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Abstract

Objectives : This paper developed federated solutions based on two approximation algorithms
to achieve federated generalized linear mixed effect models (GLMM). The paper also pro-
posed a solution for numerical errors and singularity issues. And compared the developed
model’s outcomes with each other, as well as that from the standard R package (‘lme4’).
Methods : The log-likelihood function of GLMM is approximated by two numerical methods
(Laplace approximation and Gaussian Hermite approximation), which supports federated
decomposition of GLMM to bring computation to data. To solve the numerical errors and
singularity issues, the loss-less estimation of log-sum-exponential trick and the adaptive
regularization strategy was used to tackle the problems caused by federated settings.
Results: Our proposed method can handle GLMM to accommodate hierarchical data with
multiple non-independent levels of observations in a federated setting. The experiment
results demonstrate comparable (Laplace) and superior (Gaussian-Hermite) performances
with simulated and real-world data.
Conclusion: We modified and compared federated GLMMs with different approximations,
which can support researchers in analyzing versatile biomedical data to accommodate mixed
effects and address non-independence due to hierarchical structures (i.e., institutes, region,
country, etc.).

Keywords: GLMM, Federated learning, Mixed effects, Laplace approximation,
Gauss-Hermite approximation

1. Introduction

There is an increasing surge of interest in analyzing biomedical data to improve health.
Biostatisticians and machine learning researchers are keen to access personal health informa-
tion for a deeper understanding of diagnostics, disease development, and potential preventive
or treatment options [1].
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In the US, healthcare and clinical data are often collected by local institutions. For many
situations, combining these datasets would increase statistical power in hypothesis testing
and provide better means to investigate regional differences and subpopulation bias (e.g., due
to differences in disease prevalence or social determinants). However, such an information
harmonization process needs to respect the privacy of individuals, as healthcare data contain
sensitive information about personal characteristics and health conditions. As a minimum
requirement, HIPAA (Health Insurance Portability and Accountability Act)[2] specifies PHIs
(protected health information) and regulations to de-identify the sensitive information (i.e.,
safe harbor mechanism). But HIPAA compliance does not mean full protection of the data, as
several studies demonstrated re-identifiability of HIPAA de-identified data [3, 4, 5]. Ethical
healthcare data sharing and analysis should also respect the “minimum necessary” principle
to reduce the unnecessary risk of potential data leakage, which might increase the likelihood
of information leakage.

Figure 1: Schema of federated learning model in multiple geographically distributed healthcare
institutions. The local institutions periodically exchange intermediate statistics and update the convergence
situation of the global model.

The recent development of federated learning, which intends to build a shared global
model without moving local data from their host institutions (Fig. 1), shows good promise
in addressing the challenge in data sharing mentioned above. Despite the exciting progress,
there is still an important limitation as existing models cannot effectively handle mixed-
effects (i.e., both fixed and random effects), which is very important to analyzing non-
independent, multilevel/hierarchical, longitudinal, or correlated data. Also, due to the sam-
pling errors (i.e., smaller sample size in local sites), variances from these local statistics
are larger than those of the global model. These issues, if not addressed appropriately,
would lead to failure in global optimization. The goal of this paper is to improve existing
techniques and provide practical solutions with open-source implementation and to allow
ordinary biomedical/healthcare researchers to build federated mixed effect learning models
for their studies.
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2. Related Work

Federated learning for healthcare data analysis is not a new topic, and there have been
many previous studies. However, most of the existing methods assume the observations are
independent and identically distributed[6, 7]. In the presence of non-independence due to
hierarchical structures (e.g., due to institutional or regional differences), existing federated
models have strong limitations in ignoring the regional differences. The generalized linear
mixed model (GLMM), which takes the heterogeneous factors into consideration, is more
amenable to accommodate the heterogeneity across healthcare systems. There have been
very few studies in this area and one relevant work is a privacy-preserving Bayesian GLMM
model[8], which proposed an Expectation-Maximization (EM) algorithm to fit the model
collaboratively on horizontally partitioned data. The convergence process is relatively slow
(due to the Metropolis–Hastings sampling in the E-step) and it is also not very stable (likely
to be trapped in local optima[9] in high-dimensional data). In the experiment, a loose
threshold (i.e., 0.08) was used as a convergence condition [8] while typical federated learning
algorithms [10] in healthcare use much stringent convergence threshold (i.e., 10−6).

Another related work to fit GLMM in a federated manner is the distributed penalized
quasi-likelihood (dPQL) algorithm[11]. This algorithm reduces the computational complex-
ity by considering the target function of penalized quasi-likelihood, which is motivated from
Laplacian approximation. The model has communication efficiency over the EM approach
and can converge in a few shots. However, the target function PQL can have first order
asymptotic bias [12] due to the Laplacian approximation of the integrated likelihood.

There is an alternative strategy, Gauss-Hermite (GH), which supports high-order ap-
proximation. It is computationally more intensive and requires special techniques to handle
the numerical instability of the logSumExp operation (due to the overflow issue when the
dimensionality grows in the sum of the exponential terms). We will explain both models in
this manuscript and compare their performance on simulated and real-world data.

3. Methods

In this section, we will discuss the statistic model along with challenges to be tackled. A
high-level schema of the method is shown in algorithm 1.

3.1. Notation

Before we introduce the formation of GLMM, let us define some notations.

i Index of sites li Log-likelihood function for site i
j Index of patients in a specific site β Parameters of fixed effect
k Index of Hermite polynomial µi Parameters of random effect in site i
K Order of Hermite polynomial τ Hyper-parameters
m Number of sites θ Parameter space (β, τ)

ni Number of patients in site i Xij
A vector represents the data of j-th
patient in i-th site

Li Likelihood function for site i yij The outcome of patient j from site i
λ The parameter of regularization term p Number of variables
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3.2. Fitting GLMM with quasi-likelihood

Let us provide the formation of the GLMM. Define P is the distribution of interest and
depending on patient-level data Xij, yij. Define φ as the distribution of random effects. We
can compose the joint distribution as following

ni∏
j=1

P(θ|Xij, yij)φ(µi; τ)

Now we have the log-likelihood function of the joint distribution:

log{L(θ)} =
m∑
i=1

log

{∫
µi

[
ni∏
j=1

P(θ|Xij, yij)

]
φ(µi; τ)dµi

}
(1)

From the log-likelihood function Eq. (1), one can see that it does not support direct
linear decomposition. In order to support federated learning, we will leverage approximation
strategies to make the objective linearly decomposable with simple summary statistics.

We will compare Laplace approximation and Gauss-Hermite approximation in the fol-
lowing sections.

3.3. Laplace (LA) approximation

With the help of Laplace approximation, the integration from Eq.(1) can be approximated
by an exponential family expression.∫

µi

fθ(µi)dµi =

∫
µi

elog fθ(µi)dµi ,
∫
µi

eg(µi,θ)dµi (2)

After the deduction (Appendix A.1), the intractable problem is solved and the objective
is to maximize the following formula with respect to θ, where g is an exponential family
function defined above (Eq.(2))

ni∑
i=1

(
g(µ̂i,θ)− ni

2
log (gµµ(µ̂i,θ)))

)
, for which the terms are linearly decomposable from local sites. Site i needs to calculate
the following aggregated data:

• p× p matrix:

ω̂ββω̂ − ω̂βω̂β
ω̂2

+ µ̂ββgµ + µ̂β(µ̂βgµµ + gµβ) + µ̂βgµβ + gββ (3)

• p - dim vector:
ω̂β
ω̂

+ ω̂2gµβ(µ̂i)gµ + gβ (4)

• scalar of random effect: µ̂i and first order derivative of τ by

ω̂τ
ω̂

+ ω̂2gµτ (µ̂i)gµ + gτ

where ω̂ =

√
− 1

gµµ(µ̂i0)
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3.4. Gauss-Hermite (GH) approximation

Gauss-Hermite approximation [13] implements Hermite interpolation concerning Eq. (2).
And after the deduction in Appendix A.2, notice that when the order of Hermite polyno-
mial K = 1, the objective function is identical to the method with Laplace approximation.
Because GH is more generalizable, we will describe the distributed federated learning model
on the GLMM problem with the formation of Gauss-Hermite approximation Eq. (A.2). For
each site i, the followings need to calculate and transmit:

• p× p matrix:

ω̂ββω̂ − ω̂βω̂β
ω̂2

+
1∑K
k=1 fk

K∑
k=1

∂

∂β
(fkµµ̂β+fkω ω̂β+fkβ)− 1

(
∑K

k=1 fk)
2
‖

l∑
k=1

(fkµµ̂β+fkω ω̂β+fkβ)‖22

(5)

• p - dim vector:

ω̂β
ω̂

+
1∑K
k=1 fk

K∑
k=1

(fkµµ̂β + fkω ω̂β + fkβ) (6)

• scalar of random effect: µ̂i and first order derivative of τ by

ω̂τ
ω̂

+
1∑K
k=1 fk

K∑
k=1

(fkµµ̂τ + fkω ω̂τ + fkτ )

3.5. Training Penalization GLMM with GH approximation

The convergence of the approximation of the likelihood function may be compromised due
to over-fitting. Also, for those spatially correlated data, the convergence of them may lead
to a complex model. Hence, L2 regularization is added to the local log-likelihood function
of Gauss-Hermite approximation form, and as shown below

li = logLi = log

(
√

2πω̂
K∑
k=1

hk exp
{
g(µ̂i +

√
2πω̂xk;θ) + x2k

})
− λ‖β‖22 (7)

note that when K = 1, it is represented as regularized Laplace approximation to the problem.
To evaluate and find the optimum λ, we steadily increased the value of λ in range [0, 10] by
1. Set λopt as the optimized regularization term with largest

∑m
i li. And choose β̂opt as the

optimized estimator for β.
Due to the limited computation digits, computers are not able to calculate the correct

results of the local log-likelihood function li of the Gauss-Hermite approximation form as
stated above. Such problem is also known as the Log-Sum-Exponential problem and can be
solved by shifting the center of the exponential sum for easier computation,

log
K∑
k=1

exp
{
g(µ̂i +

√
2πω̂xk;θ) + x2k

}
= a+ log

K∑
k=1

exp
{
g(µ̂i +

√
2πω̂xk;θ) + x2k − a

}
where a is an arbitrary number.
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Thus, the global problem of maximizing
∑m

i li can be divided into several local maxi-
mization problems (7). Each local site i will update the regression intermediates, and they
will be combined to update the iteration status. Specifically, in each iteration of the feder-
ated GLMM algorithm, the following statistics are exchanged from each site to contribute
aggregated data for the global model

LA GH
number of variables p number of variables p
p× p matrix (Eq. 3) p× p matrix (Eq. 5)
p - dim vector (Eq. 4) p - dim vector (Eq. 6)
p - dim vector β p - dim vector β
scalar λ scalar λ
scalar µ̂i scalar µ̂i
scalar first order derivative τ scalar first order derivative τ

scalar K

Detailed derivatives with the logistic regression setting of the optimization are presented
in the appendix Appendix A.3.

Algorithm 1: Distributed GLMM with approximation methods

Data: Local data Xi from site i
Result: Global model with coefficients β̂global, test P-values, upper and lower bound
Initialization: coefficients β, random effects µi and τ , regularization term λ;
for λ = 0 to 10 do

while ∆µ 6= 0 do
Maximized µi with respect to θ
while ∆θ 6= 0 do

1. Approximate the log-likelihood functions lapprox with Laplace or
Gauss-Hermite;

2. Calculate intermediate statistics. For Laplace, Eq. 3, 4; for
Gauss-Hermite, Eq. 5, 6;

3. Send the intermediate statistics to center server, and then the center
server will aggregate them;

4. Update θ and lapprox(θ, λ) in center server and send back to each client
i;

end

end

end

Return: The largest lapprox(θ̂, λ̂), the coefficients β̂global = β̂, hyperparameter τ̂ ,

and the regularization term λ̂

4. Experiments

Our algorithm is developed in Python with packages pandas, numpy, scipy, and the
benchmark algorithm is glmer function in R package ‘lme4’.

6



4.1. Benchmarking the methods using synthetic data

To test the performance of our proposed methods, we first designed a stress test based on
a group of synthetic data, which include 8 different settings (Tab.1), and each set contains
20 datasets. In each dataset, it consists of 4 categorical variables with value in {0, 1};
6 categorical variables with value in range [−1, 1.5] ∈ R; 1 outcome variable with value
in {0, 1}; Site ID, represents the id of which site the entry belongs to; Site sample size,
represents the number of samples in this specific setting; Log-odds ratio for each sample;
Number of true positive, true negative, true positive, false positive, false negative.

To evaluate which method can reach better performance, we proposed the following
evaluation measurements: discrimination of the estimated coefficients β̂, the test power of
each coefficient, and the precision and recall of the number of significant coefficients.

Table 1: The summary of data in each setting.

Setting
Number of

sites
Sample size
in each site

variance

1 2 500 small
2 2 500 large
3 10 500 small
4 10 500 large
5 2 30 small
6 2 30 large
7 10 30 small
8 10 30 large

The valuation experiments were conducted among federated GLMM with Laplace ap-
proximation, federated GLMM with Gauss-Hermite approximation, and centralized GLMM
(all of the data stored in single host) in the R package. And the stress test will be run in 160
different datasets in 8 different settings as mentioned in Tab.1. All of the data in different
settings were randomly separated into training sets and validation sets with a ratio of 7:3.
And we trained the federated learning model on training data sets, then by slowly increasing
the regularization term λ, we chose the optimum model with the best Akaike information
criterion and Bayesian information criterion performance on the validation sets. All testing
was performed on 2017 iMac with 16 GB memory, CPU (4.2 GHz Quad-Core Intel Core i7),
macOS Big Sur version 11.6, Python 3.8, and R version 3.5.0.

Although we tested the data sets with the state-of-art benchmark algorithm for central-
ized GLMM in R, the regression is not perfect for the ground truth coefficients we used to
generate the data (Fig.2). So, it is also important to have the P-values of variables into
consideration when interpreting the model. Thus, We made comparisons among centralized
GLMM, Laplace method, and Gauss-Hermite method concerning the p-values of coefficients.
Tables in the appendix captured the performance of different methods. Fig.3 shows the pre-
cision and recall results of centralized, Laplace, and Gauss-Hermite methods. Noted that we
set our Gauss-Hermite approximation to 2-degree. See tables in Appendix (Tab.B.5, B.6,
B.7).
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Figure 2: The difference from coefficients to the true parameters that are used to generate data.
(Left) The distributed GLMM with Laplace approximation; (Middle) The distributed GLMM with 2-degree
Gauss-Hermite approximation. Reminds that X1 is the intercept; (Right) The benchmark of centralized
GLMM in R package.

Figure 3: The precision and recall among centralized, Laplace, and Gauss-Hermite method
under significance level α = 0.05. (Left) The precision of the test compared to the true value. (Right)
The recall of the test compared to the true value.
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Figure 4: The curve of test power among centralized, Laplace, and Gauss-Hermite methods.
(Left) The power of the test of the Laplace method. (Middle) The power of the test of the 2-degree Gauss-
Hermite method. (Right) The power of the test of the Centralized method. Power was calculated as the
two-sided t-test on p-values among different methods.

Table 2: The convergence rates on approximation methods LA and GH. (Both LA and GH held
the same convergence threshold 10−3. The mean values and standard deviations (in parentheses) were given)

LA GH
Setting Steps Runtime (s) Steps Runtime (s)

1 22.875 (21.623) 47.953 (20.513) 34.850 (9.213) 104.460 (10.614)
2 21.500 (21.977) 40.947 (36.466) 35.000 (8.711) 100.940 (19.940)
3 29.867 (31.719) 108.931 (65.486) 34.900 (6.138) 1259.285 (231.956)
4 27.846 (24.034) 84.343 (76.502) 36.650 (6.310) 1342.695 (250.603)
5 59.722 (42.057) 10.631 (3.945) 33.750 (10.146) 12.568 (2.116)
6 67.188 (48.994) 10.499 (4.054) 31.400 (11.081) 11.430 (3.064)
7 96.286 (53.635) 96.501 (38.632) 37.450 (3.818) 369.165 (41.998)
8 116.083 (46.479) 91.304 (62.410) 37.150 (4.295) 309.693 (36.621)

The simulation results showed the federated Gauss-Hermite approximation performed
better than the method based on Laplace approximation on every variable. Also, the fed-
erated Gauss-Hermite method achieved higher test power (Fig.4). When considering the
convergence rates between the two approximation methods, both showed less convergence
efficiency in Setting 7 and 8 (Tab.2). The result Indicates that more local sites and smaller
sample sizes will make the federated GLMM more inefficient to converge. Also, GH approx-
imation method will required more computation time compared with LA approximation.
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In sum, one-degree increase of the approximation function in LA with our developed GH
method, GH outperformed LA methods for federated GLMM implementation.

4.2. Mixed-effects logistic regression on mortality for patients with COVID-19

We analyzed the data of COVID-19 electronic health records collected by Optumr from
February 2020 to January 28, 2021, from a network of healthcare providers. The dataset has
been de-identified and based on HIPAA statistical de-identification rules and managed by
Optumr customer data user agreement. In this database, there are 56,898 unique positive
tested COVID-19 patients. After removing the patients with missing data, the final cohort
contains 4,531 patients who died and the rest population (41,781) survived. The database
contains a regional variable with five levels (Midwest, Northwest, South, West, Others/un-
known) to provide privacy-preserving area information to indicate where the samples were
collected.

We have conducted a GLMM model (considering region-distinct random effect) using
this dataset with the following predictors: age, gender, race, ethnicity, Chronic obstructive
pulmonary disease (COPD), Congestive heart failure (CHF), Chronic kidney disease (CKD),
Multiple sclerosis (MS), Rheumatoid arthritis (RA), LU (other lung diseases), High blood
pressure (HTN), ischemic heart disease (IHD), diabetes (DIAB), Asthma (ASTH), obesity
(Obese). Our proposed method with GH approximation performed the best with both
the smallest Akaike information criterion (AIC) and Bayesian information criterion (BIC)
according to the table of the goodness of fit (Tab.3). And the performance of different
methods can be shown in (Tab.4).

Table 3: Statistics of goodness of fit among different methods

Log-likelihood AIC BIC
R 13562.9 27165.9 27340.8

LA -13695.0 27428.0 27594.1
GH -11.8 61.6 227.7

Figure 5: The ROC curve with Area Under Curve (AUC) among centralized, Laplace, and
Gauss-Hermite methods. The orange ROC curve is the centralized method without regularization and
the Laplace approximation(i.e., R implementation in the ‘lme4’ package, which does not have an option for
including regularization). AUC values are also included, a higher AUC value implicates better performance
of the model. The green ROC curve is the 2-degree Gauss-Hermite method with regularization.
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Table 4: Statistics of performances among different methods(95% CIs were generated by Wilson
Score interval)

Precision Recall F1-score AUC threshold

Centralized
method
with LA

Value 0.1507 0.6204 0.2425 0.6789 0.0900
Lower bound (0.95) 0.1474 0.6160 0.2386 0.6700
Upper bound (0.95) 0.1539 0.6248 0.2464 0.6878

GH
with

regularization

Value 0.1705 0.6546 0.2705 0.7178 0.0108
Lower bound (0.95) 0.1670 0.6503 0.2664 0.7091
Upper bound (0.95) 0.1739 0.6589 0.2745 0.7265

We also compared the ROC curves (Fig.5) between our proposed GH method and cen-
tralized method to check their performance. And the result showed that GH approximation
(AUC=0.72) outperforms the centralized method without regularization (AUC=0.68). In-
dicating GH-based GLMM method has better classification performance than the GLMM
based on LA approximation. In our proposed model, it showed variables: Unknown race,
Chronic kidney disease (CKD), Multiple sclerosis (MS), and other lung diseases (LU) are
not significant to the mortality of COVID-19. The result of the regression is in the Appendix
(Tab.B.8, B.9, B.10).

5. Discussion

We developed solutions to address the limited digit problem (i.e., overflow issue of fixed-
length object types due to extremely large numbers in local estimation) using an alter-
native loss-less estimation of log-sum-exponential term, and the singularity issue (involved
in Newton optimization) with an adaptive regularization strategy to avoid inverting low-
rank matrices without imposing too much unnecessary smoothness. We further compared
two federated GLMM algorithms with our developed federated solutions (LA vs. GH) and
demonstrated the performance of the federated GLMM based on the GH method surpassed
the method based on LA in terms of the accuracy of estimation, power of tests, and AUC.
Although the GH method is requiring slightly more computations than the LA method, it
is still acceptable for more accurate results. For example, in the prediction of COVID-19
mortality rates, the accuracy of prediction will be more reliable, as we have shown in the
previous section. During the optimization iterations, we noticed that some sites have already
achieved convergence in very few steps. If those sites stop communicating with the central
server, they can be released from extra computations. We would investigate more efficient
algorithms based on such a strategy of ‘lazy regression’ for minimizing communication for
federated learning models.

Another limitation of the proposed federated GLMM model is not yet differentially pri-
vate and iterative summary statistics exchange can lead to incremental information disclo-
sure, which might increase the re-identification risk over time. There are several strategies
to improve the model based on secure operations like homomorphic encryption and differ-
ential privacy, which we have previously studied in GLM models [14]. Finally, in practice,
there can be extra heterogeneity that cannot be explained by random intercepts only, it is
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of interest to further develop our algorithms toward GLMM that allows multiple random
effects including random coefficients in the regression models.
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Appendix A. Supplementary proofs

Appendix A.1. Laplace approximation

Let us explain the Laplace approximation. Denote that

fθ(µi) ,
ni∏
j=1

P(θ|Xij, yij)φ(µi; τ)

and one can see the log term inside the log-likelihood function that∫
µi

fθ(µi)dµi =

∫
µi

elog fθ(µi)dµi ,
∫
µi

eg(µi,θ)dµi (A.1)

Applying a Taylor expansion on g(µi, θ), and we choose µ̂i that maximized g(µi, θ). See
that µ̂i satisfies gµ(µ̂i, θ) = 0 and gµµ(µ̂i, θ) < 0, we have

g(µi, θ) = g(µ̂i, θ)−
1

2
(µ̂i − µi)2 (−gµµ(µ̂i, θ)) + o(µ2

i )

, which is plugged into Eq. (2). With Laplace approximation [15], one can see that∫
µi

eg(µi,θ)dµi ≈ exp{g(µ̂i, θ)}
[
2π · − 1

gµµ(µ̂i, θ)

]ni/2
Appendix A.2. Gauss Hermite approximation

The Hermite polynomial Hk(x) and weight hk are defined as followings,

Hk(x) , (−1)kex
2 dk

dxk
e−x

2

hk ,
2k−1k!

√
π

k2 [Hk−1(xk)]
2

where xk are the roots of Hk(x) = 0.
Thus, with the Gauss-Hermite approximation, Eq. (2) can be approximated by∫

µi

eg(µi)dµi ≈
√

2πω̂
K∑
k=1

hk exp
{
g(µ̂i +

√
2πω̂xk) + x2k

}
, ω̂ =

√
− 1

g′′(µ̂i)
(A.2)

notice that when K = 1, it is a Laplace approximation.
Our final objective function for GH is

Li = Li(β, µi;Xi·, yi·) =
√

2πω̂
K∑
k=1

hk exp
{
g(µ̂i +

√
2πω̂xk;β) + x2k

}
Denote that

fk = hk exp
{
g(µ̂i +

√
2πω̂xk;β) + x2k

}
fkβ = fkgβ(µ̂i)

fkµ = fkgµ(µ̂i)

fkω = fkgµ(µ̂i)
√

2πxk
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Appendix A.3. Optimization

A logistic regression model with random effects is developed under the form of

log{L(θ)} =
m∑
i=1

log

{∫
µi

[
ni∏
j=1

P(θ|Xij, yij)

]
φ(µi; τ)dµi

}

and the distribution P follows density of logit and φ is a univariate normal, see that

ni∏
j=1

P(θ|Xij, yij) =

ni∏
j=1

π
yij
ij (1− πij)(1−yij)

φ(µi; θ) =
1√
2πτ

exp(−µ2
i /2τ

2)

where πij is a Sigmoid function of µi and defined as

πij =
exp(X>ijβ + µi)

1 + exp(X>ijβ + µi)

with the Gauss-Hermite approximation set up, the objective function can be approximated
as

√
2πω̂

K∑
k=1

hk exp
{
g(µ̂i +

√
2πω̂xk;β) + x2k

}
where

g(µi;β) = log

ni∏
j=1

P(θ|Xij, yij)φ(µi; τ)

=

ni∑
j=1

[log P(θ|Xij, yij)] + log φ(µi; τ)

=

ni∑
j=1

[yij log πij + (1− yij) log(1− πij)] + log φ(µi; τ)

Appendix A.3.1. Step 1: Maximize g(µi)

To maximize g(µi), we need to get the derivatives

∂g

∂µi
=

ni∑
j=1

[
yij

1

πij

∂πij
∂µi
− (1− yij)

1

1− πij
∂πij
∂µi

]
+

1

φ

∂φ

∂µi

=

ni∑
j=1

(yij − πij)−
µi
τ 2

where
∂φ

∂µi
= (
√

2πτ)−1 exp(−µ2
i /2τ

2) · (−µi/τ 2)
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and

∂2g

∂µ2
i

= −
ni∑
j=1

∂πij
∂µi
− 1

τ 2
< 0

where
∂πij
∂µi

=
exp

(
X>ijβ + µi

)[
1 + exp

(
X>ijβ + µi

)]2
see that it is a convex problem, using newton’s method, we can derive µ̂i = arg maxµi g(µi)
that is global optimum.

Appendix A.3.2. Step 2: Maximization preparation of β in LOCAL

See the derivative
∂πij
∂β

=
Xij exp

(
X>ijβ + µi

)[
1 + exp

(
X>ijβ + µi

)]2
and denote fk(µ̂i;β) := hk exp

{
g(µ̂i +

√
2πω̂xk;β) + x2k

}
, then

∂Li
∂β

=
√

2πω̂
K∑
k=1

{
fk(µ̂i;β)hk

∂g(µi;β)

∂β

∣∣∣∣
µi=µ̂i+

√
2πω̂xk

}
(A.3)

=
√

2πω̂
K∑
k=1

{
fk(µ̂i;β)hk

ni∑
j=1

(Xijyij −Xijπij)

}
(A.4)

and the second derivative

∂2Li
∂β2

=
√

2πω̂
K∑
k=1

fk(µ̂i;β)h2k

ni∑
j=1

(Xijyij −Xijπij)

[
ni∑
j=1

(Xijyij −Xijπij)

]>
(A.5)

+ fk(µ̂i;β)hk

ni∑
j=1

(
−Xij

∂πij
∂β

)}
(A.6)

Notice that µi in (3), (4) and (5) are replaced by µ̂i +
√

2πω̂xk where µ̂i is the maximand of
function g(·) with respect to µi.

Appendix A.3.3. Step 3: Maximization of β in GLOBAL

Reminds that L =
∑m

i=1 logLi, then another Newton’s method is applied in global log-
likelihood function,

∂L
∂β

=
m∑
i=1

L′i(β)

Li(β)

∂2L
∂β2

=
m∑
i=1

[
L′′i (β)

Li(β)
−
(
L′i(β)

Li(β)

)2
]

Now, focus on β(n+1) = β(n) − L
′(β(n))

L′′(β(n))
, deduce that

L′(β(n))

L′′(β(n))
=

∑m
i=1

L′i(β)

Li(β)∑m
i=1

L′′i (β)

Li(β)
−
∑m

i=1

(
L′i(β)

Li(β)

)2
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Appendix A.4. Synthetic data generation

There are 8 settings of data sets generated from the process, and each setting can be
summarized in table 1.

Fig.A.6 shows the distribution of each setting about different variables.

Figure A.6: The box-plots of variables in Setting 1 to Setting 8.

We set true sensitivity and specificity as sen = 0.6 and sp = 0.9 and β = (−1.5, 0.1,−0.5,−0.3, 0.4,−0.2,−0.25, 0.35,−0.1, 0.5).
Also define X1 = 1N as the intercept, and X2, X3, X4 are generated with Bernoulli distribu-
tion (2) with probability p = 0.1, 0.3, 0.5 respectively.

f(Xi; p) =

{
p if Xi = 1
q = 1− p if Xi = 0

(A.7)

then X5, X6, X7 are generated from normal distributions N (0, 0.5),N (0, 1),N (0, 1.5) respec-
tively. Lastly, X8, X9, X10 are generate from uniform distributions U(−0.5, 0.5), U(−0.7, 0.7),
U(−1, 1) respectively. We also generate the random effect µ using trivariate normal distri-
bution

N3

 0
0
0

 ,Σ

 , Σ = I3 (A.8)

and with the settings, we can deduce the log-odds ratio with following formula

log(π) = f(Xβ + µ+ ε) (A.9)
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where f is the sigmoid function defined as

f(x) =
ex

1 + ex
(A.10)

Now, we generate the outcomes y for each sample with Bernoulli distribution (2) where
the log-odds ratio served as the probability p. Also, the sensitivity and specificity can be
calculated with Binomial distribution with probability sen+ µ2 and sp+ µ3.

Appendix B. Supplementary tables

Table B.5: The performance of centralized GLMM on R package with a significance threshold α = 0.05.
TNR refers to the True negative rate.

Precision Recall TNR Accuracy
X1 0.7162 1.0000 0.0000 0.7162
X2 0.1000 0.9231 0.2000 0.2635
X3 0.5917 0.9726 0.3467 0.6554
X4 0.4400 0.9649 0.2308 0.5135
X5 0.5703 0.9865 0.2568 0.6216
X6 0.4797 1.0000 0.0000 0.4797
X7 0.7162 1.0000 0.0000 0.7162
X8 0.3167 0.9268 0.2336 0.4257
X9 0.1417 0.8500 0.1953 0.2838

Table B.6: The performance of distributed GLMM with Laplace transformation with a significance thresh-
old α = 0.05. TNR refers to the True negative rate.

Precision Recall TNR Accuracy
X1 0.7063 1.0000 0.0000 0.7063
X2 0.0833 1.0000 0.2667 0.3125
X3 0.5750 0.9857 0.4333 0.6750
X4 0.4609 1.0000 0.3168 0.5688
X5 0.5303 0.9859 0.3034 0.6063
X6 0.4375 1.0000 0.0000 0.4375
X7 0.6563 1.0000 0.0000 0.6563
X8 0.3000 1.0000 0.3226 0.4750
X9 0.1500 1.0000 0.2817 0.3625

X10 0.5316 1.0000 0.0263 0.5375
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Table B.7: The performance of distributed GLMM with 2-degree Gauss-Hermite transformation with
significance threshold α = 0.05. TNR refers to True negative rate.

Precision Recall TNR Accuracy
X1 0.5455 1.0000 0.0000 0.5455
X2 0.3158 1.0000 0.3390 0.4935
X3 0.6404 1.0000 0.4938 0.7338
X4 0.6066 1.0000 0.4000 0.6883
X5 0.5952 1.0000 0.3544 0.6688
X6 0.5260 1.0000 0.0000 0.5260
X7 0.6948 1.0000 0.0000 0.6948
X8 0.5000 0.9828 0.4063 0.6234
X9 0.4386 1.0000 0.3846 0.5844

X10 0.5658 1.0000 0.0294 0.5714

Table B.8: The result of centralized GLMM in R package

Coef Std.Err z P-value [0.025 0.975]
(Intercept) -5.882 0.133 -44.294 0.000 -6.142 -5.621

age 0.043 0.001 30.918 0.000 0.040 0.045
Gen M 0.370 0.033 11.052 0.000 0.304 0.435

race Asian 0.365 0.122 2.995 0.003 0.126 0.604
race Caucasian 0.157 0.049 3.185 0.001 0.061 0.254

race Other.Unknown 0.385 0.070 5.530 0.000 0.249 0.521
ethnicity Not.Hispanic -0.181 0.060 -3.030 0.002 -0.299 -0.064

ethnicity Unknown -0.088 0.069 -1.274 0.203 -0.224 0.048
COPD Y 0.096 0.038 2.556 0.011 0.022 0.169

CHF Y 0.153 0.040 3.796 0.000 0.074 0.232
CKD Y 0.029 0.044 0.674 0.500 -0.056 0.115

MS Y -0.090 0.124 -0.725 0.469 -0.332 0.153
RA Y 0.144 0.070 2.048 0.041 0.006 0.281
LU Y -0.001 0.204 -0.004 0.997 -0.400 0.398

HTN Y 0.113 0.053 2.121 0.034 0.009 0.217
IHD Y 0.334 0.037 9.077 0.000 0.262 0.406

DIAB Y 0.149 0.035 4.214 0.000 0.080 0.218
ASTH Y -0.170 0.054 -3.143 0.002 -0.276 -0.064
Obese Y 0.211 0.043 4.893 0.000 0.126 0.295
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Table B.9: The result of federated GLMM with GH method

Coef Std.Err z P-value [0.025 0.975]
(Intercept) -3.476 0.066 -53.064 0.000 -3.605 -3.348

age 0.043 0.001 55.794 0.000 0.041 0.044
Gen M 0.370 0.021 17.847 0.000 0.329 0.410

race Asian 0.364 0.075 4.847 0.000 0.217 0.511
race Caucasian 0.156 0.028 5.538 0.000 0.101 0.211

race Other.Unknown 0.383 0.041 9.365 0.000 0.303 0.463
ethnicity Not.Hispanic -0.178 0.036 -4.936 0.000 -0.249 -0.107

ethnicity Unknown -0.091 0.042 -2.154 0.031 -0.174 -0.008
COPD Y 0.096 0.026 3.700 0.000 0.045 0.146

CHF Y 0.154 0.029 5.205 0.000 0.096 0.211
CKD Y 0.028 0.031 0.901 0.367 -0.033 0.090

MS Y -0.093 0.078 -1.205 0.228 -0.245 0.059
RA Y 0.144 0.049 2.959 0.003 0.048 0.239
LU Y 0.001 0.119 0.008 0.994 -0.233 0.235

HTN Y 0.113 0.028 3.988 0.000 0.057 0.169
IHD Y 0.334 0.024 14.162 0.000 0.288 0.381

DIAB Y 0.149 0.022 6.677 0.000 0.105 0.192
ASTH Y -0.169 0.032 -5.242 0.000 -0.233 -0.106
Obese Y 0.211 0.028 7.483 0.000 0.156 0.267

Table B.10: The result of federated GLMM with LA method

Coef Std.Err z P-value [0.025 0.975]
(Intercept) -3.162 0.064 -49.437 0.000 -3.288 -3.037

age 0.041 0.001 54.895 0.000 0.040 0.043
Gen M 0.359 0.021 17.374 0.000 0.318 0.399

race Asian 0.315 0.075 4.214 0.000 0.168 0.461
race Caucasian 0.130 0.028 4.675 0.000 0.076 0.185

race Other.Unknown 0.330 0.041 8.138 0.000 0.251 0.410
ethnicity Not.Hispanic -0.211 0.036 -5.886 0.000 -0.281 -0.140

ethnicity Unknown -0.114 0.042 -2.707 0.007 -0.197 -0.031
COPD Y 0.098 0.026 3.750 0.000 0.047 0.149

CHF Y 0.156 0.030 5.234 0.000 0.098 0.215
CKD Y 0.029 0.032 0.928 0.353 -0.033 0.092

MS Y -0.092 0.077 -1.192 0.233 -0.244 0.059
RA Y 0.138 0.049 2.829 0.005 0.042 0.234
LU Y -0.007 0.118 -0.061 0.952 -0.239 0.225

HTN Y 0.104 0.028 3.722 0.000 0.049 0.159
IHD Y 0.337 0.024 14.208 0.000 0.290 0.383

DIAB Y 0.144 0.022 6.461 0.000 0.100 0.187
ASTH Y -0.175 0.032 -5.445 0.000 -0.238 -0.112
Obese Y 0.182 0.028 6.450 0.000 0.127 0.237
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