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ABSTRACT

This paper demonstrates the potentials of the long short-term memory (LSTM) when applying
with macroeconomic time series data sampled at different frequencies. We first present how the
conventional LSTM model can be adapted to the time series observed at mixed frequencies when the
same mismatch ratio is applied for all pairs of low-frequency output and higher-frequency variable. To
generalize the LSTM to the case of multiple mismatch ratios, we adopt the unrestricted Mixed DAta
Sampling (U-MIDAS) scheme (Foroni et al., 2015) into the LSTM architecture. We assess via both
Monte Carlo simulations and empirical application the out-of-sample predictive performance. Our
proposed models outperform the restricted MIDAS model even in a set up favorable to the MIDAS
estimator. For real world application, we study forecasting a quarterly growth rate of Thai real
GDP using a vast array of macroeconomic indicators both quarterly and monthly. Our LSTM with
U-MIDAS scheme easily beats the simple benchmark AR(1) model at all horizons, but outperforms
the strong benchmark univariate LSTM only at one and six months ahead. Nonetheless, we find that
our proposed model could be very helpful in the period of large economic downturns for short-term
forecast. Simulation and empirical results seem to support the use of our proposed LSTM with
U-MIDAS scheme to nowcasting application.

Keywords: LSTM ·Mixed frequency data · Nowcasting · Time series ·Macroeconomic indicators
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1 Introduction

Forecasting the present or very near future (also called “nowcasting”) of an economic activity in order to update the
state of economy is one of the crucial questions in macroeconomic area (Giannone et al., 2008). Nonetheless, the key
macroeconomic data periodically released by government agencies, for example, a quarterly Gross Domestic Product
(QGDP), are typically only available after several weeks or months and often revised a few months later (see Ghysels
et al. (2018) for a recent discussion of macroeconomic data revision and publication delays). The low-frequency nature
of QGDP data is challenging to policy makers and those who are in need of updating the state of economy for their
decision making. This is so called mixed frequency data problem.

Researchers and practitioners working with the mixed frequency time series data usually pre-filter the data so that
the frequency of left-hand and right-hand variables are equal. This raises the problem of how to exploit potentially
useful information contained in the higher-frequency time series data. Various approaches have been proposed so far in
the literature to avoid pre-filtering and to benefit from the information contained in the time series data observed at
different frequencies (see Foroni & Marcellino (2013) for a comprehensive survey on the methods when dealing with
mixed frequency data). Mixed DAta Sampling, denoted MIDAS, approach was first introduced by Ghysels et al. (2006,
2007) and has since been one of the main strands when modelling mixed frequency time series. MIDAS uses a flexible
functional form to parameterize the weight given to each lagged regressors, such that the regressand and regressors
can be sampled at different frequencies. Apart from capturing the rich information contained in high-frequency data,
MIDAS also avoids the potential problems of information loss, measurement error, and timeliness caused by frequency
transformation. Notable studies focusing on macroeconomic indicators include Clements & Galvão (2008); Armesto
et al. (2009); Marcellino & Schumacher (2010); Kuzin et al. (2011); Breitung & Roling (2015). As long as the
differences in sampling frequencies are large, implying that a curse of dimensionality might be relevant, MIDAS can be
expected to perform well as the use of distributed lag polynomials can help avoiding parameter proliferation. However,
when the differences in sampling frequencies are small, Foroni et al. (2015) show that the unrestricted lag polynomials
in MIDAS regressions (also called U-MIDAS) generally performs better than the restricted MIDAS. Koenig et al.
(2003) is one of the first papers which apply the U-MIDAS to forecast quarterly changes in real GDP. Clements &
Galvão (2008) also consider U-MIDAS in their empirical forecast comparisons but call these U-MIDAS-like models
as mixed-frequency distributed lag (MF-DL) models. Nonetheless, Foroni & Marcellino (2013) is the first work that
provides the theoretical framework and parameter identification conditions for the underlying high-frequency model in
the U-MIDAS regressions.

Several sources of nonstandard high-frequency data from private companies such as Google and Twitter are available
for short-term economic prediction (Ettredge et al., 2005; Vosen & Schmidt, 2011; Choi & Varian, 2012; D’Amuri
& Marcucci, 2017). Nonetheless, most of the nowcasting applications of MIDAS literature still rely on the standard
high-frequency macroeconomic data (e.g. industrial production, employment, and capacity utilization) usually released
by government agencies (Clements & Galvão, 2008; Marcellino & Schumacher, 2010; Kuzin et al., 2011). An important
reason is the usually limited effective sample size of low-frequency data when involving a large number of variables
sampled at high-frequency. If, for example, we consider to use 30 variables at 10 lags to forecast the quarterly GDP
growth, MIDAS regression model with two parameters lag polynomial needs to estimate 60 parameters, whereas
U-MIDAS regression model needs to estimate 300 parameters. However, the GDP growth series of developed countries
are rarely, if any, more than 300 observations and far less than that for the developing countries.

In order to deal with such high-dimensional data environment, recent MIDAS literature start to rely on machine learning
models such as tree-based algorithms (Qiu, 2020) and sparse-group LASSO (sg-LASSO) regression (Babii et al., 2021).
To my knowledge, Xu et al. (2019) is the only work that applies deep learning architecture with mixed frequency data.
They develop the ANN-MIDAS and ANN-U-MIDAS models which integrate the MIDAS projection approach into the
artificial neural networks (ANNs). The proposed models outperform the benchmark MIDAS and U-MIDAS models
in both Monte Carlo simulations and empirical applications. They also find that the ANN-MIDAS model is superior
to ANN-U-MIDAS in terms of goodness-of-fit and predictive ability. So far, the potentials of machine learning and
deep learning models on mixed frequency data have barely been explored. This paper fills these gaps in the literature
demonstrating the use of LSTM with with time series data sampled at different frequencies.

We presents the potentials of deep learning models when applying with mixed frequency macroeconomic time series
data. We apply the long short-term memory networks (LSTM) introduced by Hochreiter & Schmidhuber (1997). The
LSTM is developed to overcome the vanishing error problems found in standard recurrent neural networks (RNNs)
when many time lags between relevant input events and target signals are present (see Hochreiter et al. (2001) for more
discussion). The LSTM has been one of the main workhorses in natural language processing, language translation,
speech recognition, and sentiment analysis. LSTM and its variations has recently gained lots of attentions for financial
time series forecasting application. For a comprehensive survey on financial time series forecasting with deep learning
algorithms see Sezer et al. (2020). To deal with data sampled at different frequencies, we rely on the U-MIDAS scheme.
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From machine learning perspective, the U-MIDAS scheme serves as an alternative feature engineering process that
transforms the higher-frequency variables into a low-frequency vector, denoted frequency alignment, and allows us to
exploit potentially useful information contained in the high-frequency time series data. We first assess via Monte Carlo
simulation the predictive performance of our proposed LSTM based models, and find that our nowcasts and forecasts
are superior to those produced by the benchmark models. For real world application, we study both nowcasting (i.e. 1-,
-2, and 3-month ahead forecasts) and forecasting (i.e. 6-, 9-, and 12-month ahead forecasts) a quarterly growth rate of
Thai real GDP using a vast array of macroeconomic indicators both quarterly and monthly. Although our proposed
model outperform the benchmark models only at one and six month ahead, we find that our proposed model could be
very helpful in the period of large economic downturns. We additionally compare our forecasts with those posted by the
Bank of Thailand (hereinafter BOT). Our annualized QGDP forecasts are superior to the BOT implied annual GDP
forecasts at shorter horizon (i.e. 1- and 2-month ahead).

The remainder of this paper is organized as follows: Section 2 presents alternative methods for the LSTM architecture
when applying time series data sampled at different frequencies. Section 3 reports on Monte Carlo simulations the
predictive performance to illustrate the potentials of the proposed model when compared to the original MIDAS
regression. Section 4 provides empirical evidence, and we conclude in Section 5.

2 Alternative methods to apply mixed frequency time series data with LSTM

This section presents how the time series data sampled at mixed frequency can be accommodated into the LSTM
architectures in both conventional and unconventional fashions. We first discuss the basic setup of LSTM and how
we can apply it when there is only one frequency mismatch between output variable and all variables in the model
specification. To deal with multiple frequency mismatches, we then briefly introduce the MIDAS approach and discuss
how we can adopt the unrestricted MIDAS scheme into the LSTM architectures.

The LSTM is capable of learning the complex long time lag tasks without loss of short time lag capabilities by enforcing
constant error flow through the memory cells, a unit of computation that replace traditional artificial neurons in the
hidden layer of a network. However, the original version of LSTM does not work well when dealing with a continuous
input stream (Gers et al., 2000). This paper apply the LSTM with a forget gate introduced by Gers et al. (2000).
Following the description of Graves (2013) and Fischer & Krauss (2018), the LSTM is basically composed of an input
layer, one or more hidden layers, and an output layer. The hidden layer(s) consists of a set of recurrently connected
memory blocks. Each block contains one or more self-connected memory cells and three multiplicative units—an
input gate (it), a forget gate (ft), and an output gate (ot)—that provide continuous analogues of write, read and reset
operations for the cell state (ct), respectively. For the LSTM used in this paper (Gers et al., 2000), the hidden layer
function is implemented by the following group of functions:

it = σ(Wxixt +Wtiht−1 +Wcict−1 + bi) (1a)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (1b)
ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (1c)
ot = σ(Wxoxt +Whoht−1 +Wc0ct + b0 (1d)
ht = ottanh(ct) (1e)

where σ is the logistic sigmoid function; and the input gate, forget gate, output gate, and cell state activation vectors are
all the same size as the hidden vector (ht). The weight matrices Wxi,Whi,Wci,Wxf ,Whf ,Wcf ,Wxc,Whc,Wxo,Who,
and Wco have the obvious meaning, for example, Whi is the hidden-input gate matrix, Wxo is the input-output gate
matrix. The b terms denote bias vectors (e.g. bi is input bias vector). See Fischer & Krauss (2018) for more detailed
description of working sequences of LSTM.

2.1 Single frequency mismatch

In practice, ones always have to pass a 3 dimensional (3D) array of shape {batch size, time steps, number of features} as
an input to the LSTM network. When output yt and all variables xk,t for k = 1, 2, 3, ...,K in the model specification are
all sampled at the same frequency, both sequence stride s (period between successive output sequences) and sampling
rate r (period between successive individual timesteps within variable sequences) are usually set to 1 so as to utilize
all available information. Nonetheless, when variables xk,t are all sampled at the same frequency mismatch ratio
m > 1 times faster than an output yt for all k = 1, 2, 3, ...,K, such preprocessing strategy of s = r = 1 will not
work as the number of higher-frequency series xk,t is now m times as many as the number of low-frequency series
yt. We denote this case the single frequency mismatch. Subscript τk is used hereinafter to indicate possibly different
sampling frequency of higher-frequency variables, and, consequently, the frequency mismatch ratio of individual
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(b) A Simplified LSTM with 5 timesteps

Figure 1: Mixed frequency time series with single frequency mismatch ratios. (a) presents a raw data schedule in
which the raw time series data are aligned to match with their actual period of occurrence. (b) presents the first two
feasible sequences of LSTM when timesteps is set to 5.

higher-frequency series is indicated as mk for k = 1, 2, 3, ...,K. Fig.1a presents a data schedule for the case that a
low-frequency output yt is sampled, say, quarterly and the frequency mismatch ratio between low-frequency output yt
and each higher-frequency variable xk,τk is 3 for all k = 1, 2; all higher-frequency variables xk,τk are therefore sampled
monthly and we require that the number of observations of higher-frequency xk is as exactly 3 times as the number of
observations of low-frequency output yt. A simple solution to apply LSTM with a model specification having only
one frequency mismatch is then to preprocess the raw time series dataset with a sequence stride s = 1 and a sampling
rate r = m in order to match the occurrence of the higher-frequency variables xk,t to their low-frequency counterparts.
Fig.1b show a simplified LSTM architecture with 5 timesteps in which the raw time series data are preprocessed with a
sequence stride s = 1, and a sampling rate r = 3.

Unfortunately, the strategy of preprocessing time series data with sampling rate r = m is not always workable when
there are more than one frequency mismatch ratio in the model specification. Fig.2a shows an example of a quarterly
series yt, a monthly series x1

τ1 , and a bi-weekly series x2
τ2 . The frequency mismatch ratios are, therefore, 3 and 6 for the

respective higher-frequency variables x1 and x2. As the data schedule shows, it is not possible to directly accommodate
two higher-frequency variables with different frequency mismatch ratios into the same LSTM architecture. We denote
this case the multiple frequency mismatches. To deal with multiple frequency mismatches, we adopt the technique
widely used in econometrics with mixed frequency time series data called the MIxed DAta Sampling (MIDAS) approach
(Ghysels et al., 2006, 2007).

2.2 MIDAS approach

To briefly introduce MIDAS regressions and simplify the exposition, we confine the discussion to a single variable xt.
Suppose that a higher-frequency series x(m)

t is sampled at m times faster than a low-frequency series yt. Hence, say,
with a quarterly series yt and the frequency mismatch ratio m = 3, a higher-frequency series xt is sampled monthly.
Following the notation commonly used in Ghysels et al. (2004); Clements & Galvão (2008), a simple linear MIDAS
regression for a single explanatory variable and h-step-ahead forecasting can be written as:

yt = α+ β1B(L1/m)x
(m)
t−h + εm (2)

where B(L1/m) =
∑J
j=0 ωjL

j/m is a polynomial of length J in the L1/m operator such that Lj/mx(m)
t−h = x

(m)
t−h−j/m.

In other words, the Lj/m operator produces the value of xt lagged by j/m periods (for simplicity, suppose we need to
predict the end-of-quarter horizon, or h = 0). Given the quarterly/monthly example, the above equation represents a
projection of a quarterly time series yt onto a monthly time series xmt up to J monthly lags back. However, should
a large number of lags of the x(m)

t be involved in a suitable polynomial B(L1/m), ones would thus need to estimate
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Figure 2: Mixed frequency time series with multiple frequency mismatch ratios. (a) presents a raw data schedule in
which the raw time series data are aligned to match with their actual period of occurrence. (b) presents a new data
schedule in which the raw time series data are frequency-aligned following MIDAS approach. (c) presents the first
feasible sequence of LSTM when timesteps are set to 2, and both variables take the same lag structure j = {0, 1, 2, 3, 4}.
(d) also presents the first feasible sequence of LSTM when timesteps are set to 2, but a higher-frequency variable x1

takes lag structure j = {0, 1, 2, 3, 4} whereas a higher-frequency variables x2 takes lag structure j = {1, 2, 3}.

many parameters. To avoid such parameter proliferation, Ghysels and his coauthors impose some restrictions upon
the weight ωj in the polynomial B(L1/m). Following the pioneering work of Ghysels et al. (2005, 2006), the most
commonly used parameterization of ωj is the second-order exponential Almon lag, or θ = (θ1, θ2)′:

ωj(θ) =
exp(θ1j + θjj

2)∑J
j=1 exp(θ1j + θ2j2)

(3)

where the vector of hyperparameters θ is unknown, ωj(θ) ∈ [0, 1], and
∑J
j=1 ωj(θ) = 1. Practically, with this

specification, a simple linear MIDAS regression model in (2) can thus be written as:

yt = α+

J∑
j=0

bjx
(m)
t−h + εm (4)

where bj = β1ωj(θ) following Andreou et al. (2013) and Ghysels et al. (2016).1 While model (4) is a linear model in
terms of variables, the nonlinear constraints imposed upon the weight ωj result in nonlinearities with respect to the
vector of hyperparameters θ, and the model (4) is estimated by nonlinear least squares (NLS) estimator.

The MIDAS specification is particularly useful for high mismatch applications in financial time series data as shown by
Ghysels et al. (2005, 2006). However, for quarterly/monthly setting of macroeconomic applications in which m is small
and only a few higher-frequency lags are possibly needed to capture the weights, Foroni et al. (2015) show that the

1This coefficient bj is also termed as MIDAS coefficient when estimated using R package midasr (Ghysels et al., 2016).
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U-MIDAS model might be considered to be a good approximation to the true dynamic linear model.2 When estimating,
the U-MIDAS also applies the same model (4) as its MIDAS counterpart. However, without restriction Equation (3)
being imposed, the U-MIDAS do not require NLS, and can be estimated by simple ordinary least square (OLS).

2.3 Frequency alignment as a feature engineering process

Practically, when estimating either MIDAS or U-MIDAS regression model, ones need to manipulate all variables
observed at various frequencies and different length of observations. The process of transforming the higher-frequency
variable xt into a low-frequency vector (x3t, ...x3t−2)′ is denoted the frequency alignment following Ghysels et al.
(2016). Suppose we assume that the monthly data in the current quarter has explanatory power, say, J = 2 (i.e. a contem-
poraneous and two lags). This means that we need to model yt as a linear combination of variables xt, xt−1/3, xt−2/3

observed in each quarter t. Hence, the model (2) can be written in matrix notation as:

y1

...
yn

 = α+

 x3 x2 x1

...
. . .

...
x3n x3n−1 x3n−2


b0...
b2

 +

ε1...
εn

 (5)

Since all the variables are now observed at the same frequency, this process enables a MIDAS regression to directly
accommodate variables sampled at different frequencies and turns it into a classical time series regression. Although the
Equation (5) presents a simple case of a single frequency mismatch, the procedure is very generalizable. Fig.2a presents
a case of quarterly output yt and two frequency mismatches m1 = 3 (monthly) and m2 = 6 (bi-weekly). Suppose we
assume that a contemporaneous and four lags (i.e. j = 0, 1, 2, 3, 4) of both variables have explanatory power. The
resulting data schedule after preprocessing raw time series with frequency alignment process has now additional eight
features as shown in Fig.2b. Despite the fact that x1

3, x
1
2, x

1
1 exist, their corresponding entries of the variable x1

τ in the
row t = 1 are intentionally shown as non-available because a lag order of 4 is beyond its sampling frequency m1 = 3
which causes the frequency alignment at t = 1 to fail. The guiding model specification can be written in matrix notation
as: y2

...
yn

 = α+

 x
1
6 x1

5 x1
4 x1

3 x1
2

...
...

...
...

...
x1

3n x1
3n−1 x1

3n−2 x1
3n−3 x1

3n−4


b

1
0
...
b14


+

 x
2
6 x2

5 x2
4 x2

3 x2
2

...
...

...
...

...
x2

3n x2
3n−1 x2

3n−2 x2
3n−3 x2

3n−4


b

2
0
...
b24

 +

ε2...
εn


(6)

The frequency alignment process can also be generalized to the case of multiple frequency mismatches with different
length of lag vector. Moreover, the vector of lags included for each variable can also differently start from a given
order rather than from a contemporaneous lag (j = 0). Fig.2c and 2d present the first feasible sequence of LSTM
with 2 timesteps in which the raw time series data are preprocessed with frequency alignment. The former presents
the case when both higher-frequency variables take the same lag structure (contemporaneous with 4 lags) as shown
in Fig.2b. The latter provides an example of different lag structures where a higher-frequency variable x1 takes lag
structure j = {0, 1, 2, 3, 4} and a higher-frequency variables x2 takes lag structure j = {1, 2, 3}.
Setting aside the estimation and restrictions, both MIDAS and U-MIDAS approaches rely on the frequency alignment
preprocessing process and explicitly treat lagged observations (at particular orders) as their variables. Put it differently,
from a machine learning perspective, the frequency alignment can simply be viewed as an alternative feature engineering
process. Hence, ones can directly adopt the U-MIDAS scheme into the LSTM, and estimate all parameters as its usual
using standard library such as Keras in Python.

3 Monte Carlo Simulations

In this section, we assess via Monte Carlo simulations the predictive performance to illustrate the potentials of adopting
the unrestricted lag polynomials projection in LSTM architectures. Specifically, we benchmark the out-of-sample
2Nonetheless, as also suggested by Foroni et al. (2015) that both MIDAS and U-MIDAS should be regarded as approximations to
dynamic linear models, we should not expect one of these approaches to dominate with empirical data.
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nowcasting (i.e. 1-, 2-, and 3-month ahead) and forecasting (i.e. 6-, 9-, and 12-month ahead) performance of LSTM
against the MIDAS and U-MIDAS regression models.

3.1 Experimental design

The simulation exercise is designed in a way to discuss its application in macroeconomic forecasting, in particular
forecasting quarterly GDP growth. To be relevant for empirical application in the next section, we focus on the case of
quarterly/monthly (m = 3) data with small sample size environment. We follow the simulation design in Foroni et al.
(2015) that directly uses the restricted MIDAS regression as the data generating process (DGP). The guiding DGP is
explicitly defined as:

yt+h = α+

K∑
k=1

J∑
j=0

bkjx
(3)
k,t−j + εt+h

εt+h ∼ N(0, 1),∀t = 1, ..., T

(7)

For simplicity, a contemporaneous and the maximum lag order J = 11 lags (i.e. j = 0, 1, 2, ..., 11) are used for all
higher-frequency variables. The parameterized lag coefficients bkj (j; θ) = βkj ωkj , where the weights, ωij , are generated
by the normalized exponential Almon lag polynomial (see Ghysels et al. (2016) for more detail) and defined as:

ωkj =
exp(θk1j + θk2j

2)∑J
j=1 exp(θ

k
1j + θk2j

2)
(8)

The monthly variables are generated as either AR(1) process with persistence equal to 0.9 or xk,τ ∼ N(0, 1). The
sample size (expressed in the low-frequency unit) is T = {50, 80}. Four different DGPs of low-frequency output yt are
therefore simulated and evaluated. For the sake of comparison, all experiments are designed to be the single frequency
mismatch m = 3 class. All simulations take the number of higher-frequency variables K = 3. The parameter pairs of
θ = (θ1, θ2)′ are from the sets θ1 = 0.7 and θ2 = {−0.025,−0.1,−0.5} following parameters commonly used in the
MIDAS literature (e.g. Ghysels et al. (2016); Foroni et al. (2015)). To some extent, the simulations are in favor of the
MIDAS as a small number of the most relevant variables are practically included in the MIDAS regression model so as
to preserve parsimony. On the contrary, a large vector of lags will directly affect the forecasting performance of the
U-MIDAS regression model as the number of parameters to be estimated is large with respect to the sample size.

We assess the forecasting performance of the proposed data preprocessing strategies discussed in previous section. For
each DGP, all three higher-frequency variables generated are taken as the input data. The input data of the first two
LSTM models are preprocessed using the sampling rate r = m strategy as discussed in section 2.1. The timesteps are
set to 6 and 12, respectively. We denote these models Sampling-aligned LSTM (SA-LSTM). To apply the U-MIDAS
scheme, the input data of the other three models are preprocessed using MIDAS frequency alignment strategy as
discussed in section 2.2. We denote these models Frequency-aligned LSTM (FA-LSTM). The FA-LSTM models are set
to have the lag structure starting from the lag order zero (i.e. a contemporaneous lag) and take the vector of lag orders
of [0:2], [0:5], and [0:11], respectively. Since they take all higher-frequency variables (K = 3), the number of variables
used for each FA-LSTM model are 3× (J + 1) = 9, 18, and 36, respectively. The timesteps of 4, 2, and 1 are applied
for three FA-LSTM models.

We conduct a grid search to select the best hyperparameter combination of epochs, dropout, batch size, and the number
of LSTM memory cells for each LSTM model in each forecasting horizon. As the objective of the simulation is not to
search for the highest forecasting accuracy, only the small set of epochs = {25, 50}, dropout = {0, 0.4}, and batch size =
{1, dinput/10e, dinput/2e}, where input is the effective size of the training data and d·e denotes the ceiling function,
are examined. For the number of LSTM memory cells, a set of {16, 32, 64, 128} is examined for FA-LSTM models,
and a set of {8, 16, 32} is examined for SA-LSTM models. We simply exploit the first twenty simulation replications
(i.e. R = {1, 2, 3, ..., 20}) that already prepared for the experiment as the dataset. For each simulation replication,
the ratio of 60:40 is applied to split the data into training and validation samples. To minimize computational time,
we evaluate the predictive performance of each hyperparameter combination on the validation samples using a fixed
forecast scheme. The average root mean squared forecast error (RMSFE) over these twenty simulation replications are
then compared across all hyperparameter combinations. Table A.1 presents hyperparameter combinations that achieves
the lowest average RMSFE for all forecasting horizons and DGPs.

We benchmark the out-of-sample forecasting performance of the LSTM models against two alternatives: MIDAS and
U-MIDAS regressions. We consider the model specifications that are parsimonious but possibly misspecified functional
forms. Thus, only two higher-frequency variables are used in the model specification. For a given forecasting horizon,
the same model specification is applied for both MIDAS and U-MIDAS models. All (U-)MIDAS regression models are
estimated by midasr package (Ghysels et al., 2016) in R. The best model specification for each forecasting horizon is
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thoroughly searched over the set of potential models defined by all combinations of the number of lags (2 to 12 lags),
higher-frequency variable pair (3 possible pairs), and weighting functions (normalized and non-normalized exponential
Almon lag polynomials). For simplicity, the lowest lags of high-frequency variables are simply set to be equal to the
respective higher-frequency forecasting horizon hm. An automatic selection is performed using the flexible function
available in the midasr package. As applied in the LSTM models, the ratio of 60:40 is applied to split the data into
training and testing data. The fixed model option is also set for forecasting. We select the model that achieves the lowest
mean squared forecast error (MSE).

The out-of-sample forecasting performance is assessed across a series of leading index d = {m− 1,m− 2, 0, 0, 0, 0},
where d represents the number of higher-frequency observations that are available before the release of low-frequency
output. Given the fixed frequency mismatch m = 3 in the experiments, this corresponds to higher-frequency forecasting
horizons hm = {1, 2, 3, 6, 9, 12} and a sequence of low-frequency forecasting horizons h = {1, 1, 1, 2, 3, 4}. For each
simulation replication, the ratio of 60:40 is also applied to split the data into training observations T1 and evaluation
observations T2. Given the sample size T = {50, 80}, the evaluation observations T2 = {20, 32} are held out and used
as out-of-sample data, and the rest T1 = T − T2 observations as training data. To evaluate forecasting performance,
we assume that the information up to period T1 + Ω, where Ω = 0, 1, 2, ..., T2 − h, is available for low-frequency
output and T1 + Ω + d/m for higher-frequency variables. We then conduct one-horizon-ahead rolling forecast without
re-estimation. This yields a forecast of the low-frequency output yt for the hm higher-frequency periods ahead for the
out-of-sample observations ŷT1+Ω+hm . The corresponding squared forecast error SE = (yT1+Ω+hm − ŷT1+Ω+hm)2 is
thus used to calculate the RMSFE over the evaluation sample for each simulation replication. The number of simulations
are fixed at R = 1000. Since the random initial conditions in the LSTM architecture may result in very different results,
we estimate all LSTM models twice for each replication. The out-of-sample RMSFEs reported in the next section
are therefore calculated by averaging over 2× 1000 replications. All LSTM models are estimated by Keras library in
Python.

3.2 Simulation results

Table 1-2 report detailed results of Monte Carlo simulation experiment. The U-MIDAS in simulation scenarios performs
unsurprisingly poorly as the number of parameters to be estimated is large with respect to the sample size. As such,
the restricted MIDAS substantially outperforms its unrestricted counterpart across all forecasting horizons and sample
sizes. We apply the Diebold & Mariano (1995) test statistics (hereinafter, DM test) to examine whether the difference
of RMSFE from the two competing models are statistically significant. Since all U-MIDAS perform poorly, we only
assess the statistical difference of forecast accuracy between the restricted MIDAS and the LSTM for each forecasting
horizon.

When DGP of higher-frequency variables is xk,τ ∼ N(0, 1), the LSTM with either sampling alignment (SA-LSTM) or
frequency alignment (FA-LSTM) data preprocessing strategy outperform the MIDAS model across all higher-frequency
forecasting horizons hm = {1, 2, 3, 6, 9, 12} and sample sizes T = {50, 80}. Almost all of the DM tests are statistically
significant at the level of 5%. Although the SA-LSTM models performer best in most of the simulation scenarios
generated by the normal distribution process, the forecasting performance of the FA-LSTM model does not substantially
differ from that of the SA-LSTM model. However, these findings are not robust to the DGP of the AR(1) process with
persistence equal to 0.9. All methods perform worse with persistent higher-frequency variables across all simulation
scenarios. They all obtain larger RMSFE and larger standard deviation. The SA-LSTM model seems to be affected
more compared to the other methods. Most of the forecasts produced by the SA-LSTM model perform significantly
worse than the FA-LSTM model and the restricted MIDAS model. Although most of the SA-LSTM models still achieve
the lowest average RMSFE, especially when hm = {6, 9, 12}, many of them perform worse than the competing models
both in terms of larger RMSFE and larger standard deviation. Interestingly, the FA-LSTM performs much better than
the competing models when hm = {1, 2, 3}. This simulation evidence encourages the use of LSTM with frequency
alignment data preprocessing when ones need to nowcast the low-frequency series of interest.

To sum up, even in a set up favorable to the restricted MIDAS, the LSTM with either sampling alignment or frequency
alignment data preprocessing still yields a better forecasting performance than MIDAS. Simulation results indicate that
the sampling alignment strategy, which we simply adjust the sampling rate in the commonly used data preprocessing
procedure, is an interesting strategy when the mixed frequency data problem has only one frequency mismatch.
Nonetheless, the frequency alignment strategy provides more flexibility when ones need to forecast the low-frequency
data series with multiple frequency mismatches. Although we cannot expect one of the approaches to dominate with
empirical data, the simulation results seem to support the use of LSTM with U-MIDAS scheme when ones need to
nowcast the macroeconomic low-frequency data series, such as GDP growth, in the quarterly/monthly setting.
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4 Empirical application to Thai GDP growth

This section presents an empirical application of the proposed models to real world data. Specifically, we predict
quarterly growth rate of Thai real GDP series using a vast array of macroeconomic indicators both quarterly and monthly,
and assess the predictive performance of the SA-LSTM and FA-LSTM models across six higher-frequency forecasting
horizons (i.e. hm = 1, 2, 3, 6, 9, 12). The predictive performance of the proposed LSTM modes are benchmarked
against variety of competing models. Our empirical exercises focus on non-seasonally adjusted QGDP series and
mimics the real-time situation in the sense that the data publication delays are replicated; hence, this is a pseudo

Table 1: Out-of-sample RMSFE results for Monte Carlo simulation (DGP: xk,τ ∼ N(0, 1))

Raw Obs. hm MIDAS U-MIDAS SA-LSTM FA-LSTM

[6, 0:0] [12, 0:0] [4, 0:2] [2, 0:5] [1, 0:11]

50 1 1.165 1.446 1.095* 1.101 1.119 1.125 1.138
(0.201) (0.299) (0.171) (0.176) (0.179) (0.178) (0.180)

2 1.170 1.387 1.104* 1.121 1.124 1.129 1.136
(0.200) (0.267) (0.173) (0.195) (0.178) (0.182) (0.181)

3 1.171 1.359 1.114* 1.129 1.127 1.132 1.148
(0.195) (0.260) (0.176) (0.187) (0.180) (0.180) (0.183)

6 1.176 1.319 1.121* 1.130 1.130 1.137 1.147
(0.199) (0.250) (0.175) (0.186) (0.181) (0.183) (0.186)

9 1.175 1.308 1.112* 1.125 1.129 1.142 1.150
(0.248) (0.243) (0.175) (0.190) (0.180) (0.185) (0.185)

12 1.217 2.571 1.114* 1.207 1.135 1.146 1.155
(0.220) (0.997) (0.175) (0.262) (0.181) (0.184) (0.183)

80 1 1.120 1.167 1.158 1.146 1.106* 1.117 1.130
(0.145) (0.155) (0.175) (0.189) (0.140) (0.143) (0.146)

2 1.134 1.180 1.116 1.104* 1.117 1.126 1.134

(0.145) (0.156) (0.143) (0.140) (0.141) (0.147) (0.147)

3 1.136 1.216 1.106* 1.111 1.122 1.128 1.132
(0.151) (0.169) (0.140) (0.142) (0.143) (0.146) (0.146)

6 1.146 1.261 1.111* 1.168 1.126 1.130 1.139
(0.153) (0.180) (0.144) (0.183) (0.147) (0.147) (0.146)

9 1.155 1.322 1.117 1.114* 1.125 1.136 1.142
(0.154) (0.200) (0.143) (0.142) (0.145) (0.146) (0.150)

12 1.153 1.389 1.116* 1.122 1.135 1.138 1.147
(0.155) (0.214) (0.142) (0.146) (0.147) (0.148) (0.146)

Notes: This table reports out-of-sample RMSFE results for simulation exercises. Except the first two columns,
the table reports average RMSFE across 1,000 replications × 2 estimations per replication. Standard deviation is
reported in parentheses. * indicates the lowest average RMSFE in the given forecasting horizon. Bold text indicates
that the null hypothesis of the two methods having the same forecast accuracy is rejected at the 5% significance
level using Diebold & Mariano (1995) test statistics. The timesteps and lag specification of the input data, which are
fixed across all forecasting horizons, are shown for each LSTM model. Since the SA-LSTM models take no lagged
variables, the lag specification of [0:0] is simply shown. The optimal batch size for each LSTM model in each
forecasting horizon are separately reported in Table A.1. Given the number of higher-frequency variables K = 3,
the total number of variables used in each LSTM model are K × J + 1 = 3, 3, 9, 18, 36, respectively.
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real-time forecast evaluation. To be policy relevant, we additionally recalculate the GDP growth as an annual rate using
the quarterly forecasts computed by the FA-LSTM model. The annualized QGDP growth forecasts are then compared
with the publicly available forecasts produced by the Bank of Thailand model at various forecasting horizons.

4.1 Data

Regarding the macroeconomic series, we first collect all quarterly and monthly series available in the BOT database.
The time of the first available observation differs from series to series, and all of them are available up to the end of

Table 2: Out-of-sample RMSFE results for Monte Carlo simulation (DGP: xk,τ = 0.9xk,τ−1 + ετ )

Raw obs. hm MIDAS U-MIDAS SA-LSTM FA-LSTM

[6, 0:0] [12, 0:0] [4, 0:2] [2, 0:5] [1, 0:11]

50 1 2.066 2.311 2.108 2.633 1.922 1.634* 1.741
(0.616) (0.696) (1.395) (3.581) (0.924) (0.559) (0.538)

2 2.142 3.809 2.229 3.013 2.114 1.999 1.963*

(0.713) (1.523) (1.359) (6.200) (0.938) (0.646) (0.599)

3 2.251 3.440 2.014 3.128 2.193 1.989* 2.108
(0.729) (1.190) (0.738) (6.857) (0.750) (0.625) (0.659)

6 2.415 3.501 2.495 2.141* 2.469 2.403 2.507
(0.815) (1.193) (1.226) (0.975) (0.816) (0.768) (0.782)

9 2.787 3.630 2.616* 4.194 2.686 2.743 2.798

(1.044) (1.250) (0.849) (9.771) (0.894) (0.905) (0.934)

12 2.826 3.215 2.750* 2.979 2.859 2.870 3.005
(0.938) (0.995) (0.900) (3.350) (0.993) (0.978) (1.066)

80 1 1.901 2.079 1.780 2.663 1.530 1.524* 1.571
(0.449) (0.48) (0.813) (4.020) (0.416) (0.376) (0.360)

2 1.947 2.094 1.842 2.970 1.750 1.602* 1.653
(0.447) (0.469) (0.847) (4.437) (0.474) (0.365) (0.384)

3 2.026 2.079 1.842 2.557 1.824 1.764* 1.830
(0.457) (0.443) (0.784) (2.965) (0.467) (0.390) (0.447)

6 2.156* 2.187 2.183 2.213 2.372 2.223 2.388
(0.462) (0.470) (0.536) (1.466) (0.707) (0.536) (0.594)

9 2.423* 2.656 2.547 3.460 2.570 2.579 2.631
(0.575) (0.608) (0.690) (5.761) (0.656) (0.660) (0.672)

12 2.617 2.754 2.648 2.535* 2.762 2.737 2.794
(0.644) (0.636) (0.649) (1.158) (0.774) (0.718) (0.743)

Notes: This table reports out-of-sample RMSFE results for simulation exercises. Except the first two columns,
the table reports average RMSFE across 1,000 replications × 2 estimations per replication. Standard deviation is
reported in parentheses. * indicates the lowest average RMSFE in the given forecasting horizon. Bold text indicates
that the null hypothesis of the two methods having the same forecast accuracy is rejected at the 5% significance
level using Diebold & Mariano (1995) test statistics. The timesteps and lag specification of the input data, which
are fixed across all forecasting horizons, are shown for each LSTM model. Since the SA-LSTM models take no
lagged variables, the lag specification of [0:0] is simply shown. The optimal batch size for each LSTM model in
each forecasting horizon are separately reported in Table A.1. Given the number of higher-frequency variables
K = 3, the total number of variables used in each LSTM model are K × J + 1 = 3, 3, 9, 18, 36, respectively.
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2020. The longest series start at 1993M1 and 1993Q1 for monthly and quarterly series, respectively. To prevent very
short samples, we filter out the series of which the first period is available later than the cut-off period of 2001M1. The
final dataset of variables contains five quarterly and 35 monthly series. We impute zero values for the series that start
later than 1993M1 for the monthly series and 1993Q1 for the quarterly series. The full list of the series with further
details appear in the Online Appendix B. The quarterly real GDP (QGDP) series in chained volumes from 1993Q1
to 2020Q4 are available from the Office of the National Economic and Social Development Council (NESDC). The
growth rate is then calculated directly as 100× (QGDPt+1 −QGDPt)/QGDPt.
Except QGDP series, all macroeconomic series are final revised data and supposedly published with a delay of up to one
month according to the observed typical pattern between the end of the reference period and the date of the respective
release. This implies that if we need to forecast the QGDP growth for 2019Q1 three months before the quarter ends
(i.e. hm = 3), we will need data up to the end of 2018M12. Given that all macroeconomic series are published with a
delay, it effectively means that the contemporaneous lags are 2018M11 and 2018Q3 for monthly and quarterly series,
respectively. The QGDP series is periodically published within eight weeks after the end of the reference period; hence,
it is available for forecasting at the beginning of the third month of the next quarter. Again, for example, if we need to
forecast the QGDP growth at the end of 2019Q1, the first available lag to be used as the autoregressive (AR) term of the
QGDP growth series is 2018Q3 for hm = 2, 3, and 2018Q4 for hm = 1.

4.2 Empirical design

We evaluate the predictive performance of the LSTM using U-MIDAS scheme (i.e. FA-LSTM) and the SA-LSTM
models on the out-of-sample data, containing 52 quarters, from 2008Q1 to 2020Q4. Six projections are computed for
six higher-frequency forecasting horizons (hm = 1, 2, 3, 6, 9, 12) for each QGDP observation of the out-of-sample
period. All competing models are recursively configured and estimated at the beginning of each quarter using the
information up to the end of the last available month for a given forecasting horizon hm. For the first forecast at the end
of 2008Q1, for example, the competing models are configured and estimated at the beginning of 2008M3 (hm = 1),
2008M2 (hm = 2), 2008M1 (hm = 3), 2007M10 (hm = 6), 2007M7 (hm = 9), and 2007M4 (hm = 12) using the
data up to the end of 2008M2, 2008M1, 2007M12, 2007M9, 2007M6, and 2007M3, respectively.

As a natural comparison, we compare out-of-sample forecasts of the proposed models with the univariate LSTM,
denoted as UNI-LSTM, model. The next section shows that, before the COVID-19 pandemic, this relatively much
simpler univariate LSTM benchmark turns out to be a very strong competitor to the proposed models. Following
the MIDAS literature for short-term GDP growth predictions (Marcellino & Schumacher, 2010; Babii et al., 2021),
the simple benchmark AR(1) model is also used as an additional benchmark for assessing the short-term forecasting
(hm = 1, 2, 3) performance of the proposed models. Although the LSTM effectively capture the sequential information
in the input data, the nature of the economy is highly dynamic and its structure may substantially change over time. If
that is the case, the advantages of LSTM architecture having both a short-term and a long-term memory might be trivial.
We therefore report the results for the artificial neural networks (ANN) model using the U-MIDAS scheme, denoted
U-MIDAS-ANN, as another competing model.

To assess the predictive performance of the models, we compare RMSFE of the proposed models with the benchmark
models in a recursive forecasting exercise. We additionally relate the mean squared forecast error (MSFE) of the
proposed models to the variance of QGDP growth over the evaluation period following Marcellino & Schumacher
(2010). A ratio of less than one indicates that the predictive performance of a model is to some extent informative. We
also apply the DM test statistics (Diebold & Mariano, 1995) to examine whether the difference of RMSFE from the two
competing models are statistically significant.

4.3 Model specification and hyperparameter tuning

The following ADL-MIDAS-like equation is applied as a guiding model specification for the proposed FA-LSTM and
the alternative U-MIDAS-ANN models for all forecasting horizons:

yt+h = α+

PQ−1∑
j=0

λjyt−j +

KQ∑
k=1

PQ−1∑
j=0

bkjx
Q
k,t−j +

KM∑
k=1

PM−1∑
j=0

bkjx
M
k,t−j + εt+h (9)

where xQk and xMk represents low-frequency quarterly and higher-frequency monthly variable, respectively. The guiding
specification (9) involves a contemporaneous and PQ − 1 lags of xQt and a contemporaneous and PM − 1 lags of xMt .
Following Clements & Galvão (2008), we add the AR dynamics yt−j to a guiding model specification so as to provide
a more flexible dynamic specification. This approach is, from the econometric point of view, useful to handle eventual
serial correlation in the idiosyncratic components (Marcellino & Schumacher, 2010). For simplicity, we apply the same
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lag orders for all variables having the same frequency mismatch ratio; hence, quarterly variables and AR dynamics
yt included in a given model are always forced to have the same contemporaneous and PQ − 1 lags. Equation (10)
presents a guiding model specification for the SA-LSTM model:

yt+h = α+

KM∑
k=1

PM−1∑
j=0

bkjx
M
k,t−j + εt+h (10)

It differs from that of the FA-LSTM model since the SA-LSTM model can not take more than one frequency mismatch
ratio in the model specification. This guiding model specification is used for all nowcasting and forecasting horizons.

Since a choice of model specification (i.e. the number of lag orders P and a set of K variables) would consequently
affect a selection of hyperparameters, both optimal number of lag orders and hyperparameters are simultaneously
selected using the grid search method for all competing models, except the benchmark UNI-LSTM and AR(1) models.
For each combination of lag orders and hyperparameters, we first use the Least Absolute Shrinkage and Selection
Operator (LASSO) regression (Tibshirani, 1996) to select a set of variables which minimize 5-fold time series cross
validation (i.e. the previous four quarters of a given out-of-sample forecast) in terms of MSFE. The resulting variables
are presumably considered as the best available set of variables for forecasting the next out-of-sample period. Second,
we apply the ratio of 80:20 to split the available information into training and validation samples, fit the model using
training samples, and then compute the forecasts for the validation samples using a fixed forecast scheme. Lastly, we
compare the predictive performance on validation samples of all combinations in terms of RMSFE. Since the random
initial conditions in the algorithm may result in very different forecasts, each combination is estimated three times and
calculate an average RMSFE. We select a combination of lag orders and hyperparameters which achieves the lowest
RMSFE. Note that the whole model configuration process is recursively conducted in every out-of-sample forecast;
hence, the combination of variables, maximal lag orders, and hyperparameters are allowed to change over time. Since
the number of foreign tourists unprecedentedly drop to zero in April 2019 due to the travel restrictions imposed around
the world caused by the COVID-19 pandemic, the number of foreign tourists variable is therefore directly added into
the selected set of variables starting from 2019Q1 unless it is automatically selected by the LASSO.

Concerning for the candidate hyperparameters of the FA-LSTM model, we consider a following set of batch
size = {dinput/5e, dinput/3e, dinput/2e}; timesteps = {3, 6, 12, 18}; and the number of LSTM memory cells =
{(128), (256), (512), (128, 128), (256, 256)}, where the number of elements inside the brackets equals to the number
of hidden layer(s). As for the lag specification, we consider a small set of monthly lag order = {3, 6, 9} and quarterly
lag order = {1, 2, 3}. The same candidate set of batch size, LSTM memory cells size, monthly lag order, and quarterly
lag order are also considered for the FA-ANN model. As for the SA-LSTM model, the different set of candidate
hyperparameters are considered except the batch size. We consider the larger set of the number of LSTM memory cells
= {32, 64, 128, [32, 32], [64, 64], [128, 128]} and timesteps = {3, 6, 12, 18, 24}. Lastly, for the UNI-LSTM model, we
consider a set of batch size = {dinput/5e, dinput/3e, dinput/2e, dinput/1e}; the number of LSTM memory cells =
{(8), (16), (32), (64)}; and timesteps = {3, 6, 12, 15, 18, 24}. To prevent overfitting, we employ the early stopping of
five epochs and set the maximum epoch to 200. The optimal set of hyperparameters and lag specification is therefore
selected from a total of 540, 90, 96, and 135 combinations when recursively performing the grid search for FA-LSTM,
SA-LSTM, UNI-LSTM, and FA-ANN models, respectively.

4.4 Empirical results

Given the model configuration in each out-of-sample forecast for each forecasting horizon hm, we conduct one-horizon-
ahead forecast using the horizon-specific model. Except the simple AR(1) benchmark model, all competing models
are estimated 100 times so as to account for the stochastic nature of the algorithm, and take the average value as the
out-of-sample forecast of the respective model. The estimation sample depends on the model configuration and the
information available at each period in time.

Relative forecast accuracy of the competing models on the non-seasonally adjusted QGDP growth series can be found
in Table 3. We first focus only on the full out-of-sample 52 periods (2008Q1-2020Q4). The results show that the
FA-LSTM model performs significantly better than the benchmark UNI-LSTM model only at the 6-month horizon, and
is better, numerically but not statistically, at the 1-month horizon. The SA-LSTM model perform worse than those
of the UNI-LSTM model at all horizons. The alternative FA-ANN model is better, numerically but not statistically,
only at the 2-month horizon. Overall, the benchmark UNI-LSTM model seems to produce more accurate forecasts
compared to these alternatives at all horizons. Compared with the simple benchmark AR(1) model, both FA-LSTM
and the alternative FA-ANN models perform significantly better for all forecasting horizons. The SA-LSTM model
also produce more accurate forecasts than the benchmark AR(1) for all horizon, the difference is only statistically
significant at the 3-month horizon. Most of the relative MSFEs of all models are unsurprisingly less than one for all
horizons as the variance of the non-seasonally adjusted QGDP growth series is considerably high. In terms of the
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Table 3: Out-of-sample forecast comparisons for non-seasonally adjusted QGDP growth

2008Q1-2020Q4 Exclude large downturns Large downturns

Rel. RMSE Rel.
MSE

Rel. RMSE Rel.
MSE

Rel. RMSE Rel.
MSEUni AR(1) Uni AR(1) Uni AR(1)

1-month horizon
FA-LSTM 0.917 0.563 0.318 1.046 0.593 0.349 0.728 0.504 0.255
SA-LSTM 1.330 0.817 0.669 1.564 0.887 0.782 0.968 0.671 0.452

UNI-LSTM 3.593 0.615 0.378 3.206 0.567 0.320 4.340 0.693 0.482
FA-ANN 1.020 0.627 0.393 1.151 0.653 0.424 0.831 0.576 0.333

AR(1) 1.627 5.846 1.001 1.763 5.652 0.994 1.442 6.260 1.003
2-month horizon

FA-LSTM 1.044 0.608 0.370 1.198 0.676 0.455 0.745 0.457 0.209
SA-LSTM 1.323 0.770 0.594 1.381 0.780 0.604 1.229 0.753 0.569

UNI-LSTM 3.403 0.582 0.339 3.191 0.565 0.317 3.837 0.613 0.377
FA-ANN 0.999 0.582 0.339 1.126 0.636 0.402 0.761 0.466 0.218

AR(1) 1.718 5.846 1.001 1.771 5.652 0.994 1.632 6.260 1.003
3-month horizon

FA-LSTM 1.237 0.786 0.618 1.262 0.792 0.623 1.193 0.774 0.601
SA-LSTM 1.431 0.909 0.827 1.317 0.827 0.679 1.608 1.044 1.092

UNI-LSTM 3.713 0.635 0.404 3.547 0.628 0.391 4.062 0.649 0.422
FA-ANN 1.043 0.663 0.440 0.902 0.566 0.318 1.249 0.810 0.659

AR(1) 1.574 5.846 1.001 1.594 5.652 0.994 1.541 6.260 1.003
6-month horizon

FA-LSTM 0.938 0.420 0.962 0.449 0.890 0.361
SA-LSTM 1.259 0.756 1.296 0.815 1.184 0.638

UNI-LSTM 4.034 0.477 3.950 0.485 4.217 0.455
FA-ANN 1.101 0.578 1.067 0.552 1.167 0.619

9-month horizon
FA-LSTM 1.197 0.629 1.229 0.727 1.112 0.440
SA-LSTM 1.295 0.738 1.204 0.698 1.500 0.801

UNI-LSTM 3.874 0.440 3.936 0.482 3.731 0.356
FA-ANN 1.041 0.476 1.016 0.497 1.100 0.431

12-month horizon
FA-LSTM 1.071 0.563 0.960 0.516 1.345 0.644
SA-LSTM 1.276 0.799 1.242 0.863 1.372 0.670

UNI-LSTM 4.092 0.490 4.243 0.560 3.728 0.356
FA-ANN 1.012 0.502 0.878 0.432 1.326 0.625

Notes: This table reports out-of-sample forecast comparisons for six forecasting horizons (hm = 1, 2, 3, 6, 9, 12).
Columns 2-4 report comparison results for the full out-of-sample 52 periods (2008Q1-2020Q4). Columns 8-10 report
comparison results for the large economic downturn periods (see main text for more discussion), while columns 5-7
report the results for the out-of-sample data which exclude the large economic downturn periods. In each comparison
period, column Uni and column AR(1) report root mean squared forecasts error relative to the univariate LSTM and
AR(1) models, respectively, while column Rel. MSE reports mean squared forecasts error relative to the variance of
QGDP growth. The variance of QGDP growth series in each evaluation period is 34.138, 32.151, and 39.066, respectively.
As for the relative RMSFE measures, bold text indicates that the null hypothesis of the two methods having the same
forecast accuracy is rejected at the 5% significance level using Diebold & Mariano (1995) test statistics.

relative MSFEs, the UNI-LSTM also provide the most information content at all horizons. Only the FA-LSTM model
that is more informative at one and six months ahead. We also observe that, as new monthly information becomes
available, the forecast accuracy of the FA-LSTM model at the nowcasting horizons (hm = 1, 2, 3) improve with the
horizon. However, all competing models being considered here cannot always improve with this information. This
could be a result of the non-optimality in our model configuration process that simultaneously select the optimal set of
variables and hyperparameters.

Following Babii et al. (2021), we additionally examine whether the gains in predictive performance are persistent over
recursions or simply dominated by differences in performance in only a few periods. We compute the cumulative sum
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Figure 3: Cumulative sum of loss differentials (CUMSFE) of FA-LSTM model versus the benchmark univariate LSTM
model at 1-month horizon.
Notes: Solid line corresponds to CUMSFE. Positive columns correspond to positive loss differential (e2

q,uni − e2
q,fa)

indicating that the FA-LSTM model has smaller squared forecast errors compared to the benchmark univariate LSTM
model, and negative columns indicate the opposite.

of squared forecast error (CUMSFE) loss differential of the FA-LSTM and the benchmark UNI-LSTM models for
the 1-month horizon. The CUMSFE for the benchmark UNI-LSTM model versus the FA-LSTM model for quarter
q = t, t+ 1, t+ 2, ..., t+ k is defined as:

CUMSFEt,t+k =

t+k∑
q=t

(e2
q,uni − e2

q,fa) (11)

where t is the first prediction at the end of 2016Q1, t+ k is the last prediction at the end of 2020Q4, and eq,uni and
eq,fa are the forecast errors for quarter q from the benchmark UNI-LSTM and the FA-LSTM models, respectively. For
an out-of-sample forecast of quarter t, a positive value of loss differential e2

q,uni − e2
q,fa indicates that the FA-LSTM

model has smaller squared forecast errors compared to the benchmark UNI-LSTM model. Figure 3 shows the plot of
CUMSFE and loss differential for the 1-month horizon. We observe that the gains in predictive performance are not
persistent throughout the out-of-sample periods. Notably, the large gains (i.e. positive loss differential) of the FA-LSTM
model can be observed during the unprecedented events like the 2011 great flood in Thailand and the COVID-19
pandemic. This result suggests that our predictive performance might be mostly driven by these unusual periods in
our out-of-sample observations. To verify this, we thus turn our focus back to Table 3. The last three columns (8-10)
report the results for the out-of-sample forecasts in the financial crisis period, the great flood in Thailand period, and the
COVID-19 pandemic period. For simplicity, we define the financial crisis period as 2008Q1-2008Q4; the great flood in
Thailand period as 2011Q1-2011Q4, and the COVID-19 period as 2019Q1-2020Q4. Columns 5-7 report the results for
the out-of-sample periods which exclude the aforementioned large economic downturns.

The results, in terms of ranking, for the out-of-sample forecasts in the periods of large economic downturn and the
periods which exclude large economic downturn largely remain the same compared to the previously discussed ones.
Here, we focus only on the nowcasting horizon hm = 1, 2, 3. The forecast accuracy of the FA-LSTM model improves in
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the large economic downturn periods; however, deteriorates when we exclude the large economic downturns. Conversely,
the forecast accuracy of the benchmark UNI-LSTM model notably deteriorate in the large economic downturn, but
improve when we remove the large economic downturn periods. Compared with the benchmark UNI-LSTM model,
the results indicate that the FA-LSTM model perform significantly better during economic downturn periods at 1- and
2-month horizons; however, the benchmark UNI-LSTM model fits better when the economic downturn is absent. The
results imply that our FA-LSTM model can help to nowcast QGDP during unprecedented events.

To be policy relevant, we additionally compare the annualized QGDP forecasts of the FA-LSTM model with the publicly
available BOT model implied annual GDP forecasts at hm = 1, 3, 6, 9, 12. To this end, we exploit both the forecasts
produced by FA-LSTM model and the actual QGDP of the prior quarter(s) in the same year. For the 12-month ahead
(hm = 12) annual forecast at the beginning of 2008, for example, we use the forecasts of 2008Q1 at 3-month horizon,
2008Q2 at 6-month horizon, 2008Q3 at 9-month horizon, and 2008Q4 at 12-month horizon. Then, for the 9-month
ahead (hm = 9) annual forecast at the beginning of April 2008, we use the actual QGDP growth of 2008Q1, the
forecasts of 2008Q2 at 3-month horizon, 2008Q3 at 6-month horizon, and 2008Q4 at 9-month horizon. Note that we
abstract from additional complications such as those resulting from publication delay of the QGDP series.

Figure 4: Annualized QGDP growth of the FA-LSTM model versus the BOT model implied annual GDP growth.
Notes: For each year, the projection of annual GDP growth are made at the beginning of January (hm = 12), April
(hm = 9), July (hm = 6), October (hm = 3), and December (hm = 1). Dashed line corresponds to annualized QGDP
growth produced by the FA-LSTM model, dotted line corresponds to the BOT model implied annual GDP growth, and
solid line corresponds to the final annual GDP growth.

Concerning for the BOT forecast, the figures are compiled from various documents officially published by the BOT.
Specifically, we take the annual GDP growth forecasts that appear in the minutes of the monetary policy committee
meetings, the monetary policy report, inflation report, and the press release, which are all publicly available on the BOT
websites. We use the first available forecast that published later than the beginning of the annualized QGDP forecast
period for each forecasting horizon. Again, for example, for the 12-month ahead (hm = 12) annual forecast at the
beginning of 2008, the 2008 annual GDP growth forecast published in January 2008 inflation report is used.

In Figure 4, we plot the annualized QGDP growth forecast of the FA-LSTM model versus BOT model implied annual
forecast for hm = 1, 3, 6, 9, 12. In each year, we intentionally plot all five forecasts to present the development of the
forecasts in each forecasting horizon hm. The BOT model unsurprisingly produces smoother forecasts as the FA-LSTM
model performs poorly at longer horizons, i.e. hm = 9, 12. However, we can observe substantially improvement at the
shorter horizon hm = 1 and 3. In Table 4, we reports the predictive performance of both models at each forecasting
horizon. The results confirm that the forecast accuracy of the annualized QGDP growth forecast of the FA-LSTM
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Table 4: Forecast comparisons for annual GDP growth

RMSE

Annualized FA-LSTM BOT

1-month horizon 0.861 0.890
3-month horizon 1.054 1.367
6-month horizon 1.873 1.833
9-month horizon 4.764 1.920

12-month horizon 3.764 3.215

Notes: This table reports out-of-sample forecast comparisons
for five forecasting horizons (hm = 1, 3, 6, 9, 12). The last
two columns report the RMSFE of the forecasts between 2008-
2020 based on the annualized QGDP growth of the FA-LSTM
model and BOT model implied annual GDP growth forecasts,
respectively.

model is better than the BOT model implied forecast at shorter horizons hm = 1 and 3. While the BOT model implied
forecasts have better forecast accuracy than the annualized QGDP growth forecasts at longer horizons hm = 9 and 12;
the forecast accuracy of both models at 6-month horizon are not substantially different.

5 Conclusions

This paper demonstrates the potentials of applying the LSTM with time series data sampled at different frequencies. Our
contribution is to combine methods from the literature on machine learning and on mixed frequency time series data. We
adopt the U-MIDAS scheme into the LSTM architecture as a forecasting tool. From machine learning perspective, the
U-MIDAS scheme serves as an alternative feature engineering process that transforms the higher-frequency variables
into a low-frequency vector, denoted frequency alignment, and allows us to exploit potentially useful information
contained in the high-frequency time series data.

We have shown via Monte Carlo simulation the predictive performance of the LSTM with sampling alignment strategy
(i.e. the SA-LSTM), and the LSTM using U-MIDAS scheme (i.e. the FA-LSTM). Both models largely outperform
the MIDAS regression even in a set up favorable to the restricted MIDAS. The simulation results suggest that the
FA-LSTM is particularly suited to provide nowcasts of output variables in the quarterly/monthly data with small sample
size. We then continue our assessment in the empirical application for quarterly growth rate of Thai real GDP. The
results show that the univariate LSTM is generally a strong benchmark compared to the commonly used AR(1) model.
The SA-LSTM performs poorly compared to the benchmark univariate LSTM model at all horizons. We find that the
FA-LSTM performs significantly better than the benchmark univariate LSTM model only at the 6-month horizon, and
is better, numerically but not statistically, at the 1-month horizon. To be policy relevant, we additionally compare the
annualized QGDP forecasts of the FA-LSTM with the publicly available BOT model implied annual GDP forecasts
for 1-, 3-, 6-, 9-, and 12-month horizons. The results show that the forecast accuracy of the annualized QGDP growth
forecast of the FA-LSTM model is better than the BOT model implied forecast at shorter horizons (hm = 1, 3).

To sum up, both the Monte Carlo simulation and the empirical application show that the LSTM using U-MIDAS scheme
provides more flexibility when ones need to nowcast the macroeconomic low-frequency data series, such as GDP
growth, in the quarterly/monthly data. This does not mean that our proposed LSTM using U-MIDAS scheme can not
be applied to other frequency mismatch ratios. The frequency alignment procedure can be generalized to other data
sampled at different frequencies, such as daily or unconventional search data. Nonetheless, there are some limitations
that should be taken into account for future research. Similar to conventional LSTM model, the proposed LSTM using
U-MIDAS scheme requires an optimal set of hyperparameters. And even worse, the proposed model additionally
requires an optimal set of lag specification; consequently, the computational burden is even larger as a large number of
hyperparameters and lag specification combinations are required to be considered. The model configuration strategy
used in this paper is very time-consuming and obviously not optimal. This is an interesting area for future research.
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APPENDIX
Appendix A Optimal Hyperparameters selected for Monte Carlo Simulation

Table A.1: Optimal hyperparameter combinations for Monte Carlo simulation

hm
Raw
Obs

SA-LSTM FA-LSTM

[6, 0:0] [12, 0:0] [4, 0:2] [2, 0:5] [1, 0:11]

p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

Panel A. xk,τ ∼ N(0, 1) .

1 50 25 0.4 15 32 25 0.4 15 32 25 0.4 14 16 25 0.4 15 32 25 0.0 15 16
80 50 0.4 3 8 25 0.4 5 16 25 0.4 23 32 25 0.0 24 32 25 0.4 24 16

2 50 25 0.4 15 16 50 0.0 15 8 25 0.0 14 16 25 0.0 15 32 25 0.0 15 32
80 50 0.4 24 16 25 0.4 24 32 25 0.4 23 32 25 0.0 24 16 25 0.0 24 16

3 50 50 0.4 15 8 25 0.4 3 8 25 0.4 14 32 25 0.4 15 32 25 0.4 15 64
80 25 0.4 24 32 25 0.0 24 32 25 0.0 23 32 25 0.4 24 16 25 0.4 24 32

6 50 50 0.0 15 8 25 0.4 3 8 25 0.0 14 16 25 0.4 15 32 25 0.0 14 32
80 25 0.4 24 32 25 0.4 5 16 25 0.4 23 32 25 0.0 24 32 25 0.4 23 32

9 50 25 0.0 14 8 50 0.4 14 8 25 0.0 14 16 25 0.0 14 16 25 0.4 14 16
80 25 0.4 23 32 25 0.4 23 32 25 0.0 23 16 25 0.4 23 16 25 0.0 23 16

12 50 25 0.4 13 16 50 0.4 13 16 25 0.4 13 16 25 0.0 14 16 25 0.0 13 16
80 25 0.0 22 16 25 0.4 22 32 25 0.0 22 32 25 0.0 23 16 25 0.0 22 16

Panel B. xk,τ = 0.9xk,τ−1 + ετ

1 50 50 0.4 3 16 50 0.4 15 32 25 0.4 1 128 25 0.4 15 128 25 0.0 1 128
80 50 0.0 3 16 25 0.4 1 32 25 0.0 23 64 50 0.4 24 64 50 0.4 24 32

2 50 50 0.4 1 8 50 0.4 3 8 50 0.4 1 128 25 0.4 15 16 50 0.0 1 64
80 50 0.0 5 16 50 0.4 5 16 50 0.4 23 16 25 0.4 24 128 25 0.4 24 128

3 50 50 0.4 15 16 25 0.4 1 8 25 0.0 14 16 25 0.0 15 32 25 0.4 15 32
80 25 0.4 5 32 50 0.4 24 32 25 0.0 23 64 25 0.4 24 64 25 0.0 24 128

6 50 50 0.4 15 32 25 0.4 14 32 25 0.4 14 16 25 0.0 15 32 25 0.4 14 32
80 25 0.0 24 32 50 0.4 23 16 25 0.4 5 16 25 0.4 24 32 25 0.0 23 16

9 50 50 0.4 14 8 25 0.4 3 32 25 0.4 14 16 25 0.0 14 32 25 0.4 14 32
80 25 0.4 5 16 25 0.4 1 32 25 0.4 23 16 25 0.4 23 32 25 0.4 23 16

12 50 50 0.4 13 8 25 0.0 3 8 25 0.0 13 16 25 0.4 14 16 25 0.0 13 32
80 25 0.0 22 32 50 0.4 22 8 25 0.4 22 16 25 0.4 23 16 25 0.0 22 16

This table reports the optimal set of hyperparameters selected by the grid search method discussed in the main text.
Column 1 and 2 indicate the higher-frequency forecasting horizons and the sample size, respectively. The remaining
columns respectively report the optimal values of epoch (p1), dropout (p2), batch size (p3), and the number of LSTM
memory cells (p4) for the LSTM models in each forecasting horizon. Panel A and B report the optimal hyperparameters
for the experiments in which the higher-frequency variables are generated as xk,τ ∼ N(0, 1) and AR(1) process with
persistence equal to 0.9, respectively. The timesteps and lag specification of the input data, which are fixed across all
forecasting horizons, are shown for each LSTM model. Since the SA-LSTM models take no lagged variables, the lag
specification of [0:0] is simply shown. Given that three higher-frequency variables (K = 3) are used, the total number
of variables used for each LSTM model are thus K × (J + 1) = 3, 3, 9, 18, 36.
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Appendix B Data description

All quarterly and monthly macroeconomic series are from the Bank of Thailand (BOT) database. All series are final
revised data and supposedly published with a delay of up to one month according to the observed typical pattern
between the end of the reference period and the date of the respective release.

Table B.1: Data description table

Description Identifier Since SA Transformation

1 year treasury Bill FM_RT_001 2001M1 No MoM % change
10 years treasury bill FM_RT_001 2001M1 No MoM % change
USD Mid FX RATE FM_FX_001 1981M1 No MoM % change
GBP Mid FX RATE FM_FX_001 1981M1 No MoM % change
JPY Mid FX RATE FM_FX_001 1981M1 No MoM % change
Manufacturing production index EC_EI_001 1993M1 Yes MoM % change
Gross value added tax (at 2000 prices) EC_EI_001 1993M1 Yes MoM % change
Domestic automobiles sales EC_EI_001 1993M1 Yes MoM % change
Authorized capital of newly registered companies EC_EI_002 1993M1 Yes MoM % change
Construction areas permitted EC_EI_002 1993M1 Yes MoM % change
Number of foreign tourists EC_EI_028 1993M1 Yes Level change
Stock exchange of Thailand (SET) index EC_EI_002 1993M1 Yes MoM % change
Broad money (at 2000 prices) EC_EI_002 1993M1 Yes MoM % change
Oil price inverse index EC_EI_002 1993M1 Yes MoM % change
Business sentiment index - performance EC_EI_005 1999M1 No Index
Business sentiment index - total order book EC_EI_005 1999M1 No Index
Business sentiment index - investment EC_EI_005 1999M1 No Index
Business sentiment index - employment EC_EI_005 1999M1 No Index
Land and building transactions nationwide EC_EI_009 1995M1 No MoM % change
Registered applicants EC_EI_018 1995M1 No MoM % change
Vacancies EC_EI_018 1995M1 No MoM % change
Placements EC_EI_018 1995M1 No MoM % change
Retail sales index - non-durable goods EC_EI_032 2000M1 Yes MoM % change
Retail sales index - durable goods EC_EI_032 2000M1 Yes MoM % change
Retail sales index - department stores, etc. EC_EI_032 2000M1 Yes MoM % change
Retail sales index - motor vehicles and fuel EC_EI_032 2000M1 Yes MoM % change
Wholesales index - non-durable goods EC_EI_033 2000M1 Yes MoM % change
Wholesales index - durable goods EC_EI_033 2000M1 Yes MoM % change
Wholesales index - intermediate goods EC_EI_033 2000M1 Yes MoM % change
Agricultural products export value index EC_EI_026 2000M1 Yes MoM % change
Fishery products export value index EC_EI_026 2000M1 Yes MoM % change
Manufactured products export value index EC_EI_026 2000M1 Yes MoM % change
Consumer goods import value index EC_EI_025 2000M1 Yes MoM % change
Raw materials import value index EC_EI_025 2000M1 Yes MoM % change
Capital goods import value index EC_EI_025 2000M1 Yes MoM % change
Land index EC_EI_008 1991Q1 No MoM % change
Single-detached house (including land) index EC_EI_008 1991Q1 No MoM % change
Town house (including land) index EC_EI_008 1991Q1 No MoM % change
Total gross NPLs outstanding FI_NP_003 1991Q1 No MoM % change
Total credit outstanding of credit card FI_CB_080 1991Q1 Yes MoM % change

Notes: The Description column presents a macroeconomic time series name. The second column
Identifier denotes an assigned Report ID of a time series in the BOT database. The third column gives the
first available period of information for a time series. The column SA reports whether a seasonal patterns
of a time series is removed. The last column Transformation denotes the data transformation applied to a
time series.

Table B.1 reports the transformation applied to each macroeconomic time series. Most of the macroeconomic series are
transformed using their original information. The following macroeconomic series are needed to be processed prior
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to subsequent transformation: the monthly number of foreign tourists, the monthly business sentiment indexes, the
monthly retail sales indexes, and the monthly wholesales indexes.

To this end, we re-reference all four series of the monthly business sentiment index from 50 to zero so as to clearly
represent the direction of business sentiment. The seasonal patterns of all series of the monthly retail sales indexes
and the monthly wholesales indexes are removed using the X-13ARIMA-SEATS algorithm available in the seasonal
package (Sax & Eddelbuettel, 2018) in R prior to calculating the percentage change. The monthly number of foreign
tourists data used in this paper are from two series. The old series of the seasonally adjusted number of foreign tourists
had been published since 1993M1 and was obsolete after 1996M12. The BOT has since published the new series of
non-seasonally adjusted number of foreign tourists until present. To this end, we first deseasonalized the number of
foreign tourists from 1997M1 to 20203 using the X-13ARIMA-SEATS algorithm. The observations from 2020M4 to
2020M12 are intentionally excluded to avoid inappropriate deseasonalization because the number of foreign tourists are
either zero or drastically low since 2020M4 due to the COVID-19 pandemic. The original data are simply used if the
observations from 2020M4 to 2020M12 are required when estimating the model.
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