily
scales to systems with millions of ground rules by leveraging
the continuous nature of HL-MRFs that cast MAP inference
as a convex optimization problem.

For example, in task T2, the neural predicates NEURAL

and SIMILAR are computed by a forward pass through the
classifier and then LABEL is obtained by executing PSL in-
ference. Since forward pass through the neural classifier takes
negligible time as compared to PSL inference, the DeepPSL
inference time will effectively be the same as PSL inference.
Hence, DeepPSL inference scales linearly with number of
ground rules.

The DeepPSL training algorithm, see Algorithm 1, exe-
cutes DeepPSL inference step

yt = argmin
y

f̃(u,wt−1,y)

and a gradient descent step

wt −= η∇wt

[

f̃(u,wt,yt − α∇yL(ŷ,yt))

− f̃(u,wt,yt) + µΩ(u,wt,yt)
]

for neural network training and rule weights learning.
From Figure 4 and Figure 5, we note that DeepPSL time for

every epoch also scales linearly with number of ground rules.
It is evident from the experiments, see Table 4, that the run
time of the gradient descent step is negligible as compared
to DeepPSL inference step. Hence, from a computation per-
spective, the training of DeepPSL is equivalent to perform-
ing repeated DeepPSL inferences. The inference time for
DeepPSL is approximately the same as PSL, and therefore,
the training time for DeepPSL will be approximately equal to
the time for repeated PSL inferences. Since PSL inference
scales linearly with number of ground rules, DeepPSL train-
ing also approximately scales linearly with number of ground
rules as observed in experiments, see Figure 4 and Figure 5.

B DeepPSL Hyper-parameters Study

We conduct experiments for studying effect of various hyper-
parameters on the convergence of DeepPSL. The following

30 60 120 190 280

0

2

4

6

8

10

12

No of ground rules (in thousands)

R
u

n
ti

m
e

p
er

ep
o

ch
s

(i
n
se
c)

Total training time

DeepPSL Inference time

Gradient descent step time

Figure 4: Computation time of task T2 on Cora dataset

Table 6: Run time statistics of task T2 on Cora dataset

Nodes Edges Ground rules Inf⋆ GDs† Total‡

500 418 30352 1.98 0.10 2.08
1000 1476 69664 3.26 0.17 3.43
1500 3334 120176 6.06 0.36 6.42
2000 6572 190008 9.15 0.7 9.85
2708 10556 280476 10.73 1.02 11.75

⋆ DeepPSL Inference time per epochs (in sec).
† Gradient descent step time per epochs (in sec).
‡ Total training time per epochs (in sec).

hyperparameters are considered for the study while training
DeepPSL on task T2 with Cora dataset:

1. random initialization of neural network weights and
rule weights,

2. regularization parameter µ,

3. neural network weights’s learning rate ηω ,

4. neural network’s hidden nodes and dropout rate.

B.1 Initialization of neural weights and rule
weights

The DeepPSL rule weights are randomly initialized by draw-
ing a sample from normal distribution N (1, 0.1) and the neu-
ral network weights are initialized using standard techniques.
We train the DeepPSL system for task T2 on Split 2 of the

Table 7: Run time statistics of task T3

Ground rules Inf Time⋆ GDs Time† Total Time‡

551220 12.1 1.5 13.6
1011922 25 2.5 27.5
2083797 60.7 4.8 65.5
3143623 81.8 5.5 87.3

⋆ DeepPSL Inference time per epochs (in sec).
† Gradient descent step time per epochs (in sec).
‡ Total training time per epochs (in sec).

0.55 1.01 2.08 3.14

0

13

27

66

88

No of ground rules (in millions)

R
u

n
ti

m
e

p
er

ep
o

ch
s

(i
n
se
c)

Total training time

DeepPSL Inference time

Gradient descent step time

Figure 5: Computation time of task T3

Cora dataset. We take average of cross-entropy loss and val-
idation accuracy over 10 random runs with random weights
initialization and random data splits, see Figure 6. These ex-
periments show that DeepPSL is quite robust to random ini-
tialization of neural and rule weights.

0 20 40 60 75
0

0.2

0.4

0.6

0.8

1

Epochs

Cross-entropy loss

Validation accuracy

Figure 6: Task T2 on Split 2 of Cora dataset

B.2 Regularization parameter

In this experiment, we varied the regularization hyperparame-
ter µ among the set {0.04, 0.12, 0.2} and found that DeepPSL
trains effectively and reaches the desired performance across
a broad range of the regularization parameter. As shown in
Figure 7, the validation accuracy and cross-entropy loss indi-
cate that DeepPSL does not become trapped in local minima.

B.3 Learning rate of neural network weights

In this experiment, we varied the learning rate of neural net-
work weights ηω ∈ {0.004, 0.012, 0.1} to examine the ro-
bustness of DeepPSL training across different learning rates.
We found that while small learning rates slow down training,
large learning rates can lead to oscillations, as seen in Figure
8. However, the validation accuracy and cross-entropy loss,
see Figure 8, indicate that DeepPSL training is robust for a
wide range of learning rate parameters.

0 20 40 60 80

0.2

0.4

0.6

0.8

1

Epochs

CE loss, µ = 0.04 Val acc, µ = 0.04

CE loss, µ = 0.12 Val acc, µ = 0.12

CE loss, µ = 0.2 Val acc, µ = 0.2

Figure 7: Task T2 on Split 1 of Cora dataset

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Epochs

CE loss, ηω = 0.1 Val acc, ηω = 0.1

CE loss, ηω = 0.02 Val acc, ηω = 0.02

CE loss, ηω = 0.002 Val acc, ηω = 0.002

Figure 8: Task T2 on Split 1 of Cora dataset

B.4 Neural network hyperparameters

We varied the number of hidden nodes and dropout rate of
the neural classifier and found that DeepPSL training is rela-
tively robust to these hyperparameters, as shown in Table 8.
However, the performance of DeepPSL decreases with fewer
hidden nodes and higher dropout rates, indicating that this
combination of hyperparameters is not sufficient to capture
the underlying structure of the data.

Table 8: Classification accuracy of DeepPSL on task T2 (Split 1 of
Cora dataset)

Drp⋆
Nds†

8 16 24

0 80.12± 0.70 80.42± 0.49 80.64± 0.35
0.2 79.97± 0.60 81.85± 0.43 81.76± 0.45
0.4 74.23± 0.78 79.16± 0.57 80.47± 0.70

⋆ Dropout rate in neural classifier.
† Hidden node of neural classifier.

C Toy example for DeepPSL

To explain DeepPSL in a simple and intuitive fashion, we dis-
cuss a toy version of the entity resolution problem (explained

in Section 5.3) to first elucidate the core concepts of PSL and
then introduce the DeepPSL framework. In the toy problem,
the goal is to identify the duplicate author references based
on similarity of author names. Using the following PSL rules,
we express the knowledge that two authors are same if they
have similar names and that there is a transitive relation.

Entity resolution rules

θ1 :AUTHORNAME(A1, N1) ∧ AUTHORNAME(A2, N2) ∧ (A1¬ = A2)∧

SIMNAME(N1, N2) → SAMEAUTHOR(A1, A2)

θ2 :SAMEAUTHOR (A1, A2) ∧ SAMEAUTHOR (A2, A3) ∧ (A1¬ = A2)∧

(A2¬ = A3) ∧ (A1¬ = A3) → SAMEAUTHOR (A1, A3)

Figure 9: DeepPSL rule set for entity resolution

Here, SAMEAUTHOR is an inferred predicate and,
AUTHORNAME, SIMNAME are observed predicates. Con-
sider the scenario where there are 3 authors mention with
names,

L = {“Sheldon Cooper”, “Cooper Sheldon”, “Sheldon C”}

with their corresponding IDs in

D = {AID1,AID2,AID3}

respectively. The base of ground atoms is given by

A =

{

xij = AUTHORNAME(i, j) for i ∈ D and j ∈ L,
x̄ij = SIMNAME(i, j) for i, j ∈ L,
yij = SAMEAUTHOR(i, j) for i, j ∈ D and i 6= j

}

(15)

The above rules will induce to the following ground rules:

θ1 : xij & xkl & x̄jl → yik

for i, k ∈ D, i 6= k, and j, l ∈ L (16)

θ2 : yij & yjk → yik

for i, j, k ∈ D and i 6= j 6= k (17)

which is equivalent to the following:

θ1 : !xij ‖ !xkl ‖ !x̄jl ‖ yik, θ2 : !yij ‖ !yjk ‖ yik (18)

The disjunction expression (18) is converted to a soft logic
using Lukasiewicz t-norm and its corresponding co-norm as
the relaxation of the logical AND and OR respectively. Ad-
ditionally, negation of an atom, “a” is considered as “1− a”.
Therefore, the satisfaction of the rules (18) are determined by
the following expressions:

min {(1− xij) + (1− xkl) + (1− x̄jl) + yik, 1} ,

min {(1− yij) + (1− yjk) + yik, 1} .
(19)

The rule satisfaction (19) are rewritten as the distance to sat-
isfaction leading to the following hinge-loss potentials:

{

φijkl = (max{xij + xkl + x̄jl − yik − 2, 0})p

φ̄ijk = (max{yij + yjk − yik − 1, 0})p

for p ∈ {1, 2}. With x := (xij , x̄ij), y := (yij), θ :=
(θ1, θ2), the energy function is defined as

fθ(x,y) = θ1
∑

i,k∈D
i6=k
j,l∈L

φijkl + θ2
∑

i,j,k∈D
i6=j 6=k

φ̄ijk (20)

The inferred predicates y are obtained by solving a convex
PSL inference optimization (4).

For DeepPSL, the string similarity values need not be sup-
plied beforehand. A siamese network can be plugged into the
SimName predicate which computes the similarity of strings.
We pass the string pairs to the neural network, get the simi-
larity values and feed them as groundings for SimName pred-
icate. Once the groundings are obtained, similar to PSL we
minimize the total hinge loss to obtain the inferred values.

	1 Introduction
	2 Related Work
	3 Background
	3.1 HL-MRFs: Hinge Loss Markov Random Fields
	3.2 PSL rules

	4 DeepPSL
	4.1 Deep Learning based Predicates
	4.2 Learning
	Optimization objective
	Gradient Following Algorithm
	Regularization

	4.3 Scalability

	5 Experimental Evaluation
	5.1 T1: Addition of handwritten digits
	5.2 T2: Semi-supervised Classification
	5.3 T3: Entity Resolution

	6 Conclusions and Future Work
	A DeepPSL Scalability
	B DeepPSL Hyper-parameters Study
	B.1 Initialization of neural weights and rule weights
	B.2 Regularization parameter
	B.3 Learning rate of neural network weights
	B.4 Neural network hyperparameters

	C Toy example for DeepPSL

