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Abstract—We consider a communication problem in which the
receiver must first detect the presence of an information packet
and, if detected, decode the message carried within it. We present

general nonasymptotic upper and lower bounds on the maximum
coding rate that depend on the blocklength, the probability of
false alarm, the probability of misdetection, and the packet er-
ror probability. The bounds, which are expressed in terms of
binary-hypothesis-testing performance metrics, generalize finite-
blocklength bounds derived previously for the scenario when a
genie informs the receiver whether a packet is present. The bounds
apply to detection performed either jointly with decoding on the
entire data packet, or separately on a dedicated preamble. The
results presented in this paper can be used to determine the block-
length values at which the performance of a communication sys-
tem is limited by its ability to perform packet detection satisfacto-
rily, and to assess the difference in performance between preamble-
based detection, and joint detection and decoding. Numerical re-
sults pertaining to the binary-input AWGN channel are provided.

I. INTRODUCTION

The design of short-packet communications—an integral

component of delay-sensitive information-exchange

protocols—is subject to nontrivial tradeoffs between rate,

delay, and error probability [1]. During the last decade, these

tradeoffs have been characterized for many channels of

interest, including the additive white Gaussian noise (AWGN)

channel [1], and Rayleigh and Rician fading channels [2]–[6].

These works all rely on the assumption that the receiver

has correctly decoded the presence of a data packet, and

do not account for the cost of packet detection. However,

there exists a plethora of practical applications, including,

e.g., sensor networks, event-triggered communications, and

random-access protocols, in which the cost of packet detection

is not negligible [7]–[9].

A common approach to perform detection in such systems is

to incorporate within the data packet a deterministic preamble,

known to the receiver. In short-packet applications, however,

adding such a preamble may be highly suboptimal, due to the

limited size of the data packet. Naturally, the following question

arises: how much can be gained from a design in which detection

and decoding are performed jointly over the entire data packet,

without the insertion of a dedicated preamble?

Prior Art: Consider a frame-synchronoussystem, in which

each frame may be empty or may contain a data packet, and
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where the receiver is assumed to have acquired perfect frame

synchronization. The task of the receiver is to detect whether a

packet is present in a frame, and if so, to decode it. Three types

of error events can be defined: a false alarm (FA), i.e., the event

that the receiver detects the presence of a packet even though the

transmitter was idle; a misdetection (MD), i.e., the event that

the receiver erroneously decides that the transmitter was idle;

an inclusive error (IE), i.e., the event that the receiver does not

decode correctly a transmitted codeword.

An error-exponent analysis of joint detection and decod-

ing was first presented in [7], where the random-coding

error exponents (EFA(R), EMD(R), EIE(R)) of the afore-

mentioned errors were analyzed for a given rate R over

a discrete memoryless channel (DMC). Specifically, the re-

gion (EFA(R), 0, 0) was characterized exactly and the region

(EFA(R), EMD(R), 0) was characterized in terms of inner and

outer bounds [7, Ch. 3–4]. It was also shown that separate detec-

tion and decoding strategies are strictly suboptimal for all rates

and that the gap from optimality grows with the rate. In [10],

the optimal joint detection and decoding rule for a given code

and given FA and MD constraints was derived. Furthermore, the

authors provide an exact characterization of the corresponding

(EFA(R), EMD(R), EIE(R))-region for the case of constant-

composition codes. The results in [10] were further extended

in [11] to account for nonuniformly distributed message sets.

The joint detection and decoding problem is related to the

unequal error protection (UEP) problem, in which messages

belong to different classes with different reliability require-

ments [12]. A nonasymptotic analysis of the UEP problem

was presented in [13], where several results from [1] are ex-

tended to this setting. In particular, the dependence-testing (DT)

achievability bound (maximum error probability) [1, Th. 21]

and the metaconverse bound [1, Th. 27] are extended to both

joint and separate message classification and decoding, and

particularized to the binary-symmetric channel (BSC) and the

binary-erasure channel (BEC). However, these bounds cannot

be applied directly to the detection and decoding problem con-

sidered in this paper, since the MD probability cannot be ac-

counted for straightforwardly.

In summary, although prior art is available for the problem

of joint detection and decoding, in none of the existing works

nonasymptotic bounds are computed for channel models of

practical interest in wireless communications. Furthermore, the

performance gap between joint detection and decoding and con-
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ventional preamble-based detection followed by decoding is not

quantified.
Contributions: We present finite-blocklength achievability

and converse bounds for joint detection and decoding strategies

over general point-to-point channels. The bounds are explicit in

the Neyman-Pearson β function—a key performance metric in

binary hypothesis testing. Specifically, the achievability bound

builds upon the ββ achievability bound presented in [14, Th.1],

while the converse bound is based on the ββ converse bound [15,

Th. 15], a tightening of the metaconverse bound [1, Th. 27]. We

also discuss how to adapt these bounds to the case of detection

performed on a dedicated preamble.

For given requirements on the FA, MD, and IE probabilities,

we use the bounds to characterize the maximum coding rate

as a function of the packet length both for joint detection and

decoding and for detection performed on a dedicated preamble,

followed by decoding. Numerical results for the binary-input

AWGN channel indicate that packet detection, even when per-

formed jointly with decoding, is the performance bottleneck

when the packets are very short (less than 190 channel uses),

and the SNR is low (e.g., 0 dB). In this regime, it turns out

useful to consider input distributions for which the binary input

symbols are transmitted with different probabilities, since this

is beneficial for packet detection. As the packet length grows

and/or the SNR increases, packet decoding becomes the perfor-

mance bottleneck. Performing detection solely on the basis of

a dedicated preamble turns out to be highly suboptimal in the

short-packet regime, even when the length of the preamble is

optimized.
Notation: Uppercase letters such as X and X are used to

denote scalar random variables and vectors, respectively; their

realizations are written in lowercase, e.g., x and x. We denote

the expectation operator by E[·], and, for a given event E , we

use PX [E ] to denote the probability that E occurs when the

underlying probability measure is PX . We write log(·) and

log2(·) to denote the natural logarithm and the logarithm to the

base 2, respectively, and 1[·] to denote the indicator function.

Finally, consider two probability distributions PX and QX on a

common measurable space X , and let PZ|X : X → {0, 1} be

a randomized binary test, where Z = 1 indicates that the test

chooses PX . The Neyman-Pearson β function is defined as

βα(PX , QX) , min
PZ|X :PX [Z=1]≥α

QX [Z = 1] (1)

where α ∈ [0, 1]. The test achieving (1) is the Neyman-Pearson

test [16], which involves thresholding the log-likelihood ra-

tio log dPX/dQX , where dPX/dQX stands for the Radon-

Nykodim derivative of PX with respect to QX . We shall also

use for convenience the following equivalent function

αβ(PX , QX) , min
PZ|X :QX [Z=1]≤β

PX [Z = 0] (2)

where β ∈ [0, 1]. This function turns out to be easier to relate

to error probabilities than (1).

II. SYSTEM MODEL

We consider frame-synchronous transmissions where the

packet duration is equal to the frame size and encompasses n

channel uses. The receiver is assumed to be oblivious to the pres-

ence of any packet and must, therefore, perform both detection

and decoding. The channel law within each frame is denoted

by PY |X(y|x), where x ∈ Xn and y ∈ Yn. Throughout, we

assume thatX contains a special symbol, which we denote by∅,

used to indicate that the transmitter is idle. We shall use ∅∅∅ to

indicate the vector containing n copies of ∅.

When the transmitter is active, it encodes a message W ,

uniformly distributed in the set {1, . . . ,M}, to a codeword in

the codebook {ci}Mi=1 ⊂ Xn. To perform joint detection and

decoding, the receiver partitions the set Yn of possible received

signals y into M + 1 disjoint regions R0,R1, . . . ,RM whose

union coversYn. Ify ∈ Rm, wherem = 1, . . . ,M , the decoder

returns the estimate Ŵ = m. If y ∈ R0, the decoder declares

that the transmitter was idle.

Following [10], we next define the FA, MD, and IE probabil-

ities as follows:

PFA ,

M∑

m=1

PY |X=∅∅∅[Y ∈ Rm] (3)

PMD ,
1

M

M∑

m=1

PY |X=cm
[Y ∈ R0] (4)

PIE ,
1

M

M∑

m=1

M∑

k=0
k 6=m

PY |X=cm
[Y ∈ Rk]. (5)

Observe that PIE comprises the probability of MD and the

probability of decoding a wrong codeword.

An (M,n, ǫFA, ǫMD, ǫIE)–code is a code with blocklength

n, M codewords, and PFA ≤ ǫFA, PMD ≤ ǫMD, and

PIE ≤ ǫIE. Similar to [17], it will turn out convenient to con-

sider a more general notion of randomized code in which both

transmitter and receiver are equipped with a common random-

ness, which allows them to time-share between deterministic

(M,n, ǫFA, ǫMD, ǫIE)–codes. As usual, the maximum coding

rate is defined as

R∗(n, ǫFA, ǫMD, ǫIE)

, sup

{
log2(M)

n
: ∃(M,n, ǫFA, ǫMD, ǫIE) –code

}
. (6)

III. NONASYMPTOTIC BOUNDS

A. Joint Detection and Decoding

In Theorem 1 below, we present a joint-detection-and-

decoding achievability bound that generalizes the ββ bound for

the case of genie-aided detection presented in [14, Th.1].

Theorem 1: Let PX be an arbitrary distribution on Xn, and

let PY be the corresponding output distribution. Fix an arbitrary

auxiliary distribution QY on Yn, and two parameters δ(1) ∈
[0, 1] and δ(2) ∈ [0, 1]. For all M ≤ 2/δ(2) + 1, there exists a

randomized (M,n, ǫFA, ǫMD, ǫIE)-code involving time sharing



between four deterministic codes, that satisfies

ǫFA ≤ δ(1) (7)

ǫMD ≤ αδ(1)(PY , PY |X=∅∅∅) (8)

ǫIE ≤ αδ(1)(PY , PY |X=∅∅∅)

+ 1− αM−1
2 δ(2)(PY , QY ) + αδ(2)(PXY , PXQY ).

(9)

Proof: See Appendix A.

Remark 1: Theorem 1 recovers the ββ achievability

bound [14, Th. 1] when genie-aided detection is considered and,

hence, PFA = PMD = 0. Furthermore, for the case of genie-

aided detection, by setting QY = PY and using the definition

of the Neyman-Pearson test, one recovers from Theorem 1 the

DT achievability bound [1, Th.17].

Next, we present a converse bound that draws inspiration

from the ββ converse bound introduced in [15, Th. 15] to char-

acterize the empirical output distribution of good channel codes.

Theorem 2: Let QY be an arbitrary distribution on Yn. Then,

every (M,n, ǫFA, ǫMD, ǫIE)–code satisfies

M≤ sup
PX

{
1− β1−ǫFA

(
PY |X=∅∅∅, QY

)

β1−ǫIE

(
PXPY |X , PXQY

)

×1
{
β1−ǫMD(PY , QY ) ≤ 1− β1−ǫFA

(
PY |X=∅∅∅, QY

)}}
.

(10)

Proof: See Appendix B.

Remark 2: By upper-bounding by one both the indicator

function and the numerator of the first term, we recover the

metaconverse bound [1, Th. 27]—a bound that in our setup

would depend only on ǫIE, and, hence, would not be able to

illustrate the impact of the FA and MD requirements on the size

of the codebook M .

B. Preamble-Based Detection

We next show how to adapt the achievability bound in Theo-

rem 1 and the converse bound in Theorem 2 to the case of sepa-

rate detection and decoding. Let X = [xp,Xd], where xp is a

deterministic preamble sequence of length np, and Xd ∼ PXd

on X d is the vector containing the remaining nd = n − np

information-carrying symbols. Furthermore, let Y = [Yp,Yd]
be the received signal upon transmission of X = [xp,Xd].
The decoder uses Yp to detect if a codeword is present, and if

so, decoding is performed over the remaining Yd symbols. In

this setup, packet detection involves a simple binary hypothesis

testing problem. Hence, the tradeoff between ǫFA and ǫMD can

be expressed as

ǫMD = αǫFA(PYp|Xp=xp
, PYp|Xp=∅∅∅). (11)

A bound on ǫIE can be obtained by following steps similar to the

ones reported in Appendix A. Specifically, one can show that for

an arbitrary QY and δ ∈ [0, 1], the following bound holds for

all M ≤ 2/δ + 1:

ǫIE ≤ ǫMD + (1− ǫMD)

×
[
1− αM−1

2 δ(PYd
, QYd

) + αδ(PXd,Yd
, PXd

QYd
)
]
. (12)

Here, PYd
denotes the output distribution induced by PXd

.

A converse bound on ǫIE for this scenario can be obtained

by a direct application of the metaconverse theorem [1, Th. 27].

Specifically, for every auxiliary distribution QYd
on Ynd , we

have that

M ≤ sup
PXd

1

β1−ǫIE

(
PXd

PYd|Xd
, PXd

QYd

) . (13)

IV. NUMERICAL RESULTS

A. Bounds for the Binary AWGN Channel

In this section, we discuss how to compute the bounds pre-

sented in Section III for the memoryless discrete-time binary-

input AWGN channel. For this channel, the input-output relation

is given by

Yk = Xk +Nk, k = 1, . . . , n. (14)

Here, Xk ∈ X = {−√
ρ, 0,

√
ρ}, where Xk = 0 indicates

that the transmitter is idle (in other words, ∅ = 0). The additive

noiseNk follows aN (0, 1) distribution; hence, ρ can be thought

of as the SNR at the receiver. It then follows that PY |X=x =
N (x, 1). Throughout this section, we consider as input distribu-

tion PX a product distribution PX(x) =
∏n

k=1 PX(xk) where

PX(−√
ρ) = p, PX(

√
ρ) = 1 − p, and PX(0) = 0, with

p ∈ [1/2, 1]. By adjusting p, we can enforce one of the two

nonzero symbols to occur more often in the codebook, which,

as we shall see, is beneficial from a detection perspective. As

auxiliary channel, we choose QY (y) =
∏n

k=1 PY (yk), where

PY = pN (−√
ρ, 1) + (1 − p)N (

√
ρ, 1) is the output distri-

bution induced by PX . To evaluate the achievability bound in

Theorem 1, we note that, for this choice of input distribution, we

have that QY = PY . We then use the Neyman-Pearson lemma

to evaluate the α functions in (7)–(9).

Evaluating the converse bound given in Theorem 2 for joint

detection and decoding is, however, numerically intractable.

Indeed, (10) involves an optimization over all possible input

distributions, which cannot be avoided due to the presence of the

induced output distribution PY in (10). One possible approach

to sidestep this issue is to upper-bound by one both the indicator

function in (10) and the numerator of the first term in (10).

The resulting bound

M≤ sup
PX

1

β1−ǫIE

(
PXPY |X , PXQY

) (15)

which, as already remarked, coincides with the metaconverse

bound [1, Th. 27], yields also a converse bound for the genie-

aided case. Note that this bound can be evaluated numerically if

we set p = 1/2 in QY . Indeed, for this choice one can invoke [1,

Lem. 29], and replace the β1−ǫIE

(
PXPY |X , PXQY

)
in the

denominator of (15) with β1−ǫIE

(
PY |X=x

, QY

)
, where x is an

arbitrary n-dimensional vector with entries in {−√
ρ,
√
ρ}. The

resulting bound is then independent of PX , and the maximiza-

tion can be omitted.

A different approach to assess, although in a weaker way,

the tightness of the achievability bound in Theorem 1 for our

choice of parameters, is to evaluate the converse bound in The-

orem 2 for the same input distribution PX chosen to evaluate



the achievability bound. The resulting converse bound should be

interpreted as a random-coding-ensemble converse. It provides

an upper bound on the number of codewords that are compatible

with the requirement that the FA, the MD, and the IE probabili-

ties, averaged over all random codebooks whose codewords are

drawn independently according to PX , do not exceed ǫFA, ǫMD,

and ǫIE, respectively.

To evaluate the preamble-based bounds (11), (12), and (13),

we set p = 1/2 and proceed similarly to the joint-detection-

and-decoding case. This time, the input and auxiliary output

distributions are defined on vectors of dimension nd.

To evaluate numerically the bounds discussed so far via the

Neyman-Pearson lemma, one needs to compute the following

three likelihood ratios:

ı(x;y) , log

(
dPY |X=x

dPY

)
(16)

(x;y) , log

(
dPY |X=x

dPY |X=∅∅∅

)
(17)

r(y) , log

(
dPY

dPY |X=∅∅∅

)
. (18)

For our choice of output distribution QY , these quantities can

be evaluated as follows:

ı(x,y) =

n∑

k=1

log

(
exkyk

pe−
√
ρyk + (1 − p)e

√
ρyk

)
(19)

r(y) = −nρ

2
+

n∑

k=1

log
(
pe−

√
ρyk + (1− p)e

√
ρyk

)
(20)

(x,y) = −nρ

2
+

n∑

k=1

xkyk. (21)

For example, (21) implies that (11) can be expressed in the

following parametric form: for every γ ∈ R, we have that

ǫFA = PYp|X=∅∅∅

[
np∑

i=1

xiYi ≥ γ +
npρ

2

]

= Q

(
γ +

npρ

2√
npρ

)
(22)

and

ǫMD = PYp|Xp=xp

[
np∑

i=1

xiYi < γ +
npρ

2

]

= 1−Q

(
γ − npρ

2√
npρ

)
. (23)

B. Numerical Results for the Binary AWGN Channel

In Fig. 1, we compare the maximum coding rate achievable

with joint detection and decoding and with preamble-based de-

tection followed by decoding, with the maximum coding rate

achievable with genie-aided detection. In our simulations, we

set ǫIE = 10−3, ǫMD = 10−4, ǫFA = 10−4, and consider three

different SNR values: ρ ∈ {0 dB, 3 dB, 6 dB}.

The achievability bound for joint detection and decoding

given by Theorem 1, and optimized over the choice of p is
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(c) ρ = 6 dB.

Fig. 1: Rate bounds for the binary AWGN with ǫIE = 10−3, ǫMD = 10−4,
and ǫFA = 10

−4 .

depicted with blue dashed lines, whereas we use green dashed

lines to indicate the achievability bound for the case of preamble-

based detection, obtained by evaluating (22), (23) and (12). This

bound is optimized over the choice of np. Furthermore, we

use red dashed lines to indicate an achievability bound for the

genie-aided-detection case. Specifically, we consider the DT

bound [1, Th. 17], evaluated for the input distribution described
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Fig. 2: Optimal value of the parameter p in the achievability bound provided in
Theorem 1 for joint detection and decoding. Here, ǫIE = 10−3, ǫMD = 10−4,
and ǫFA = 10−4.

in Section IV-A and p = 1/2.

On the converse side, we use blue solid lines to indicate the

ensemble-converse bound discussed in Section IV-A, optimized

over the choice of p. The converse bound for the preamble-

based detection, obtained by evaluating (22), (23), and (13) is

indicated by green solid lines. Finally, we use red solid lines to

indicate the metaconverse bound (15) for the genie-aided case.

We observe that the genie-aided-detection bounds approach

the joint detection and decoding bounds as the blocklength and

the SNR increase. In our numerical examples, this occurs when

n ≥ 190 for an SNR value of 0 dB, when n ≥ 70 for an

SNR value of 3 dB, and for n ≥ 20 for an SNR value of 6 dB.

On the contrary, the preamble-based strategy is suboptimal over

the entire range of blocklength values considered in the figure,

although the performance gap decreases as the SNR increases.

This is expected, since detection is simplified when the power

available for the transmission of the preamble increases (see (22)

and (23)), in which case a shorter preamble sequence suffices.

Thus, the penalty due to the transmission of the preamble de-

creases as the SNR and the blocklength grow.

In Fig. 2, we depict the value of p that maximizes the achiev-

ability bound given in Theorem 1 for the case of joint detection

and decoding, as a function of the blocklength, for the case

ρ = 0dB and ρ = 3dB. The other parameters are as in Fig. 1.

As illustrated in the figure, skewing the input distribution is

beneficial for blocklength values where detection is the per-

formance bottleneck. This corresponds to the range of block-

length values for which the joint detection and decoding scheme

performs strictly better than the preamble-based scheme, but

strictly worse than the genie-aided scheme. Note that by setting

p = 0.5, we obtain the capacity achieving input distribution,

which maximizes the coding rate in the large blocklength limit.

However, uniform inputs are not a good choice for detection

when packets are short. For example, in the scenario depicted

in Fig. 1a, by using uniform inputs, the achievable rate with joint

detection and decoding would be equal to zero until n = 190, to

then rapidly approach the genie-aided bound for slightly larger

blocklength values. As shown in the figure, higher rates can be

obtained for blocklengths smaller than 190 by optimizing p.

V. CONCLUSION

We have presented nonasymptotic bounds on the largest cod-

ing rate achievable in a frame-synchronous communication sys-

tem where the receiver has to decide on the presence of a packet

prior to decoding. The bounds, which rely on the ββ framework

introduced in [14], apply to the scenario where detection is

performed jointly with decoding over the entire data packet,

and to the scenario in which a dedicated preamble is used for

detection.

Numerical examples for the case of binary-input AWGN

channels indicate that in the short-packet regime, joint detection

and decoding yields significant gains in terms of maximum

coding rate over preamble-based detection followed by decod-

ing. Furthermore, there exists a range of blocklength values

for which departing from a uniform input distribution is benefi-

cial, since it facilitates detection. The tightness of the proposed

bounds in the error-exponent regime considered in [7], [9], [10]

remains to be investigated.

APPENDIX A

PROOF OF THEOREM 1

Fix a codebook {cm}Mm=1 and let Z(1)(y) and Z(2)(x,y)
denote the tests achieving αδ(1)(PY , PY |X=∅∅∅) and

αδ(2)(PX,Y , PXQY ), respectively. For a given received

signal y, the decoder evaluates Z(1)(y). If Z(1)(y) = 0, the

decoder declares the transmitter to be idle. If Z(1)(y) = 1, the

decoder declares the transmitter to be active and determines

the transmitted message as follows: it computes Z(2)(cm,y)
for all m = 1, . . . ,M and returns the smallest index m̃ for

which Z(2)(cm̃,y) = 1. If no such index is found, it declares a

decoding error. For this decoder, it follows that

ǫFA
(
{cm}Mm=1

)
= PY |X=∅∅∅[Z

(1)(Y ) = 1] (24)

ǫMD

(
{cm}Mm=1

)
=

1

M

M∑

m=1

PY |X=cm
[Z(1)(Y ) = 0] (25)

ǫIE
(
{cm}Mm=1

)
=

1

M

M∑

m=1

PY |X=cm

[
Z(1)(Y ) = 0 or

Z(2)(cm,Y ) = 0 or Z(2)(cm′ ,Y ) = 1,m′ < m

]
. (26)

We obtain (7) and (8) by averaging (24) and (25) over all random

codebooks {Cm}Mm=1 whose codewords are generated indepen-

dently from PX and by using the definition of the test Z(1)(y).
To obtain (9) by averaging (26) over {Cm}Mm=1, we proceed as

follows. We first apply the union bound on the probability of the

union of the three events on the right-hand side of (26) to obtain

three probability terms. The first term can be evaluated as

E{Cm}M

m=1

[
1

M

M∑

m=1

PY |X=Cm
[Z(1)(Y ) = 0]

]

= αδ(1)(PY , PY |X=∅∅∅). (27)



Similarly, the second term is given by

E{Cm}M

m=1

[
1

M

M∑

m=1

PY |X=Cm
[Z(2)(Cm,Y ) = 0]

]

= αδ(2)(PX,Y , PXQY ). (28)

To evaluate the third term, it is convenient to define a ran-

dom variable W uniformly distributed over the message set

[1, . . . ,M ], and to consider the randomized test Z(3)(y), which

returns 1 if Z(2)(cm,y) = 1 for some m < W . Then

E{Cm}M

m=1

[
1

M

M∑

m=1

PY |X=Cm
[Z(2)(Cm′ ,Y ) = 1,

m′ < m]

]
= PY [Z(3) = 1]. (29)

Now note that

PY [Z(3(Y ) = 1] = 1− PY [Z(3(Y ) = 0]

≤ 1− αQY [Z(3)(Y )=1](PY , QY ). (30)

Furthermore,

QY [Z(3(Y ) = 1] ≤ 1

M

M∑

j=1

(j − 1)PXQY [Z(2)(X,Y ) = 1]

=
M − 1

2
δ(2). (31)

Since the function αβ is nonincreasing in β, we conclude that

PY [Z(3)(Y ) = 1] ≤ 1− αM−1
2 δ(2)(PY , QY ). (32)

The desired result follows by substituting (32) into (29), and

then by combining (27), (28), and (29). To conclude the

proof, we proceed similarly to [17, Th. 19], and note that, by

Caratheodory’s theorem (see e.g. [18, Th. 15.3.5]), there exists

a randomized code that achieves simultaneously (7)–(9) and

involves time-sharing between four deterministic codes.

APPENDIX B

PROOF OF THEOREM 2

Fix a coding scheme and let PX be the distribution on Xn

induced by the encoder when the messages are uniform. Let

PY be the corresponding output distribution. Finally, denote by

R0,R1, . . . ,RM the decoding regions. Note that, by assump-

tion, we have that

PY [Y /∈ R0] ≥ 1− ǫMD (33)

PY |X=∅∅∅[Y ∈ R0] ≥ 1− ǫFA. (34)

Let now Z(x,y) = 1{Ŵ = W,y /∈ R0} where Ŵ denotes

the estimated message by the decoder when the transmitted

message is W . Note that

PX,Y [Z(X,Y ) = 1] = PX,Y [Ŵ = W ] ≥ 1− ǫIE. (35)

Furthermore, we also have that

PXQY [Z(X,Y ) = 1] ≤ QY [Y /∈ R0]

M
. (36)

It then follows that

β1−ǫIE(PX,Y , PXQY ) ≤ QY [Y /∈ R0]

M
. (37)

Note finally that

β1−ǫMD(PY , QY ) ≤ QY [Y /∈ R0]

= 1−QY [Y ∈ R0]

≤ 1− β1−ǫFA(PY |X=∅∅∅, QY ). (38)

We obtain the desired bound by using (38) in (37) to remove

the dependence on R0, and by maximizing over PX , to obtain

a bound that is valid for every code.
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