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1 INTRODUCTION
In this paper, we consider the problem of sampling from a posterior

𝜋 (𝜽 |𝐷) ∝ 𝑝 (𝐷 |𝜽 )𝑝 (𝜽 ),
where𝐷 denotes data and 𝜽 ∈ Θ is a vector of unknown parameters, in the case where the likelihood

𝑝 (𝐷 |𝜽 ) is costly to evaluate. We discuss two-stage algorithms. In the first of these, we examine

an adaptive Metropolis-Hastings (MH) algorithm [Hastings 1970; Robert 2015] which employs

an adaptively tuned Gaussian Process (GP) surrogate model at the first stage to filter out poor

proposals. If a proposal is not filtered out, at the second stage a full (expensive) log-likelihood

evaluation is carried out and used to decide whether it is accepted as the next state. Introduction of

the first stage, constructed in this way, saves computation on poor proposals. A key contribution of

this work is in the form of the acceptance probability in the first stage obtained by marginalising

out the GP function. This makes the acceptance ratio dependent on the variance of the GP, which

naturally results in an exploration-exploitation trade-off similar to the one of Bayesian Optimisation

[Brochu et al. 2010], which allows us to sample while learning the GP. We demonstrate that using

this expectation serves as a useful filtering scheme. The second algorithm is a two-stage form of

Metropolis adjusted Langevin algorithm (MALA) [Neal 2011]. Here, we use GP as a surrogate for

the log-likelihood function again, but in this case the GP is also used to approximate the gradient

required for MALA updating, using a well known result that the gradient of a GP is also a GP [Solak

et al. 2002]. Marginalizing out of the GP can also be performed in this instance.

The approximation we use is

LL(𝐷 |𝜽 ) := ln𝑝 (𝐷 |𝜽 ) ≈ L̃L𝑡 (𝐷 |𝜽 ) ∼ GP(𝜇 (𝜽 |I𝑡 ), 𝑘 (𝜽 , 𝜽 ∗ |I𝑡 )) (1)

where I𝑡 denotes the set of 𝑡 full evaluations of the log-likelihood by the current iteration, and 𝜽 ∗

collectively denotes the parameter values at which these evaluations were made. Adaptive tuning

of the GP surrogate is accomplished through use of the collection I𝑡 of full evaluations of the log-
likelihood. We argue that the tuning schedule we suggest satisfies diminishing adaptation [Roberts

and Rosenthal 2007] and hence will ensure correct sampling from the true target 𝜋 (𝜽 |𝐷).
Within the Markov chain Monte Carlo (MCMC) literature, there has been much interest in

recent years, in the use of proxy quantities for the target measure evaluations from different

aspects. Approaches using noisy approximations to an invariant transition kernel [Alquier et al.

2016; Andrieu and Roberts 2009] have gained much interest. The work here assumes that the

log-likelihood, though maybe expensive, can be computed, and is thus more aligned to the work

of Bliznyuk et al. [2012]; Christen and Fox [2005]; Fielding et al. [2011]; Joseph [2012]; Li et al.

[2019]; Rasmussen [2003]; Sherlock et al. [2017], involving ideas from delayed acceptance MCMC.

The key difference is that we do not carry out pre-computation of the GP prior to running the

algorithm, investigating adaptation of the GP on the fly using key results from the adaptive MCMC

literature [Roberts and Rosenthal 2007] to ensure convergence to the true target.
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We present the two stage MH algorithm in Section 2. Section 3 follows by introducing a the

two-stage MALA algorithm building on these ideas. Section 4 explores a range of examples and

demonstrates the merits of the filtering step, with a discussion of potential drawbacks.

2 TWO STAGE ADAPTIVE METROPOLIS-HASTINGS VIA GP APPROXIMATION
We combine the MH algorithm with a GP model which approximates the log-likelihood. In cases

where the log-likelihood is expensive to compute, the GP model can be used in a pre-filtering

step to determine proposals for which a full computation of the log-likelihood might well lead

to an acceptance [Christen and Fox 2005]. At each iteration of the algorithm, the first stage, uses

a GP to deliver an approximate log-likelihood evaluation. The GP is based on a collection I𝑡 of
previous full evaluations of the log-likelihood. A propsal is made from the current state and then

the usual MH acceptance probability is computed using the approximated log-likelihood (this

step is computationally inexpensive). If the proposal is accepted in this first stage, then it goes to

the second stage, where another acceptance probability is computed, but this time, based on the

full costly evaluation of the log-likelihood. The resulting evaluation of the log-likelihood is then

appended to I𝑡 , resulting in I𝑡+1.
Before giving a full description of the algorithm, we introduce some notation and give an explicit

definition of I𝑡 :
• S𝑘 denotes the points sampled up to the iteration 𝑘 of the algorithm;

• 𝜽 (𝑘)
denotes the most recent element in S𝑘 and 𝜽 ∗

denotes the proposed state

• I𝑡 = {(𝜽 (𝑖) , LL(𝐷 |𝜽 (𝑖) )) : 𝑖 = 1, . . . , 𝑡} denotes the 𝑡 ≤ 𝑘 exact likelihood evaluations

performed up to iteration 𝑘 .

We use a noise free GP as a surrogatemodel for the log-likelihood and denote byGP𝑘 (𝜇 (𝜽 |I𝑡 ), 𝑘 (𝜽 , 𝜽 |I𝑡 ))
the posterior GP at the iteration 𝑘 conditioned on the collection I𝑡 . We use L̃L𝑘 (𝜽 ) to denote the

GP-distributed log-likelihood. We choose the parameters of the GP to satisfy the following exact

interpolation property.

Assumption 1. The prior mean function and prior covariance function of the GP are selected to
guarantee exact interpolation:

𝜇 (𝜽 (𝑖) |I𝑡 ) = LL(𝐷 |𝜽 (𝑖) ), 𝑘 (𝜽 (𝑖) , 𝜽 |I𝑡 ) = 0,

for all 𝜽 (𝑖) with a corresponding entry in I𝑡 and 𝜽 ∈ Θ.1

This means the predictions of the GP at the points 𝜽 (𝑖) ∈ I𝑡 are exact and certain (zero

(co)variance), which is a desirable property in a noise free regression problem.
2
.

The two stages of the MH algorithm are as follows.

Stage 1. Use the predictive posterior GP (conditioned on the collection I𝑡 ) to approximate the

log-likelihood. Define the first stage acceptance probability:

𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗) = 1 ∧ exp(L̃L𝑡 (𝜽 ∗))𝑝 (𝜽 ∗)𝑞(𝜽 (𝑘) |𝜽 ∗)
exp(L̃L𝑡 (𝜽 (𝑘) ))𝑝 (𝜽 (𝑘) )𝑞(𝜽 ∗ |𝜽 (𝑘) )

(2)

where L̃L𝑡 (·) ∼ GP𝑘 (𝜇 (𝜽 |I𝑡 ), 𝑘 (𝜽 , 𝜽 |I𝑡 )) and we use the shorthand notation 𝑎 ∧ 𝑏 = min(𝑎, 𝑏).
Note that, because of the exact interpolation property in Assumption 1, it results that L̃L𝑡 (𝜽 (𝑘) ) =
LL𝑡 (𝜽 (𝑘) ).

1
Any universal covariance function satisfies this property, for instance Squared Exponential.

2
This also guarantees consistency between the two stages: the denominator of (2) and (6) is the same
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The acceptance probability 𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗) (respectively, 𝛼 (1) (𝜽 ∗, 𝜽 (𝑘) )) depends on L̃L𝑡 (𝜽 ∗) −
L̃L𝑡 (𝜽 (𝑘) ) (respectively, −L̃L𝑡 (𝜽 ∗) + L̃L𝑡 (𝜽 (𝑘) ) ) which is GP distributed. A key part of our approach

involves marginalizing this dependence out by exploiting the following result.

Proposition 2.1. The distribution of 𝑒 L̃L𝑡 (𝜽 ) is Lognormal (𝜇 (𝜽 |I𝑡 ), 𝑘 (𝜽 , 𝜽 |I𝑡 )) , and its mean is

𝑒𝜇 (𝜽 |I𝑡 )+
1

2
𝑘 (𝜽 ,𝜽 |I𝑡 ) . (3)

The proofs of this and the other Propositions are given in Appendix B. By Assumption 1, we have

that 𝑘 (𝜽 (𝑘) , 𝜽 (𝑘) |I𝑡 ) = 𝑘 (𝜽 ∗, 𝜽 (𝑘) |I𝑡 ) = 0 and, therefore, L̃L𝑡 (𝜽 ∗) and L̃L𝑡 (𝜽 (𝑘) ) are sampled inde-

pendently. By exploiting Proposition 2.1, we remove the dependence of the acceptance probability

on L̃L in (2) resulting in the acceptance probability:

𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗) = 1 ∧ 𝑒𝜇 (𝜽
∗ |I𝑡 )+ 1

2
𝑘 (𝜽 ∗,𝜽 ∗ |I𝑡 )𝑝 (𝜽 ∗)𝑞(𝜽 (𝑘) |𝜽 ∗)

𝑒𝜇 (𝜽
(𝑘 ) |I𝑡 )𝑝 (𝜽 (𝑘) )𝑞(𝜽 ∗ |𝜽 (𝑘) )

, (4)

where 𝜇 (𝜽 (𝑘) |I𝑡 ) = LL(𝜽 (𝑘) ) is the exact log-likelihood (by Assumption 1).

It can be seen that 𝜇 (𝜽 ∗ |I𝑡 ) + 1

2
𝑘 (𝜽 ∗, 𝜽 ∗ |I𝑡 ) depends on the GP variance and, therefore, the accep-

tance probability is larger in regions where the GP uncertainty is large. Similar to the acquisition

functions in Bayesian optimisation, this naturally results in an exploration-exploitation trade-off.

However, our goal here is different, we aim to sample from the target distribution.

Therefore, given (4), in Stage 1, we accept 𝜽 ∗
with probability 𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗), otherwise 𝜽 (𝑘+1) =

𝜽 (𝑘)
. This defines the following transition kernel at Stage 1:

𝑄∗
𝑘
(𝐴|𝜽 (𝑘) ) =

∫
𝐴

𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗)𝑞(𝜽 ∗ |𝜽 (𝑘) )𝑑𝜽 ∗ + 𝐼𝐴 (𝜽 )
∫
Θ
(1 − 𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗))𝑑𝜽 ∗ . (5)

One can show that the above transition kernel satisfies the detailed balance property for the

approximated target distribution 𝑒𝜇 (𝜽 |I𝑡 )+
1

2
𝑘 (𝜽 ,𝜽 |I𝑡 )𝑝 (𝜽 ).

Proposition 2.2. The transition kernel (5) satisfies detailed balance.

We are not interested in the approximated target distribution, this is the reason we perform the

second stage.

Stage 2. At Stage 2, we perform another MH acceptance step, evaluating the exact log-likelihood.

Let 𝜽 ∗
denote a point sampled from 𝑞∗

𝑘
(𝜽 ∗ |𝜽 (𝑘) ) := 𝑄∗

𝑘
(𝑑𝜽 ∗ |𝜽 (𝑘) ). Note that, 𝜽 ∗

is either equal to

the point 𝜽 ∗
sampled at Stage 1 or to 𝜽 (𝑘)

if 𝜽 ∗
was rejected at Stage 1.

So, with probability

𝛼 (2) (𝜽 (𝑘) , 𝜽 ∗) = 1 ∧
exp(LL(𝐷 |𝜽 ∗))𝑝 (𝜽 ∗)𝑞∗

𝑘
(𝜽 (𝑘) |𝜽 ∗)

exp(LL(𝐷 |𝜽 (𝑘) ))𝑝 (𝜽 (𝑘) )𝑞∗
𝑘
(𝜽 ∗ |𝜽 (𝑘) )

= 1 ∧ exp(LL(𝐷 |𝜽 ∗))𝑝 (𝜽 ∗)𝑞(𝜽 (𝑘) |𝜽 ∗)𝛼 (1) (𝜽 ∗, 𝜽 (𝑘) )
exp(LL(𝐷 |𝜽 (𝑘) ))𝑝 (𝜽 (𝑘) )𝑞(𝜽 ∗ |𝜽 (𝑘) )𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗)

, (6)

we accept 𝜽 ∗
, otherwise 𝜽 (𝑘+1) = 𝜽 (𝑘)

.

The definition of 𝑞∗
𝑘
means a rejection at Stage 1 always leads to a rejection at Stage 2, we do not

need to compute (6) when (2) has led to a rejection. When the sample 𝜽 ∗
is accepted a Stage 1, we

compute the full log-likelihood, update the set I𝑡 , and evaluate (6).

Overall the acceptance probability for a new point 𝜽 ∗
is 𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗)𝛼 (2) (𝜽 (𝑘) , 𝜽 ∗). The overall

two-stage algorithm preserves detailed balance with respect to the posterior distribution and this fol-

lows directly by (6), which is a standardMH acceptance stepwith proposal𝑞𝑘 (𝜽 (𝑘) |𝜽 ∗)𝛼 (1) (𝜽 ∗, 𝜽 (𝑘) ).
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Fig. 1. Convergence of the GP mean to the log-normal unnormalised density and of 𝛼1 to 𝛼2 with increasing
iterations (a)-(f).

Convergence analysis. To prove the convergence to the target distribution, it is enough to show

that the overall (two-stage) transition kernel 𝑃𝑡 (·|𝜽 ) satisfies the Diminishing Adaptation condition

in Roberts and Rosenthal [2007]:

lim

𝑡→∞
sup

𝜽 ∈Θ
| |𝑃𝑡 (·|𝜽 ) − 𝑃𝑡−1 (·|𝜽 ) | | = 0 in probability. (7)

and the Bounded Convergence conditionwhich is generally satisfied under some regularity conditions

of Θ and the target distribution. The adaptivity in our two-stage algorithm is due to the GP and

diminishing adaptation follows by this property of the posterior predictive variance.

Proposition 2.3. For fixed hypeprameters, the surrogatedmodel satisfies this property:𝑘 (𝜽 ∗, 𝜽 ∗ |I𝑡 ) <
𝑘 (𝜽 ∗, 𝜽 ∗ |I𝑡−1).

For illustration, in Figure 1, we consider a 1D case with 𝜋 (𝜃 ) ∝ 𝑒− 𝑥2

2 . It can be noticed how 𝛼1
converges to 𝛼2 at the increase of the log-likelihood evaluations in I𝑡 .

Proposition 3.1 holds under the assumption of fixed hyperparameters for the covariance function

of the GP. Therefore, in our algorithm, we update the hyperparameters only during burnin.
In the next section, we extend these results to Metropolis-adjusted Langevin method.

3 METROPOLIS-ADJUSTED LANGEVIN
The MALA takes one step (of step size 𝛿 > 0) in the direction of the gradient from the current point

𝜽 ∗
:= 𝜽 (𝑘) + 1

2

𝛿Λ
(
∇𝐿𝐿(𝜽 (𝑘) ) + ∇ log𝑝 (𝜽 (𝑘) )

)
+
√
𝛿Λz (8)

with z ∼ 𝑁 (0, 𝐼 ) and Λ is a preconditioning covariance matrix. Here

√
Λ denotes the matrix

square root. In this case, we assume that we can evaluate both the log-likelihood and its gradient

I𝑡 = {(𝜽 (𝑖) , [LL(𝐷 |𝜽 (𝑖) ),∇𝑇 LL(𝐷 |𝜽 (𝑖) )]) : 𝑖 = 1, . . . , 𝑡}. We use a multiple-output joint GP [Solak

et al. 2002] as surrogate model for the log-likelihood and its gradient. The idea in this case is simply

to apply the previous two-stage algorithm using the proposal (8) with gradient replaced by ∇̃𝐿𝐿.
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𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗) = 1 ∧
exp(L̃L𝑡 (𝜽 ∗))𝑝 (𝜽 ∗)𝑞(𝜽 (𝑘) |𝜽 ∗ + 1

2
𝛿Λ∇̃𝐿𝐿(𝜽 ∗) + 1

2
𝛿Λ∇ log𝑝 (𝜽 ∗))

exp(L̃L𝑡 (𝜽 (𝑘) ))𝑝 (𝜽 (𝑘) )𝑞(𝜽 ∗ |𝜽 (𝑘) + 1

2
𝛿Λ∇̃𝐿𝐿(𝜽 (𝑘) ) + 1

2
𝛿Λ∇ log𝑝 (𝜽 (𝑘) ))

(9)

where 𝑞 is the Normal proposal with covariance 𝛿Λ. Note that, L̃L𝑡 (𝜽 (𝑘) )), ∇̃𝐿𝐿(𝜽 (𝑘) ) are exact
evaluations because of Assumption 1. As before we can marginalise out 𝐿𝐿, ∇̃𝐿𝐿 computing the

expectation of 𝛼1 w.r.t. the GP. We use the following result.

Proposition 3.1. The expectation of

𝑒 𝑓 (𝜽
∗)𝑞(𝜽 ′ |𝜽 ∗ + 𝛿

2
Λ∇𝑓 (𝜽 ∗) + 𝛿

2
Λ∇ log𝑝 (𝜽 ∗)) (10)

w.r.t. the GP, where 𝑓 ,∇𝑓 denote the GP distributed log-likelihood and its gradient and 𝑝 (𝜽 ∗) is the
prior, is equal to

𝑒

𝑉𝑇

[
𝜇

Λ𝜇∇

]
+ 1

2
𝑉𝑇𝐾𝑉+ 1

2

𝛿2

4
𝜇𝑇∇Λ𝜇∇

𝑞(𝜽 ′ |𝜽 ∗ + 𝛿
2
Λ∇ log𝑝 (𝜽 ∗))

with 𝑉 =

[
1,

(
𝜽 ′ − 𝜽 ∗ − 𝛿

2
Λ∇ log𝑝 (𝜽 ∗) − 𝛿

4
(Λ𝜇∇)𝑇 )

)𝑇
Λ−1 𝛿

2

]𝑇
, 𝜇, 𝜇∇ are the GP predictive means

for 𝑓 ,∇𝑓 and 𝐾 is the relative covariance matrix.

Stage 2 uses the exact evaluation of the log-likelihood and its gradient. We omit the details. The

overall algorithm is similar to the one presented previously for MH with the only difference that

the GP is multi-output over the log-likelihood and its gradient.

4 NUMERICAL EXPERIMENTS
To model the log-likelihood (and its gradient for MALA), we use a GP with Square Exponential

covariance function. A zero mean is used with the value of LL(𝜽 (𝑘) ) (and its gradient for MALA)

subtracted. This is equivalent to defining a GP with prior mean equal to LL(𝜽 (𝑘) ); in this way,

far from the data, the acceptance probability 𝛼1 only depends on the variance of the GP. This

guarantees a high probability of acceptance in Stage 1 for samples in large-uncertainty regions.

The GP is initialised using 3 observations, before starting the two-stage sampler.

We consider five target distributions.

T1 The 2D posterior of the parameters 𝑎, 𝑏 of the banana shape distribution (true value set to

𝑎 = 0.2, 𝑏 = 2);

T2 The 3D posterior of the parameters 𝑎, 𝑏, 𝜎 of the nonlinear regression model 𝑦 = 𝑎 𝑥
𝑥+𝑏 + 𝜖 ,

𝜖 ∼ 𝑁 (0, 𝜎2) (true value set to 𝑎 = 0.14, 𝑏 = 50, 𝜎 = 0.1).

T3 The 3D posterior of the parameters ℓ1, ℓ2, 𝜎
2
of the SE kernel for a GP-classifier.

T4 The 4D posterior of the parameters 𝛽,𝛾, 𝜎1, 𝜎2 of a Susceptible, Infected, Recovery (SIR)

model.

T5 The 5D posterior of the parameters 𝛽0, . . . , 𝛽4 of a parametric logistic regression problem.

Appendix A gives further details on priors assumed for the parameters and selected proposal. Each

of these five posteriors has a specific feature, resulting in a diverse set of challenging targets, for

instance T1 is heavy tailed and T2 is heavily anisotropic. T4, the SIR problem, is a prototypical

example of the type of applications targeted by the proposed method. To compute the likelihood,

we need to solve numerically a system of ODEs and, in more complex biological and chemical

models, this can be computationally heavy.

Evaluating the likelihood in these five problems is very fast, this allows us to quickly perform

Monte Carlo simulations to assess the performance of the model by generating artificial data.
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AR ESS ESJD Eval% SD

T1

MH 0.37 90 0.13 100 0.02

GP-MH 0.36 113 0.13 41 0.02

MALA 0.26 73 0.2 100 0.03

GP-MALA 0.26 75 0.2 35 0.02

T3

MH 0.42 137 0.44 100 4.1

GP-MH 0.42 135 0.38 42 3.5

MALA 0.44 133 0.48 100 4.1

GP-MALA 0.43 134 0.45 45 3.5

T5

MH 0.29 98 0.002 100 0.006

GP-MH 0.29 102 0.002 35 0.006

MALA 0.67 339 0.009 100 0.006

GP-MALA 0.67 368 0.009 68 0.006

AR ESS ESJD Eval% SD

T2

MH 0.28 138 32.6 100 339

GP-MH 0.27 133 31 39 339

MALA 0.26 220 51 100 316

GP-MALA 0.21 147 29 43 255

T4

MH 0.1 51 0.003 100 0.009

GP-MH 0.1 45 0.003 15 0.009

Table 1. Comparison between the proposed GP-based samplers and standard MH and MALA in terms of
the acceptance rate (AR), Effective Sample Size (ESS), Expected Square Jumping Distance (ESJD), percentage
of likelihood evaluations in the 2000 iterations (EVAL), Square Distance (SD) between the true value of the
parameters and the estimated posterior mean. We have not run MALA for the SIR model.

We then evaluate the efficiency of the algorithms by simply counting the number of likelihood

evaluations.

We compare our two-stage algorithm with the standard implementations of MH and MALA. For

each target problem and in each simulation, we generate 2500 samples (including 500 for burnin).

We have deliberately selected a small number of samples to show that our approach converges

quickly, which is important in computationally expensive applications. We check for convergence

to the correct posterior distribution using the metrics described in the caption of Table 1.

Table 1 reports the value of the metrics averaged over the 30 simulations and over parameters.

Comparing the simulations’ results it can be noticed that the proposed GP-based samplers obtain

the same convergence metrics of the standard MH and MALA, but with a fraction of the number

of likelihood evaluations. It can also be noticed how the fraction of the number of full likelihood

evaluations required is problem dependent, ranging from 15% for T4 to 65% for T3. This demonstrates

that our approach automatically adapts to the complexity of the specific target distribution.

5 CONCLUSIONS
We have presented a two-stage Metropolis-Hastings algorithm for sampling probabilistic models,

whose log-likelihood is computationally expensive to evaluate, by using a surrogate GP model.

The key feature of the approach, and the difference w.r.t. previous works, is the ability to learn

the target distribution from scratch (while sampling), and so without the need of pre-training the

GP. This is fundamental for automatic and inference in Probabilistic Programming Languages In

particular, we have presented an alternative first stage acceptance scheme by marginalising out the

GP distributed function, which makes the acceptance ratio explicitly dependent on the variance of

the GP. This approach is extended to Metropolis-Adjusted Langevin algorithm (MALA). Numerical

experiments have demonstrated the effectiveness of the method, which can automatically adapt to

the complexity of the target distribution. In the numerical experiments, we have used a full GP

whose computational load grows cubically as the size of the training set increases. Sparse GPs can

be employed to address this issue [Bauer et al. 2016; Hensman et al. 2013; Hernández-Lobato and

Hernández-Lobato 2016; Quiñonero-Candela and Rasmussen 2005; Schuerch et al. 2020; Snelson

and Ghahramani 2006; Titsias 2009] when it is necessary to sample thousands of samples.

In future work, we plan to extend the approach we used for MALA to Hamiltonian Monte Carlo.

We also intend to investigate whether tailored covariance functions for log densities or ratios of

densities can provide any convergence advantage, but also investigate surrogate models alternative

to GPs.
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A PRIORS FOR T1–T5
A zero prior is used for T1. In each simulation, we generate a different starting point in the interval

[−2, 2].
For T2, the prior is𝑎 ∼ 𝑁 (3, 1), 𝑏 ∼ 𝑁 (30, 152), log𝜎 ∼ 𝑁 (−2, 1) and𝑥 = [28, 55, 83, 110, 138, 225, 375].

In each simulation, we generate different 𝑦 according to the likelihood reported in the main text.

For T3, the prior is log ℓ𝑖 , log𝜎 ∼ 𝑁 (0, 10). The GP classification dataset includes 1000 points

with 𝑥1, 𝑥2 ∼ 𝑁 (0, 1). In each simulation, the true two lengthscales are uniformly sampled from

[0.1, 1]. The true variance is fixed at 𝜎2 = 5.

For T4, we use the probabilistic model described in [Demetri Pananos 2019].

For T5, the prior is 𝛽𝑖 ∼ 𝑁 (0, 100). The GP classification dataset includes 1000 points with

𝑥1, 𝑥2 ∼ 𝑁 (0, 1). In each simulation, the true 𝛽𝑖 are sampled from 𝑁 (0, 1).
In all cases, we have used Normal proposals for MH with diagonal covariance matrix.

B PROOFS
B.1 Proof of Proposition 2.1
This follows by the mean of the log-normal distribution.

B.2 Proof of Proposition 2.2
We prove detailed balance:

𝑒𝜇 (𝜽
(𝑘 ) |I𝑡 )+ 1

2
𝑘 (𝜽 (𝑘 ) ,𝜽 (𝑘 ) |I𝑡 )𝑝 (𝜽 (𝑘) )𝑞(𝜽 ∗ |𝜽 (𝑘) )𝛼 (1) (𝜽 (𝑘) , 𝜽 ∗)

= 𝑒𝜇 (𝜽
(𝑘 ) |I𝑡 )+ 1

2
𝑘 (𝜽 (𝑘 ) ,𝜽 (𝑘 ) |I𝑡 )𝑝 (𝜽 (𝑘) )𝑞(𝜽 ∗ |𝜽 (𝑘) )

(
1 ∧ 𝑒

𝜇 (𝜽∗ |I𝑡 )+ 1

2
𝑘 (𝜽∗,𝜽∗ |I𝑡 )𝑝 (𝜽 ∗)𝑞 (𝜽 (𝑘 ) |𝜽 ∗)

𝑒
𝜇 (𝜽 (𝑘 ) |I𝑡 )+ 1

2
𝑘 (𝜽 (𝑘 ) ,𝜽 (𝑘 ) |I𝑡 )𝑝 (𝜽 )𝑞 (𝜽 ∗ |𝜽 (𝑘 ) )

)
=

(
𝑒𝜇 (𝜽

(𝑘 ) |I𝑡 )+ 1

2
𝑘 (𝜽 (𝑘 ) ,𝜽 (𝑘 ) |I𝑡 )𝑝 (𝜽 (𝑘) )𝑞(𝜽 ∗ |𝜽 (𝑘) ) ∧ 𝑒𝜇 (𝜽 ∗ |I𝑡 )+ 1

2
𝑘 (𝜽 ∗,𝜽 ∗ |I𝑡 )𝑝 (𝜽 ∗)𝑞(𝜽 (𝑘) |𝜽 ∗)

)
=

(
𝑒
𝜇 (𝜽 (𝑘 ) |I𝑡 )+ 1

2
𝑘 (𝜽 (𝑘 ) ,𝜽 (𝑘 ) |I𝑡 )𝑝 (𝜽 (𝑘 ) )𝑞 (𝜽 ∗ |𝜽 (𝑘 ) )

𝑒
𝜇 (𝜽∗ |I𝑡 )+ 1

2
𝑘 (𝜽∗,𝜽∗ |I𝑡 )𝑝 (𝜽 ∗)𝑞 (𝜽 (𝑘 ) |𝜽 ∗)

∧ 1

)
𝑒𝜇 (𝜽

∗ |I𝑡 )+ 1

2
𝑘 (𝜽 ∗,𝜽 ∗ |I𝑡 )𝑝 (𝜽 ∗)𝑞(𝜽 (𝑘) |𝜽 ∗).

which ends the proof. The term in brackets in the last equation is 𝛼 (1) (𝜽 ∗, 𝜽 (𝑘) ). Because of

Assumption 1, we have that 𝑘 (𝜽 (𝑘) , 𝜽 ∗ |I𝑡 ) = 0 (independent). This is the reason we can assume

work on the numerator and denominator independently.

B.3 Proof of Proposition 2.3
Let 𝜽 ′

denote the new point in I𝑡−1 and with 𝑅 all the points in I𝑡−1, by definition of Kernel matrix:

𝐾𝑡 =

[
𝐾𝑡−1 𝑘𝑡−1 (𝜽 ′)

𝑘𝑡−1 (𝜽 ′)⊤ 𝑘 (𝜽 ′, 𝜽 ′)

]
:=

[
𝑘 (𝑅, 𝑅) 𝑘 (𝜽 ′, 𝑅)
𝑘 (𝜽 ′, 𝑅)⊤ 𝑘 (𝜽 ′, 𝜽 ′)

]
. (11)

The predicted variance at step 𝑡 at the point 𝜽 ∗
is

𝑘 (𝜽 ∗, 𝜽 ∗) − 𝑘𝑡 (𝜽 ∗)⊤𝐾−1
𝑡 𝑘𝑡 (𝜽 ∗),

while the predicted variance at step 𝑡 − 1 at the point 𝜽 ∗
is

𝑘 (𝜽 ∗, 𝜽 ∗) − 𝑘𝑡−1 (𝜽 ∗)⊤𝐾−1
𝑡−1𝑘𝑡−1 (𝜽 ∗)

Therefore, we need to prove that

𝑘𝑡 (𝜽 ∗)⊤𝐾−1
𝑡 𝑘𝑡 (𝜽 ∗) > 𝑘𝑡−1 (𝜽 ∗)⊤𝐾−1

𝑡−1𝑘𝑡−1 (𝜽 ∗).
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The inverse of 𝐾𝑡 is:

𝐾−1
𝑡 =

[
𝐾−1
𝑡−1 + 𝐾−1

𝑡−1𝑘𝑡−1 (𝜽
′)𝑀𝑘𝑡−1 (𝜽 ′)⊤𝐾−1

𝑡−1 −𝐾−1
𝑡−1𝑘𝑛−1 (𝜽 )𝑀

−𝑀𝑘𝑡−1 (𝜽 )⊤𝐾−1
𝑡−1 𝑀

]
, (12)

with𝑀 = (𝑘 (𝜽 ′, 𝜽 ′) − 𝑘𝑡−1 (𝜽 ′)⊤𝐾−1
𝑡−1𝑘𝑡−1 (𝜽

′))−1. Now note that

𝑘𝑡 (𝜽 ∗)⊤𝐾−1
𝑡 𝑘𝑡 (𝜽 ∗)

=
[
𝑘⊤𝑡−1 (𝜽

∗), 𝑘 ′(𝜽 ∗)
] [𝐾−1

𝑡−1 + 𝐾−1
𝑡−1𝑘𝑡−1 (𝜽

′)𝑀𝑘𝑡−1 (𝜽 ′)⊤𝐾−1
𝑡−1 −𝐾−1

𝑡−1𝑘𝑛−1 (𝜽 )𝑀
−𝑀𝑘𝑡−1 (𝜽 )⊤𝐾−1

𝑡−1 𝑀

] [
𝑘𝑡−1 (𝜽 ∗)
𝑘 ′(𝜽 ∗)

]
which is equal to:

𝑘𝑡 (𝜽 ∗)⊤𝐾−1
𝑡 𝑘𝑡 (𝜽 ∗) = 𝑘⊤𝑡−1 (𝜽 ∗)𝐾−1

𝑡−1𝑘𝑡−1 (𝜽 ∗) + 𝑘⊤𝑡−1 (𝜽 ∗)𝐾−1
𝑡−1𝑘𝑡−1 (𝜽 ′)𝑀𝑘𝑡−1 (𝜽 ′)⊤𝐾−1

𝑡−1𝑘𝑡−1 (𝜽 ∗)
− 𝑘 ′(𝜽 ∗)𝑀𝑘𝑡−1 (𝜽 ′)⊤𝐾−1

𝑡−1𝑘𝑡−1 (𝜽 ∗) − 𝑘𝑡−1 (𝜽 ∗)⊤𝐾−1
𝑡−1𝑘𝑡−1 (𝜽 ′)𝑀𝑘 ′(𝜽 ∗) + 𝑘 ′(𝜽 ∗)𝑀𝑘 ′(𝜽 ∗) .

where 𝑘 ′(𝜽 ∗) := 𝑘 (𝜽 ∗, 𝜽 ′). Therefore, we have that
𝑘𝑡 (𝜽 ∗)⊤𝐾−1

𝑡 𝑘𝑡 (𝜽 ∗) = 𝑘⊤𝑡−1 (𝜽 ∗)𝐾−1
𝑡−1𝑘𝑡−1 (𝜽 ∗) + 𝑁 .

with

𝑁 = 𝑀 (𝑘⊤𝑡−1 (𝜽 ∗)𝐾−1
𝑡−1𝑘𝑡−1 (𝜽 ′) − 𝑘 ′(𝜽 ∗))2 = 𝑀 (𝑘⊤𝑡−1 (𝜽 ∗)𝐾−1

𝑡−1𝑘𝑡−1 (𝜽 ′) − 𝑘 (𝜽 ∗, 𝜽 ′))2

which is strictly greater than zero whenever 𝜽 ∗, 𝜽 ′ ∉ I𝑡−1. Note in fact that, under Assumption 1,

𝑁 = 0 only if either 𝜽 ∗ ∈ I𝑡−1 or 𝜽 ′ ∈ I𝑡−1 (exact interpolation property). If the proposal distribution
is absolutely continuous w.r.t. the Lebesgue measure on Θ, then 𝜽 ∗, 𝜽 ′ ∉ I𝑡−1 holds with probability

1.

B.4 Proof of Proposition 3.1
We work in log-scale and omit the dependence of 𝑓 ,∇𝑓 on 𝜽 ∗

for notation simplification and so we

can rewrite the product of the two PDF in (10):

𝑓 − 1

2

(
𝜽 ′ − 𝜽 ∗ − 𝛿

2

Λ∇ log𝑝 (𝜽 ∗)
)𝑇

Λ−1 (· · · ) + 2

2

(
𝜽 ′ − 𝜽 ∗ − 𝛿

2

Λ∇ log𝑝 (𝜽 ∗)
)𝑇

Λ−1 (𝛿
2

Λ∇𝑓 )

− 1

2

(
𝛿

2

Λ∇𝑓
)𝑇

Λ−1 (· · · ) − 1

2

[
𝑓 − 𝜇,∇𝑇 𝑓 − 𝜇𝑇∇

] [ 𝐴 𝐵

𝐵𝑇 𝐶

] [
𝑓 − 𝜇

∇𝑓 − 𝜇∇

]
where Λ is the covariance matrix of the proposal, and the last term in the above sum is the GP

predictive posterior with mean [𝜇, 𝜇∇] and covariance 𝐾 . We have expressed 𝐾−1
as the block

matrix with blacks 𝐴, 𝐵,𝐶, 𝐷 . We can rewrite the above sum as

𝑓 − 1

2

(
𝜽 ′ − 𝜽 ∗ − 𝛿

2

Λ∇ log𝑝 (𝜽 ∗)
)𝑇

Λ−1 (· · · ) + 2

2

(
𝜽 ′ − 𝜽 ∗ − 𝛿

2

Λ∇ log𝑝 (𝜽 ∗)
)𝑇

Λ−1 (𝛿
2

Λ∇𝑓 )

− 2

2

𝛿2

4

𝜇𝑇∇Λ∇𝑓 +
1

2

𝛿2

4

𝜇𝑇∇Λ𝜇∇ − 1

2

[
𝑓 − 𝜇,∇𝑇 𝑓 − 𝜇𝑇∇

] [ 𝐴 𝐵

𝐵𝑇 𝛿2

4
Λ +𝐶

] [
𝑓 − 𝜇

∇𝑓 − 𝜇∇

]
We can now define the vector 𝑉 and prove the result using the moments of the multivariate

Lognormal distribution [Halliwell 2015].
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