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ABSTRACT

Prediction rule ensembles (PRE) provide interpretable prediction models with relatively high accuracy.
PRE obtain a large set of decision rules from a (boosted) decision tree ensemble, and achieves sparsity
through application of Lasso-penalized regression. This article examines the use of surrogate models
to improve performance of PRE, wherein the Lasso regression is trained with the help of a massive
dataset generated by the (boosted) decision tree ensemble. This use of model-based data generation
may improve the stability and consistency of the Lasso step, thus leading to improved overall
performance. We propose two surrogacy approaches, and evaluate them on simulated and existing
datasets, in terms of sparsity and predictive accuracy. The results indicate that the use of surrogacy
models can substantially improve the sparsity of PRE, while retaining predictive accuracy, especially
through the use of a nested surrogacy approach.

1 Introduction

The tradeoff between a model’s interpretability and its prediction accuracy is a major issue in the field of statistical
learning [26]. When facing this tradeoff, modellers aiming to obtain an interpretable prediction model typically have
two options [11]: The first option involves the fitting of a highly accurate black-box model, which is then interpreted
using a so-called surrogate model, which mimics the black-box model using a simpler, easier to interpret model
such as a decision tree [3]. The second option involves the use of a more interpretable model to begin with, such as
logistic regression. Unfortunately, these approaches do not fully resolve the accuracy-interpretability tradeoff. With the
surrogacy approach, higher fidelity to the black box model can come at the cost of higher complexity, and thus lowered
interpretability [19]. Using a more interpretable model, on the other hand, generally leads to lower accuracy than what
is typically obtained using black box models [26].

Prediction Rule Ensemble (PRE) algorithms like RuleFit [9], Node harvest [18], and C4.5 [21] provide promising
interpretable statistical learning methods, in which an initial rule ensemble is obtained from the nodes of a decision tree
ensemble, and from which a smaller subset of prediction rules are selected. In the current paper, we will focus on the
RuleFit algorithm, which employs tree boosting to obtain an initial ensemble, whose prediction rules are then selected
and weighed using the Lasso [24]. More specifically, we focus on the R implementation of [6]. The RuleFit procedure
tends to result in slightly lower prediction accuracy than that of methods such as random forests and boosting, while the
resulting model is considerably easier to interpret [9, 22, 6].

Although PRE use a simplification of a black-box model (boosting), it is typically approached as an interpretable
statistical learning model, rather than as a surrogate model. Yet since it shares important attributes with surrogate models,
it might benefit from a consideration of the surrogacy approach. A common surrogacy approach is the pedagogical
approach [11, 19], in which a large dataset is generated based on the distributions of the training dataset’s features,
combined with the predictions given by the black box model (known as the Oracle). The resulting dataset is then
typically used to train a decision tree whose inherent instability is mitigated by the large volume of generated data.
Similarly, when building PRE, the Boosting model could be used as an Oracle that generates a large volume of data,
which might improve the stability and consistency of the Lasso rule-selection step.
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1.1 Surrogacy within PRE

The high interpretability of PRE is due to its sparsity, which is obtained by using the Lasso to select from the rules
generated by the Boosting model. However, the Lasso comes with disadvantages that could harm the performance of
PRE. According to the ‘No-free-lunch Theorem’ of Xu, Caramanis, and Mannor [25], algorithms that identify and
remove redundant features are more sensitive to random variations in the training data, making them unstable. Xu,
Caramanis, and Mannor have shown that the Lasso indeed suffers from this trade-off between sparsity and stability,
such that its sparsity comes at the cost of instability. The Lasso’s cross-validation (CV) procedure is an additional
source of algorithmic instability, due to variability inherent to its resampling procedure [17]. Furthermore, Ali and
Tibshirani ([1]; see also [24]) have shown that if the number of features (P ) is bigger than the size of the training sample
(N ), and not all features are continuous, then the Lasso may not have a unique optimal solution, making the Lasso
inconsistent. The Lasso’s instability and inconsistency are expected to decrease the performance of PRE, unless the
training dataset is large enough to mitigate the Lasso’s inherent instability, and to solve the Lasso’s inconsistency by
having N that is larger than the number of Boosting rules (which often ranges in the thousands). In other words, the
Lasso’s disadvantages will more strongly harm PRE when small datasets are used for model fitting.

Taking a surrogacy-like data-generation approach within PRE, in which the Boosting model is used as a prediction-
generating Oracle, could help mitigate the Lasso’s disadvantages when using small datasets. First, in cases where
N < P (where P is the number of Boosting rules), the Lasso’s inconsistency should be resolved by a sufficiently
large generated dataset of size NGen. Second, by generating a dataset with large NGen, the instability attributable to
the CV’s resampling should be reduced. Third, a large NGen should also mitigate the instability attributable to the
Lasso’s sparsity. In addition, since the relationship between the generated dataset’s features and the Boosting model’s
predictions is noiseless and deterministic, the Lasso’s instability could be further reduced. As such, the implementation
of the proposed surrogate Lasso within PRE should result in more stable and consistent models, whose predictions
closely mimic the Boosting model’s predictions.

While the use of the surrogate Lasso is expected to mitigate the regular Lasso’s inconsistency and instability, this will
likely come at a cost. The typical data generation method (see implementation details in Section 5.1) leads to the
loss of the features’ joint distribution, which results in an artificial decorrelation of the rules. While this decorrelation
of rules could further stabilise the surrogate Lasso [10, 5], it may also come at the cost of increased complexity, as
highly-correlated rules could be more likely to be maintained than otherwise. Furthermore, the mere increase in NGen

could result in more rules being kept by the surrogate Lasso, even if their added predictive value is minimal [24]. Lastly,
the Boosting model is not designed for variable selection [8], and thus its predictions are expected to be influenced by
noise variables. This implies that a surrogate Lasso, which mimics the Boosting model, may be less likely to exclude
noise variables than the regular Lasso. As such, while the surrogate Lasso is expected to be more consistent and stable
than the regular Lasso, this is likely to come at the cost of greater model complexity, and more frequent inclusion of
noise variables.

Although the surrogate Lasso may be more likely to include noise variables and unnecessary rules than the regular Lasso,
its rule-selection step should still possess desirable properties, potentially making it useful for a nested rule-selection
procedure. This is because the surrogate Lasso’s large NGen should make it well-suited for detecting useful rules,
assuming that the Boosting model makes high-quality predictions. Yet, as mentioned before, the surrogate Lasso is
expected to be sensitive to the Boosting model’s reliance on noise variables. Thus, the surrogate Lasso should show
high sensitivity to useful rules, while lacking specificity when it comes to redundant rules. However, its specificity
might still be high enough to filter out many of the redundant Boosting rules, while its high sensitivity should allow it to
keep most useful rules. Thus, the surrogate Lasso might select a set of rules which is significantly smaller than the
number of Boosting rules, at a minimal cost to the inclusion of potentially useful rules. Making it a potentially useful
first selection step in a nested, two-step selection procedure.

In the proposed nested procedure, a Lasso model will use the original training dataset to select from the rules kept by
the surrogate Lasso. In comparison to the surrogate Lasso, the nested Lasso should better account for the features’
joint distribution, be less sensitive to the Boosting model’s reliance on noise variables, and its sparsity should be less
dependent on NGen. Furthermore, if the surrogate Lasso is allowed to pick no more rules than the original dataset’s N ,
then the nested Lasso will be consistent in the sense that it should reach its optimal solution given the data. In addition,
by selecting from fewer rules than the regular Lasso, the instability brought by the Lasso’s sparsity and cross-validation
resampling might be partially mitigated, as algorithmic instability is worsened in increasingly high-dimensional settings
[17]. Thus, the nested Lasso might be more stable and consistent than the regular Lasso, without the surrogate Lasso’s
increased complexity and reliance on noise variables.
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1.2 Current study

This study’s main research question is whether the inner surrogacy approach can improve the performance of PRE.
More specifically, since the Lasso’s inconsistency and instability are assumed to harm the regular Lasso’s performance,
we hypothesize that the two surrogacy-based Lasso approaches yield improved performance compared to the regular
approach. Ideally, this would translate into improved predictive accuracy. Furthermore, greater stability should result
in improved rule selection [17], such that the rules selected by the nested Lasso might be of higher quality and lower
quantity than those selected by the regular Lasso. In what follows, we will first describe the proposed surrogacy
implementations for PRE, after which we empirically evaluate and compare their predictive accuracy, rule quality and
sparsity.

2 Proposed algorithms

2.1 Data generation for surrogacy models

This algorithm is inspired by Craven and Shavlik’s [3] data generation procedure: Given a set of features, data generation
will be performed by resampling each feature, independently of all other features, into a pre-specified number of rows,
and then binding all the resulting columns together. This maintains each feature’s marginal distribution, yet loses the
features’ joint distribution. Following that, only unique rows will be maintained, in order to improve the ratio between
the dataset’s information and the resulting NGen. Lastly, a pre-specified Oracle will be used to generate a prediction per
row, resulting in a generated dataset that is suitable for model fitting.

2.2 Rule generation

Based on the PRE algorithm [9, 6], a Boosting model will be fitted on a training dataset. The building blocks of the
Boosting model are decision trees, which represent a recursive binary decision-making process [2]. PRE’s default
Boosting model additively builds 500 Conditional Inference Trees (ctrees; [12]) with maximal depth of 3, and α = .05,
using the partykit’s package ctree function [13].

The Boosting algorithm additively builds a stable model from simple base learners which are highly biased alone, yet
can be combined to make predictions with low bias [2]. Ctrees with maximal depth of 3 fit this purpose, and make
the resulting rules simple enough to be interpretable as parts of an ensemble. The algorithm implemented employs a
gradient Boosting approach, in which ctrees are trained on pseudo response ỹb, which is based on outcome variable
y and the base learners trained in previous iterations. With a continuous outcome, the pseudo response in iteration b
(b = 1, . . . , 500) is given by:

ỹb = y −
b−1∑
m=1

ν × fm(X) (1)

where ν > 0 is the user-specified learning rate which determines each tree’s influence (ν = 0.01 by default), and
fm(X) is the prediction made by tree m (m = 1, . . . , b− 1) given feature set X . This amounts to the gradient boosting
algorithm of Friedman ([7]; Algorithm 1), but omitting the line search (cf. [2]; section 2.2). For binary classification, a
Newton (instead of gradient) boosting approach is employed [23, 6].

PRE employs a stochastic Boosting approach [8] in which each tree is grown on a subsample of 50% of the training
data, which tends to lower the number of Boosting rules and reduce the prevalence of redundant rules [4]. Yet despite
the higher prevalence of redundant rules, our initial experiments suggested that bootstrapping improves the Boosting
model’s predictive accuracy on test observations. Since the Boosting model is used as an Oracle, making its prediction
accuracy particularly important, it will always be trained using the bootstrap.

2.3 Rule selection

Once the Boosting algorithm is complete, all the fitted trees’ decision nodes will be used to form an ensemble of rules.
From this ensemble, only unique rules and rules that are not collinear with previous rules will be kept. Furthermore,
linear terms will be added in order to ease the approximation of linear relationships, and continuous features will be
winsorized at the .025 and .975 quantiles [9, 6]. When used as linear terms, features will be divided by their standard
deviation, and then multiplied by 0.4, in order to avoid being penalized by the Lasso for having lower variance than
most rules [9, 6]. No further standardization or normalization will be needed for the Lasso. The Lasso will take
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the Boosting model’s rules as a set of dummy variables, alongside the aforementioned linear terms. It will then use
penalized regression to select rules and linear terms from the feature set. This will be done using 5-fold cross-validation
to find an optimal shrinkage parameter λ, which controls the number of terms maintained, and the magnitude of their
associated slopes. The actual λ, picked to create the final model will be the highest λ, value whose loss is no more
than 1 standard error away from the minimal loss. The regression terms maintained by the Lasso will then be used
as a sparse and interpretable prediction model. Note that 5-fold CV will be used, instead of the default 10, to reduce
computational demands.

We will examine three variations on the Lasso algorithm:

• The regular Lasso, which will take the Boosting model’s rules and the linear terms as features set, and then use
the training data to select a sparser model.

• The surrogate Lasso, which will take the same starting feature set as the regular Lasso, while using a generated
dataset in order to select a sparser model (using 3-fold CV to reduce computational burden). This will be
extended into a 2nd-level surrogate Lasso, which will use a new dataset generated in the same manner as
before to select from the features kept by the 1st-level surrogate Lasso. Our initial work showed that this
2nd-level surrogate Lasso leads to reduced model complexity, at no cost to accuracy.

• The nested Lasso will use the same training data as the regular Lasso, yet will use a 5-fold CV only to select
from the rules kept by the 1st-level surrogate Lasso. Initial experiments suggested that 3-step selection, as
opposed to 2, only adds computational load, at no benefit to accuracy or sparsity.

3 Empirical evaluation

3.1 Datasets

The experiments will rely on 5 datasets, 3 of which have been previously used for evaluating PRE [6]. These datasets
will only include regression and binary classification problems. All datasets, except the life expectancy dataset, come
from R’s mlbench package [15], and are described in more detail below.

Wisconsin Breast Cancer dataset: This dataset will be used for binary classification, and also for regression with
a simulated outcome variable. In the original dataset, 9 continuous features are used to predict whether a patient’s
cancer is benign or malignant. These same features will also be used as predictors when simulating a continuous
outcome which is a linear function of several features (See experimental details in Section 4.1). The dataset includes
683 observations after exclusion of rows with missing values.

Johns Hopkins University Ionosphere dataset: This dataset will be used for binary classification. It contains
one binary feature, and 32 continuous features, which are used to predict the type of high-energy structures in the
atmosphere, which have been simplified into two categories: good or bad. The dataset contains 351 observations.

Metal vs. Rock dataset: This dataset will be used for binary classification. It contains 60 continuous features which
are used to predict whether a material is rock or metal. This dataset will also be used for regression, where 59 of
its continuous features will be used to predict the values of a randomly-selected feature. The dataset includes 208
observations.

Boston Housing dataset: This dataset will be used for regression. It contains one binary feature, and 12 continuous
features, which are used to predict a house’s price. The dataset includes 506 observations.

Life expectancy dataset: This dataset was obtained via Kaggle, and contains 1 categorical predictor, and 19 continu-
ous predictors, which are used to predict a country’s life expectancy at a given year. Note that the country was excluded
as a predictor, in order to ensure the model can predict life expectancy in countries that did not appear in the training set.
After omitting rows with empty values, the dataset included 1649 observations.

3.2 Performance indicators

For each experiment’s results, confidence intervals will be based on the distribution of paired-samples differences,
where mean differences (D̄) are assessed as
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1

N

N∑
i=1

(yi1 − yi2) (2)

where i reflects the experimental iteration, N reflects the number of iterations, and yi1 reflects the value of interest
of method 1 (and yi2 of method 2). Thus, the variance of the differences distribution will be assessed as var(Y1) +

var(Y2)− 2cov(Y1, Y2), leading to the standard error of differences being
√

var(D̄)
N .

Differences will be treated as statistically significant if their 95% confidence intervals exclude 0, or, when confidence
intervals are not available, if the associated two-tailed p-value is lower than .05. Iterations in which one of the Lassos
creates an intercept-only model will be excluded to facilitate comparability.

Test set accuracy: In the regression case, test accuracy will be assessed as mean squared difference (MSE) between
predicted test set values, and true test values. In the classification case, test accuracy will be evaluated as the correct
classification rate (CCR) given the predicted test set class labels, and the true test set class labels.

Model complexity: Will be measured as the number of terms maintained by each model, with more terms resulting
in higher complexity.

Quality of parameters: When the outcome is not simulated using a known function, the quality of selected terms
will only be calculated as a function of model accuracy, and model complexity. In the regression case, this is measured
as ESS

T , where ESS refers to the model’s explained sum of squares on the test outcome and T refers to the number of
selected terms. As such, this quantity reflects how ESS increases, on average, per term. In the binary classification case,
the quality of selected terms is measured as CCR

T , which reflects the correct classification rate increment, on average,
per term.

When the outcome is simulated from a known function, the quality of selected terms will also be estimated as the
correlation between features’ standardized model importances (see [6, 9]) and the slopes assigned to them as part of
the simulation. Furthermore, true and false positive rates will be calculated to assess the quality of variable selection.
True positive rates will be estimated as the intersection between the variables utilized by PRE and the variables used to
generate the outcome of the simulation algorithm. False positive rates will be estimated as the intersection between the
variables utilized by PRE and the variables not used to generate the outcome of the simulation algorithm.

Model stability: will be assessed in terms of the stability of feature selection, and will be estimated using Nogueira’s
Index [20] which ranges from -1 to 1, with higher values suggestive of higher stability of feature selection. These values
will be reported in the Appendix.

Computational load: total computation time in seconds will be calculated for each procedure, and will be reported
in the Appendix. Note that since the experiments will be performed on different computers, computation times should
be compared within experiments, but not between experiments.

4 Experiments

Unless otherwise specified, the upcoming experiments share the following characteristics: 1) whenever data generation
is used, NGen = 10, 000, 2) only real data are used, with the dataset’s originally intended outcome variable, 3) PRE are
run with regular Lasso, surrogate Lasso, and nested Lasso, and 4) the experiment is iterated 200 times, each iteration
involving random division of the dataset into a training dataset and a testing dataset of equal size. The results of all
iterations will then be analyzed together.

4.1 Experiment 1: simulated linear relationship using the Breast Cancer dataset

In this experiment, outcome variable Y will be simulated using the dataset’s 9 continuous features. In each simulation,
3 features will be randomly selected to relate to Y in accordance to

Y =

3∑
k=1

Bk ×Xk + ε (3)
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where the influence (Bk) of each of the selected features (Xk) on the outcome variable will be determined by a uniform
distribution U(0.5, 2.0), multiplied by a random variable which takes values {-1, 1} according to a binomial distribution
in which each sign is equally likely to be picked. In addition, noise (ε) will be independently generated from a normal
distribution N (0, 25).

After generating Y , the dataset’s observations will be split into halves, a test set, and a training set on which the Boosting
model will be fit. The Lasso models will then utilize the Boosting model’s decision rules in their rule-selection step(s),
but will not use linear terms for each feature, as PRE are known to struggle when modelling linear relations without
linear terms [9]. As such, the linear relationship is a modeling challenge for PRE when only prediction rules are used.

Since the function responsible for the outcome is known, quality of terms will also be assessed in terms of correlation
between features’ standardized model importances and the slopes assigned to them as part of the simulation. As a
secondary measure of quality of terms, true and false positive rates of variable selection will also be assessed, instead
of variable selection stability. Aside from these clarifications, the measurements will be the same as described above
(Section 3.2).

All 200 iterations converged without issues. Means and standard deviations of accuracy MSE, number of terms, and
average accuracy ESS increment per term are depicted in Table 2. The distributions of accuracy MSE and number of
terms are shown, per method, in Figure 1. The regular Lasso had the highest accuracy MSE, which was statistically
distinguishable from the nested Lasso (95% CI [0.23-0.53]), which itself had higher accuracy MSE than the surrogate
Lasso (95% CI [1.28-1.68]). When it came to the number of terms, the regular and nested Lassos were statistically
indistinguishable, and their ESS increment per variable was similarly indistinguishable.

Table 1: Summary of results for simulated linear relationships based on the Breast Cancer dataset. Values represent
means over 200 iterations (standard deviations in parentheses). In each column, the result of the best performing method
(excluding boosting) is printed in bold.

Procedure Accuracy MSE Terms Accuracy ESS per term
Boosting 27.08 (2.08) 613 (167) NA
Regular Lasso 28.98 (2.40) 22.63 (9.21) 514.91 (348.17)
Surrogate Lasso 27.11 (2.07) 127.74 (26.99) 105.65 (90.20)
Nested Lasso 28.60 (2.45) 23.16 (7.92) 518.64 (378.66)

Figure 1: Boxplots of the distributions of accuracy MSE, and number of terms, per Lasso type. Notches represent the
interval covered by 1.58× IQR√

N
, with IQR referring to the interquartile range.
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4.2 Experiment 2: Boston Housing data (regression)

All 200 iterations worked without issues. Results are presented in Table 3. The surrogate and regular Lasso did
not significantly differ in accuracy, yet both had lower accuracy MSE than the nested Lasso. For example, the 95%
confidence interval of the differences between the regular and nested Lassos’ was 0.146 to 0.694. Furthermore, the
regular Lasso had significantly more terms than the nested Lasso (95% CI [13-17.83]). As such, the nested Lasso had
greater accuracy ESS increment per term than the regular Lasso (95% CI [56.05-78.49]). The distributions of accuracy
MSE and number of terms are shown, per method, in Figure 2.

Table 2: Summary of results based on the Boston Housing dataset. Values represent means over 200 iterations (standard
deviations in parentheses). In each column, the result of the best performing method (excluding boosting) is printed in
bold.

Procedure Accuracy MSE Terms Accuracy ESS per term
Boosting 14.39 (3.18) 1867 (97) NA
Regular Lasso 15.06 (3.72) 67.02 (17.69) 279.43 (79.47)
Surrogate Lasso 14.96 (3.14) 235.87 (7.74) 74.21 (7.71)
Nested Lasso 15.48 (3.69) 51.61 (8.93) 346.7 (70.18)

Figure 2: Boxplots of the distributions of accuracy MSE, and number of terms, per Lasso type. Notches represent the
interval covered by1.58× IQR√

N
, with IQR denoting interquartile range.

4.3 Experiment 3: Metal vs Rock dataset (regression)

A total of 198 out of 200 iterations worked without issues; 2 iterations involved intercept-only models, and were thus
excluded. Means and standard deviations of accuracy MSE, number of terms, and average accuracy ESS per term are
depicted in Table 4. The nested and regular Lassos had statistically indistinguishable accuracy, while the surrogate
Lasso had significantly lower accuracy MSE than both. For example, the 95% CIs of the MSE differences between
the nested and surrogate Lassos ranged from .0005 to .0007. The regular Lasso had significantly more terms than the
nested Lasso (95% CI [21.09-25.53]). As a result, the nested Lasso had greater accuracy ESS increment per term than
the regular Lasso (95% CI [.0386-.0523]). The distributions of accuracy MSE and number of terms are shown, per
method, in Figure 3.
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Table 3: Summary of results based on the Metal vs Rock dataset. Values represent means over 198 iterations (standard
deviations in parentheses). In each column, the result of the best performing method (excluding boosting) is printed in
bold.

Procedure Accuracy MSE Terms Accuracy ESS per term
Boosting .00452 (.0034) 1054 (268) NA
Regular Lasso .00539 (.004) 49.76 (17.43) .0484 (.046)
Surrogate Lasso .00480 (.0036) 93.77 (6.93) .0294 (.027)
Nested Lasso .00538 (.004) 26.45 (6.73) .0938 (.086)

Figure 3: Boxplots of the distributions of accuracy MSE, and number of terms, per Lasso type. Notches represent the
interval covered by1.58× IQR√

N
, with IQR denoting interquartile range.

4.4 Experiment 4: Life Expectancy dataset (regression)

All iterations worked without issues. Means and standard deviations of accuracy MSE, number of terms, and average
accuracy ESS per term are depicted in Table 5. The regular Lasso had the lowest MSE, followed by the nested Lasso’s
MSE (95% CI [0.30-0.24]), which itself was lower than the surrogate Lasso’s MSE (95% CI [1.11-1.21]). Whereas
the regular Lasso had significantly more terms than the nested Lasso (95% CI [18.56-21.83]). Consequently, the
nested Lasso had greater ESS increment per term than the regular Lasso (95% CI [93.21-109.33]). The distributions of
accuracy MSE and number of terms are shown, per method, in Figure 4.

Table 4: Summary of results based on the Life Expectancy dataset. Values represent means over 200 iterations (standard
deviations in parentheses). In each column, the result of the best performing method (excluding boosting) is printed in
bold.

Procedure Accuracy MSE Terms Accuracy ESS per term
Boosting 6.32 (0.43) 3188 (93.15) NA
Regular Lasso 5.33 (0.41) 118.31 (11.65) 507.57 (52.5)
Surrogate Lasso 6.76 (0.47) 636.83 (36.33) 91.81 (5.70)
Nested Lasso 5.60 (0.42) 98.10 (9.08) 608.83 (56.21)
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Figure 4: Boxplots of the distributions of accuracy MSE, and number of terms, per Lasso type. Notches represent the
interval covered by1.58× IQR√

N
, with IQR denoting interquartile range.

4.5 Experiment 5: Breast Cancer dataset (classification)

All 200 iterations worked without issues. Means and standard deviations of accuracy CCR, number of terms, and
average accuracy CCR increment per term are depicted in Table 5. The regular and surrogate Lassos CCR’s were
statistically indistinguishable, while the nested Lasso had significantly higher accuracy CCR than both. For example,
the 95% confidence intervals of the differences between the nested and regular Lassos ranged from .0001 to .0014. No
statistically significant differences were observed between the nested and regular Lassos’ numbers of terms, nor in the
accuracy CCR increment per term. The distributions of accuracy CCR and number of terms are shown, per method, in
Figure 5.

Table 5: Summary of results based on the Breast Cancer dataset. Values represent means over 200 iterations (standard
deviations in parentheses). In each column, the result of the best performing method (excluding boosting) is printed in
bold.

Procedure Accuracy CCR Terms Accuracy CCR per term
Boosting .9638 (.0083) 1186 (136) NA
Regular Lasso .9633 (.0084) 15.57 (3.04) .064 (.013)
Surrogate Lasso .9631 (.0084) 162.41 (28.94) .006 (.001)
Nested Lasso .9640 (.0078) 15.26 (2.91) .066 (.013)
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Figure 5: Boxplots of the distributions of accuracy CCR, and number of terms, per Lasso type. Notches represent the
interval covered by1.58× IQR√

N
, with IQR denoting interquartile range.

4.6 Experiment 6: Ionosphere dataset (classification)

All 200 iterations worked without errors. Means and standard deviations of accuracy CCR, number of terms, and
average accuracy CCR increment per term are depicted in Table 7. The only statistically significant difference in test
accuracy was between the regular and surrogate Lassos, with the regular Lasso having slightly higher accuracy CCR
(95% CI [.002-.007]). The regular Lasso had significantly more terms than the nested Lasso (95% CI [2.51-3.86]).
Consequently, the nested Lasso had higher accuracy CCR increment per term (95% CI [.006-.010]). The distributions
of accuracy CCR and number of terms are shown, per method, in Figure 6.

Table 6: Summary of results based on the Ionosphere dataset. Values represent means over 200 iterations (standard
deviations in parentheses). In each column, the result of the best performing method (excluding boosting) is printed in
bold.

Procedure Accuracy CCR Terms Accuracy CCR per term
Boosting .915 (.02) 1202.51 (131) NA
Regular Lasso .918 (.022) 19.62 (4.79) .05 (.058)
Surrogate Lasso .914 (.021) 161.56 (6.18) .006 (.0002)
Nested Lasso .917 (.022) 16.43 (3.17) .058 (.013)
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Figure 6: Boxplots of the distributions of accuracy CCR, and number of terms, per Lasso type. Notches represent the
interval covered by1.58× IQR√

N
, with IQR denoting interquartile range.

4.7 Experiment 7: Metal vs Rock (Classification)

All 200 iterations worked without issues. Means and standard deviations of accuracy CCR, number of terms, and
average accuracy CCR increment per term are depicted in Table 8. The regular Lasso had the highest test accuracy,
while the surrogate and nested Lassos did not significantly differ from each other. For example, the 95% confidence
interval of the differences between the regular and nested Lassos accuracy CCR ranged from .006 to .016. The regular
Lasso also had a greater number of terms than the nested Lasso (95% CI [8.33-9.90]), and thus the nested Lasso had
higher CCR increment per term (95% CI [.0104-.0128]). The distributions of accuracy CCR and number of terms are
shown, per method, in Figure 7.

Table 7: Summary of results based on the Metal vs Rock dataset. Values represent means over 200 iterations (standard
deviations in parentheses). In each column, the result of the best performing method (excluding boosting) is printed in
bold.

Procedure Accuracy CCR Terms Accuracy CCR per term
Boosting .779 (.038) 1468 (189) NA
Regular Lasso .774 (.042) 29.32 (5.86) .027 (.0057)
Surrogate Lasso .762 (.035) 100.41 (4.97) .008 (.0005)
Nested Lasso .763 (.044) 20.17 (3.67) .039 (.0076)
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Figure 7: Boxplots of the distributions of accuracy CCR, and number of terms, per Lasso type. Notches represent the
interval covered by1.58× IQR√

N
, with IQR denoting interquartile range.

5 Discussion

This study set out to assess whether model-based data-generation would improve the performance of PRE. Neither the
surrogate nor the nested Lassos consistently resulted in improved, nor reduced accuracy compared to the regular Lasso.
Yet the nested Lasso reliably produced simpler models, resulting in improved quality of terms.

The surrogate Lasso often resulted in accuracy improvements in the regression problems, compared with the other
Lasso approaches. With the exception of experiment 4, in which the boosting model, which was mimicked by the
surrogate Lasso, was less accurate than PRE with regular/nested Lasso. Unexpectedly, the surrogate Lasso did slightly
worse than the other Lassos across the classification problems, regardless of the boosting model’s relative accuracy. One
might speculate that this was because the surrogate PRE was the only approach in which the Lasso step solely relied on
the logit values predicted by the Boosting model. However, attempts to use class predictions instead of logit values
did not lead to improvements in accuracy. In addition the surrogate Lasso consistently yielded much more terms than
the other Lassos, leading to lower overall quality of terms across all the prediction tasks. Given these indicators, the
surrogate Lasso can only be recommended in regression cases, if the Boosting model performs well, and computational
efficiency and model complexity are not of major concern.

The nested Lasso resulted in considerable and reliable improvements in model simplicity and the quality of terms,
without consistent costs to accuracy compared to the regular Lasso. Furthermore, we found no evidence that the nested
approach harmed the validity of variable importance measures, as seen in the high correlations observed between
variable importances and assigned slopes in experiment 1. However, it should be noted that the nested Lassos’ increased
algorithmic dependence on the Boosting model implies that the nested Lasso might be harmed by relatively poor
performance by the Boosting model, as seen in experiment 4. Given these results, the nested Lasso is recommended in
cases where model simplicity is valued, PRE’s Boosting step performs well, and the increased computational demands
are tolerable.

5.1 Limitations and future work

Algorithmic stability and consistency were hypothesized to improve under the surrogacy-based Lasso approaches,
but were not directly assessed, and thus their effects could not be quantified. There is a need to further examine the
mechanism for, and the conditions under which improved accuracy can be expected from the surrogate Lasso, and
improved simplicity can be expected from the nested Lasso. Further understanding of these mechanisms would be
particularly useful given the potential to use model-based data-generation alongside alternative Lasso algorithms,
which were designed to improve the Lasso’s stability, or its consistency. For example, [17] proposed a more stable
Lasso algorithm for regression problems, which, similarly to the nested Lasso, resulted in greater simplicity and better
terms, at no cost to accuracy. Furthermore, [16] alternative Lasso algorithm for regression problems was shown to be
significantly more consistent than the standard Lasso when N < P , which resulted in higher sensitivity in variable
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selection. Thus, future work could be aimed at comparing alternative Lasso algorithms to the surrogate and nested
Lassos, and even at combining the algorithms in an attempt to improve the performance of PRE.

It should be noted that the results reported here are unlikely to represent the optimal outcomes achievable by the
different approaches. Modeling parameters such as the Boosting model’s learning rate, the size of the generated datasets,
and the Lasso’s λ could have been more fine-tuned for each case, which would likely have led to improved performance.
Furthermore, data-generation methods producing fewer unjustifiable counterfactuals - synthetic data that are unlikely
to occur - could have done better work than the simple data-generation algorithm we employed [14]. However, the
purpose of this article was to be a starting point for the examination of model-based data generation in the context of
PRE, and to compare the different approaches under similar conditions, rather than maximize performance in each case.

Lastly, the model-based data generation procedures in this paper only relied on Boosting models. Although the
pedagogical surrogacy approach taken here should be model-agnostic [11], some models might still be more difficult to
mimic than others. However, the strength of the pedagogical approach is that, in theory, every model can be mimicked
given a large enough generated dataset. Thus, while it would be beneficial to assess the different Lasso approaches
given a greater variety of data-generators, this goes beyond the scope of this paper, which aimed to provide a first
assessment of the usefulness of using simple model-based data generation within PRE.

5.2 Conclusion

This study showed that model-based data generation can indeed improve the performance of PRE. The surrogate Lasso
can provide improved regression accuracy, at a cost of increased complexity and computational demands. Whereas the
nested Lasso should lead to lower complexity, at minimal costs to accuracy, thereby easing the accuracy-interpretability
tradeoff at the cost of greater computational demands. Given these findings, model-based data generation seems to be a
promising approach to improve PRE’s interpretability, or in some cases its accuracy, which would benefit from further
study and refinement.
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Appendix

Table 8: Average computation time, and variable selection stability of PREs. In each row, the result of the best
performing method is printed in bold.

Source Regular PRE PRE with surrogate Lasso PRE with nested Lasso
Computation time
Exp. 1, Simulation 7.44 12.90 11.96
Exp. 2, Boston Housing 19.52 40.38 34.82
Exp. 3, Metal vs. Rock 43.09 57.11 53.00
Exp. 4, Breast Cancer* 18.57 33.87 29.66
Exp. 5, Ionosphere* 35.37 52.67 47.73
Exp. 6, Metal vs. Rock* 29.36 38.5 35.89

Variable selection stability
Exp. 1, Simulation NA NA NA
Exp. 2, Boston Housing .75 .84 .71
Exp. 3, Metal vs. Rock NA NA NA
Exp. 4, Breast Cancer* .132 -.001 .138
Exp. 5, Ionosphere* .46 .56 .52
Exp. 6, Metal vs. Rock* .252 .362 .356
Note. Asterisks (*) indicate classification problems, while the lack of asterisk indicates regression problems.
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