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Abstract

Despite the extensive research efforts and the remarkable results obtained on Vehicle Routing Prob-
lems (VRP) by using algorithms proposed by the Machine Learning community that are partially or
entirely based on data-driven analysis, most of these approaches are still seldom employed by the Op-
erations Research (OR) community. Among the possible causes, we believe, the different approach to
the computational evaluation of the proposed methods may play a major role. With the current work,
we want to highlight a number of challenges (and possible ways to handle them) arising during the
computational studies of heuristic approaches to VRPs that, if appropriately addressed, may produce
a computational study having the characteristics of those presented in OR papers, thus hopefully pro-

moting the collaboration between the two communities.

1 Introduction

Recently, several attempts to use machine learning (ML) to deal with combinatorial optimization prob-
lems (COPs) have been proposed. Indeed, ML promises to support the design of algorithms as well
as the resolution process, by decreasing the need for hand-crafted and specialized solution approaches,
which are notably known to require high expertise and a huge time investment for being developed.
The incredible advances in deep learning (DP, Goodfellow, Bengio, and Courville (2016)) coupled with
increasingly powerful hardware, have led to very promising results for a variety of COPs (Bengio, Lodi,
and Prouvost (2020) and Mazyavkina et al. (2020)).

In this work, we focus on COPs arising in the area of vehicle routing. Vehicle routing problems (VRPs,
Toth and Vigo (2014)) are, in fact, increasingly receiving attention in the ML community both because
of their relevance in real-world applications and the computational challenges they pose (Vesselinova
et al. (2020)). Indeed, VRPs have been the test-bed for novel neural network architectures such as pointer
networks (Vinyals, Fortunato, and Jaitly (2015)), graph embedding networks (H. Dai, B. Dai, and Song
(2016) and Khalil et al. (2017)) and attention-based models (Kool, Hoof, and Welling (2019) and Deudon
et al. (2018)) achieving stunning results on a variety of problems. Currently, most of the proposed ap-
proaches aim at learning constructive heuristics, which sequentially extend a partial solution, possibly
employing additional procedures such as sampling and beam search (see e.g., Bello et al. (2017) and Hot-
tung, Kwon, and Tierney (2021)). Few others, such as Wu et al. (2020) and Chen and Tian (2019), instead,
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focus on learning improvement heuristics to guide the exploration of the search space and iteratively

refine an existing solution.

Despite of the relevance of the problems, the increasing attention they are receiving in the ML commu-
nity and the remarkable results achieved so far, these techniques have not yet become widespread in the
Operations Research (OR) community. This may be because of their novelty and the nontrivial effort
required to adopt them by the OR community that typically has a different background. But also, at
the same time, the computational testing provided by some of the proposed ML methods may not be
very convincing with respect to the standard practices in the OR and VRP community. The current work
focuses on this second aspect by highlighting important points to consider during the computational
testing and providing guidelines and methodologies that we believe are relevant from an OR perspec-
tive. The remainder of the paper is organized as follows. Section 2l surveys crucial aspects faced during
a computational testing such as the selection of proper benchmark instances and baseline algorithms, as
well as techniques to properly compare different solution approaches. Section [3] provides concrete ex-
amples and pointers to representative computational studies found in recent papers. Finally, concluding

remarks are given in Sectiondl

2 Guidelines for a Computational Testing

In this section, we highlight important points an OR practitioner would consider crucial when examining
the computational results section of a novel approach.

2.1 Benchmark Instances and Problem Definition

The training phase of a ML-based approach typically requires a large number of VRP instances sharing
the same characteristics. A common way to generate these instances is by randomly defining their char-
acteristics, sampled from arbitrarily defined distributions. In the following, we argue that adopting a
common problem description as well as a common set of benchmark instances is extremely important to
correctly assess the potentialities of a novel approach.

Problem description and objectives. The term VRP identifies a class of problems containing an enormous
number of different variants. Among the most studied ones, we have the Capacitated Vehicle Routing
Problem (CVRP), the Vehicle Routing Problem with Time Windows (VRPTW), and the Vehicle Routing
Problem with Pickup and Deliveries. In the following, if not specified differently, we limit our treatment
to the CVRP which is often taken as a reference problem in ML-based approaches and, despite its simple
definition, is still a challenging problem for both traditional and innovative approaches. We refer to
Chapter 1 of Toth and Vigo (2014) for a thorough overview of VRPs. Specific VRPs have widely accepted
formulations and precise problem definitions. For example, modern CVRP instances do not fix a-priori
the number of routes a solution should have or heuristic approaches to the VRPTW typically consider
a hierarchical objective: first minimize the number of vehicles and then the routing cost. It is thus clear
that the specific definition of the problem has a crucial impact on the obtained results.

Test instances representativeness. Despite VRPs being AP-hard, the actual challenge posed by a specific
instance is highly dependant on several factors such as customers and depot location, the vehicle capac-
ity and the customers demand distribution. The VRP community has thus identified, for each specific
problem in the VRP class, a set of benchmark instances that is currently considered to be relevant for
testing modern approaches. Thus, in addition to possible instances defined by the ML community, we
highlight the importance of using, whenever possible, instances derived from these widely recognized,
used and studied datasets.



As an example, in Uchoa et al. (2017), the authors introduced the X instances for the CVRP, thoroughly
describing their generation process. This process can then be emulated to generate (possibly smaller-
sized) more representative CVRP instances, as it was done in Kool, Hoof, Gromicho, et al. (2021) and in
Hottung, Kwon, and Tierney (2021) (appendix). In Wu et al. (2020), the authors directly used a subset of

X instances along with distributions more commonly used in other ML works.

As an additional example, consider the VRPTW for which the so-called Solomon instances and their
extension proposed by Solomon (1987) and Gehring and Homberger (1999), respectively, are the current
benchmark. Also for them, Solomon (1987) describes the procedure used to define the time window

constraints that can thus be considered when defining new instances.

Repositories of instances. Together with papers introducing or using certain sets of instances (whose au-
thors could be contacted to retrieve), we mention two among the most popular repositories of VRP
instances. Namely, VRP-REP)| collects instances for more than 50 different VRP variants, best known so-
lution values, and references to papers obtaining these results. In addition, CVRPLIB|contains instances
and up-to-date best-known solutions of CVRP instances. Finally, small instances commonly used in the
past or in exact methods can be found in TSPLIB and OR-LIBRARY.

2.2 Baseline Algorithms

The selection of a proper baseline algorithm is extremely important, failing in this task would hinder the
objective evaluation of the potential of a novel approach. Indeed, since results (computing time, solu-
tion quality, and possibly more sophisticated measures as detailed in Section [2.3) are crucial to compare
different solution approaches over a common set of problems and instances, a wrong baseline may dis-
tort their interpretation, undermining the whole validation process. Despite the purpose of ML-based
approaches not being that of outperforming highly specialized solvers, but rather that of proposing ver-
satile tools not requiring high-levels of manual engineering, the comparison should still occur against
the best performing algorithms to better comprehend the tradeoff between data-driven and ad-hoc algo-
rithms.

Include the best available algorithms. Along with simple baselines and competing ML-based methods,
we argue that one should consider the inclusion of the best available algorithms proposed by the OR
community for each specific VRP.

The selection of baseline algorithms is often guided by the availability of free-to-use or open-source
reliable software packages. Fortunately, more and more researchers are publishing the source code of
heuristic as well as exact state-of-the-art VRP solvers that can be freely used for research activities.

Heuristic solvers The widely used Google OR-Tools (Perron and Furnon (2019)) is erroneously consid-
ered by most ML papers to be among the best open-source VRP solvers (see, e.g., Nazari et al. (2018))
while achieving on the CVRP far-from-optimal results on the X instances (see Vidal (2020)). Much better
open-source solvers for the CVRP are fortunately available. Along with LKH-3 (Helsgaun (2017)), which
is already widely used by the ML community for solving VRPs, we mention HGS-CVRP (Vidal (2020))
and FILO (Accorsi and Vigo (2020)) as highly effective and efficient open-source heuristic solvers for the
CVRP that, on the widely studied X instances of the CVRP (Uchoa et al. (2017)), produce superior results
compared with LKH-3 (see Cavaliere, Bendotti, and Fischetti (2020)). Finally, we mention SISR (Chris-
tiaens and Vanden Berghe (2020)), that, despite not being already available in terms of source code, is
conceptually simple and easy to implement, yet providing state-of-the-art results on a great variety of
VRPs.
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Exact solvers Several papers solve small instances to optimality by using general-purpose optimiza-
tion solvers such as Gurobi or CPLEX. Despite the noble attempt, trying to directly solve simple compact
VRP formulations by using a generic branch-and-cut approach would soon turn out to be an extremely
challenging task. Indeed, several papers report the ability of solving only very small instances (e.g.,
CVRPs with about 20 customers). Instead, VRPSolver (Pessoa et al. (2020)), a freely available (for aca-
demic purposes) exact solver specialized for routing problems, should be considered for serious and
reliable testing of VRPs. Indeed, VRPSolver combines a branch-cut-and-price algorithm with other so-
phisticated techniques specifically designed for VRPs such as route enumeration, state space relaxation,
and others being able to consistently solve CVRP instances with up to 200 customers (a size already out
of reach for most ML-based approaches proposed so far).

2.3 Algorithms Comparison

Comparing algorithms having a completely different nature is an extremely challenging task. On the one
hand, traditional solution approaches proposed by the OR community are designed to handle set of in-
stances having a broad range of different characteristics. Moreover, these approaches are typically tuned
to achieve, with a single set of parameter values, results that are on average good over all tested instances.
On the other hand, ML-based approaches generally need to treat every instance distribution separately,
requiring a specific tuning and thus additional training (possibly taking up to several weeks of comput-
ing time). In addition, traditional OR algorithms are (almost) always executed on CPUs using a single
thread, while ML-based approaches naturally benefit from running on massively parallel hardware ar-
chitectures such as GPUs. Finally, the programming language may also play a role. In fact, traditional
OR algorithms are usually implemented in highly efficient languages such as C++, whereas ML-based
approaches typically use Python that mixes slow interpreted code with efficient native libraries.

Facilitate comparisons (i.e., run all solvers by using a common configuration). In production, algorithms should
obviously make fully use of the best existing available technologies. In fact, even traditional algorithms
may contain (portions of) embarrassingly parallel code that would thus benefit from being run on mul-
tiple threads. As an example, a common dynamic programming procedure employed in VRP exact
solvers would greatly benefit from a GPU implementation compared to a traditional sequential version
(Boschetti, Maniezzo, and Strappaveccia (2017) report speedup of up to 40 times). Another well-known
example is the parallel implementation of Branch & Bound algorithms (see, e.g., Crainic, Le Cun, and
Roucairol (2006)). Despite the clear time-savings of a parallel implementation, experimental evaluation
asks to reduce at a minimum the different factors that would render comparisons among approaches un-
necessarily more challenging. It is thus commonly accepted to consider single-threaded algorithms run
on standard CPU architectures. A very interesting information, that would promote a direct comparison
of newly proposed algorithms with existing ones, consists in including also the computing time taken by
the algorithm when run with the above defined settings. If running all the experiments both on GPU and
on CPU with a single thread would be computationally prohibitive, we argue that one should consider
adding a measure of the speedup associated with the model inference when run on a GPU rather than
on a CPU together with the total algorithmic time (in which everything except the model inference is
run on a CPU with a single thread), and the fraction of time spent doing inference on GPU. This way, the
total running time of the algorithm on a CPU with a single thread could be easily estimated. Another
possibility sees the inclusion of a rough measure of the number of CPU cores needed to match the GPU
capacity as it was done in Hottung, Kwon, and Tierney (2021).

Convert computing time to a common scale. When using results published on other papers, because the

source code may not be available or running again the experiments may be too time consuming, a com-



mon practice consists in roughly scaling the computing time to a common base by using appropriate
factors. A practice increasingly adopted in the VRP community consists in using the single-thread rating
defined by PassMark. So that, given a base processor, say an Intel Xeon CPU E3-1245 v5/having a single-
thread rating of 2277, and a target processor, say anIntel Core2 Duo T5500 having a single-thread rating
of 594, the computing time of an algorithm run on the target processor is reduced of a factor ~ 3.83. The
comparison is still rough, being the CPU just one among the several components affecting the overall
performance. However, this is one of the possible approaches generally accepted as sound by the VRP
community. Note that, the above considerations assume all algorithms have been run on an unloaded

system and on a CPU by using a single thread.

On the comparison with exact solvers. Exact solvers are often used as baseline algorithms when approaching
small-to-medium size instances. When reporting the computing time spent by an exact solver, especially
if its results are compared with a heuristic algorithm, it should be considered that the former may find
very good quality solutions early during the run and then spend the majority of the time to prove opti-
mality. Thus, when reporting results obtained by an exact solver, an additional column could be added
showing the computing time in which the last solution (i.e., the optimal one, if the solver is not pre-
maturely stopped) was found. Despite being true that the solver does not have a termination criterion
to know whether the solution at hand is optimal or not, being compared with heuristics, this approach
would still provide a feeling on the convergence speed of the solver. Another possibility, which how-
ever requires a much more detailed collection and processing of data, consists in realizing a convergence
profile chart (see later). We finally mention the primal integral introduced by Achterberg, Berthold, and
Hendel (2012), as a measure able to take into account the overall solution process in terms of convergence
towards the optimal (or best known) solution over the entire solving time.

Consider the statistical relevance of the results. In the past, it was common practice to use just average
percentage errors with respect to the best known solution to compare the performance of different algo-
rithms. However, more recently, the inclusion of simple statistical tests to objectively assess the differ-
ences among algorithms is increasingly becoming popular in the VRP community. A common practice
consists in using a one-tailed Wilcoxon signed-rank test (see Wilcoxon (1945)) possibly coupled with cor-
rection methods when multiple comparisons involving the same data are performed (e.g., the Bonferroni
correction, see Dunn (1961)). These tests are used to determine whether two sets of paired observations,
for which no assumption can be done on their distribution, are statistically different, and thus, whether
two algorithms are considered to provide equivalent results. A common tool for performing these sta-
tistical tests is the R language (R Core Team), which allows to execute them with just a few lines of code.
An example of a test application can be found in Section[3.3]

Always compare averages. When experimenting with algorithms containing randomized components, we
argue that one should make comparison by considering the average results obtained over a reasonable
number of runs. Typically, the used number of runs are 10 or 50, that, despite not being statistically
significant, allow to qualitatively identify whether an algorithm provides stable or highly variable re-
sults.

Include charts. Charts allow to visually compare several algorithms at once, thus providing a fast and
effective way to view the results, that, when coupled with tables and statistical tests, give a satisfying
and thorough picture of the computational studies for a set of instances. Among the most used charts,

we mention

¢ the performance chart, relating the average normalized computing time with the average solution
quality (e.g., the percentage gap with respect to a reference value, which is typically that of the
optimal or best known solution) of each algorithm in the comparison, see Figure [Tl (left);
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Figure 1: On the left side, the performance chart showing for algorithms A, B, C, D, and E the average
normalized time ¢ and solution quality obtained in a number 7 of runs with different seeds. Algorithms
C, D, and E dominate A and B. On the right side, the search trajectory defined by the average gap found

at a given time instant for algorithms X, Y and Z.

¢ the convergence profile chart, showing for each time instant the average solution quality for the
compared algorithms, see Figure[Il (right).

The performance chart clearly identifies Pareto optimal algorithms and dominated ones, whereas the
convergence profile chart shows their converge speed when executed for a specific period of time. Con-
vergence profile charts can be used for improvement heuristics but also for simpler constructive heuris-
tics provided that they include additional iterative procedures used to further improve the solution qual-
ity (e.g., the active search of Bello et al. (2017)).

On the choice of the programming language. (Baseline) Algorithms should be implemented efficiently. This
may include using appropriate data structures as well as programming languages producing directly ex-
ecutable machine code. An efficient implementation of a competing algorithm should not be considered

negatively.

Consider the analysis of the various algorithm components. Several papers include additional analysis on
the components of the proposed algorithm. This may include the behavior of the algorithm when some
parameters are changed as well as the contribution of individual components to the overall final results
(e.g., the average improvement of different local search operators analyzed throughout the algorithm
execution). This kind of analysis is both considerably appreciated in the VRP community and extremely
important to grasp insights on the overall contribution and usefulness of the different components of an
algorithm.

3 Examples of a Computational Studies

To make the above suggestions more concrete, in this section, we report extracts of and pointers to rep-
resentative computational studies found in recent papers on the CVRP. We will consider two scenarios:
in the first one, we assume to have all source codes available, whereas in the second one, we assume at

least one of the competing algorithm source code is not available to the tester.

3.1 Scenario 1: all algorithms source codes are available

This is the simplest and most fortunate setting. Indeed, given enough time and processing power, all
algorithms can be run on exactly the same platform and for the same amount of time. In this context the



HGS-CVRP SISR OR-Tools

Instance BKS Avg  Gap Avg  Gap Avg  Gap
X-n101-k25 27591 27591.0  0.00 275933 0.01 279772 1.40
X-n106-k14 26362 263814  0.07 26380.9  0.07 26757.5  1.50
X-n110-k13 14971 14971.9  0.00 149721 0.01 15099.8  0.86
X-n979-k58 118987 119247.5 022 119108.2  0.10 1238852 4.12
X-n1001-k43 72359 72748  0.54 725331 0.24 78084.7 791
Mean 0.11 0.19 4.01

Table 1: Minimal table showing the solution quality obtained by algorithms run for the same amount of
time on a common platform.

convergence profile chart perfectly shows the evolution of each algorithm, making evident its speed to
reach certain quality levels.

Table [l reports a rearranged extract of Tables 1-3 proposed in Vidal (2020) comparing three of the above
mentioned algorithms (more specifically HGS-CVRP, SISR, and OR-Tools) run on a common platform
for the same computing time and over the same X instances of the CVRP. In particular, the table shows
for each competing algorithm the average solution value (Avg) and the associated average gap (Gap)
computed considering a certain number of runs of the algorithm when it includes randomized com-
ponents. The gap is computed with respect to a reference best known solution value (BKS) as Gap =
100 - (Avg — BKS) /BKS. Additional useful columns could include the worst and best gap obtained, so
as to better examine the variability of the quality for the algorithm on the dataset. Finally, we refer
to Figures 3 and 4 of Vidal (2020) for examples of convergence profile charts for the above-mentioned
algorithms.

3.2 Scenario 2: at least one algorithm source code is not available

This scenario, which is still unfortunately frequent in the VRP community, makes the comparison of
results much more challenging. The common case sees only the presence of tables showing the per-
formance of a proposed algorithm over a set of benchmark instances when run on a certain platform.
First of all, an assumption is required when reviewing these tables reporting the computational results.
In particular, we have to assume that the results published in the paper, which are inevitably obtained
with a specific tuning of parameters, are the values on which the authors desire to compare with other
approaches. We shall note that these parameters do include the termination criterion, which was then
selected as a design choice, and considered to provide competitive results (otherwise a different criterion
would have been selected). Since data on the convergence of the algorithm are typically not available, the
comparison can then be performed over the published results by first normalizing the computing time in
the best possible way and then analyzing the bi-objective perspective provided by the performance chart

shown in[Il(left) showing non dominated algorithms for a fixed configuration of their parameters.

3.3 Statistical validation of the results

In both the above scenarios (and provided that the average solution quality obtained by an algorithm is
available for each instance in the dataset), the (final) solution quality could be assessed with simple sta-
tistical tests. This procedure is useful especially when the proposed methods do not clearly dominate the
others, for example because they obtain similar average percentage gaps on the considered benchmark
instances.



As an example, in the following we compare HGS-CVRP, SISR, and OR-Tools on the X instances. Data
have been taken from Tables 1 and 3 of Vidal (2020) and is summarized in the boxplots of Figure

Similarly to what was done in Christiaens and Vanden Berghe (2020), we can assess the results obtained
by our proposed algorithm, say HGS-CVRP, against the remaining ones, by conducting a one-tailed

Wilcoxon signed-rank test in which we consider a null hypothesis Hy

Hp : AVGSOLCOST(HGS-CVRP) = AVGSOLCOST(X),

and an alternative hypothesis H;
H; : AvGSOLCOST(HGS-CVRP) > AvGSOLCOST(X),

where X can be SISR and OR-Tools. A hypothesis is rejected when its p-value is lower than a significance

level «. In particular, we have that
¢ failing to reject Hy means that the average results of the two methods are not statistically different;

* whereas, when Hj is not rejected, the average results are statistically different and the alternative
hypothesis H; can be tested to find whether they are greater than those of a competing method.
Rejecting Hy thus implies that HGS-CVRP performs better than the competing method.

Moreover, as mentioned in Section[2.3) when performing multiple comparisons involving the same data,
the probability of erroneously rejecting a null hypothesis increases. To control these errors, the signifi-
cance level « is adjusted to lower values. Bonferroni correction (Dunn (1961)) is a simple method that can

be used for this purpose. In particular, given n comparisons, the significance level is set to a /.

In the above comparison we tested a total number of n = 2 hypothesis corresponding to the partitioning
of instances (1, all X instances together) and to the two hypothesis (2, Hy and Hj). Assuming an initial
significance level xy = 0.025, the adjusted value becomes & = 0.025/2 = 0.0125.

We can compute the p-values, which are shown in Table 2] for our analysis for example by using the R
language. For both SISR and OR-Tools we have that the associated p-value is lower than the significance
level . We can thus reject the hypothesis Hj that the average results of HGS-CVRP are similar to those
of SISR and OR-Tools. Finally, by testing H; we again are able to reject the hypothesis, concluding that
HGS-CVRP average results are statistically better than those obtained by SISR and OR-Tools on the X

instances.
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Figure 2: Average gaps obtained on the X instances by HGS-CVRP, SISR and OR-Tools. Note the different
y-axis for OR-Tools. The thick line identifies the median value.



SISR OR-Tools

Hyp 8.27934e-06  3.95591e-18
H,q 4.13967e-06 1.97796e-18

Table 2: p-values obtained when comparing HGS-CVRP with SISR and OR-Tools.

4 Conclusions

With this work we highlighted several challenges arising when comparing traditional and machine

learning-based solution approaches for vehicle routing problems. Our aim was that of providing a set of

reference guidelines that would help the machine learning community to produce computational studies

that would be better appreciated by the operations research, and especially the vehicle routing, commu-

nity. Finally, we conclude by referring the reader to the excellent overview on experimental analysis by
Johnson (2002).
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