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Abstract Machine Learning (ML) can substantially
improve the efficiency and effectiveness of organiza-
tions and is widely used for different purposes within
Software Engineering. However, the selection and im-
plementation of ML techniques rely almost exclusively
on accuracy criteria. Thus, for organizations wishing
to realize the benefits of ML investments, this narrow
approach ignores crucial considerations around the an-
ticipated costs of the ML activities across the ML life-
cycle, while failing to account for the benefits that are
likely to accrue from the proposed activity. We present
findings for an approach that addresses this gap by en-
hancing the accuracy criterion with return on invest-
ment (ROI) considerations. Specifically, we analyze the
performance of the two state-of-the-art ML techniques:
Random Forest and Bidirectional Encoder Representa-
tions from Transformers (BERT), based on accuracy
and ROI for two publicly available data sets. Specifi-
cally, we compare decision-making on requirements de-
pendency extraction (i) exclusively based on accuracy
and (ii) extended to include ROI analysis. As a result,
we propose recommendations for selecting ML classifi-
cation techniques based on the degree of training data
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used. Our findings indicate that considering ROI as ad-
ditional criteria can drastically influence ML selection
when compared to decisions based on accuracy as the
sole criterion.
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1 Introduction

Machine Learning (ML) includes methods, tools, and
techniques for inferring models from data and has pro-
vided successful applications of classification and pre-
diction algorithms. In the area of software development
and evolution, a recent study [1] revealed that there is
a spectrum of applications of ML across the software
development life-cycle, with most of the applications
belonging to the category of Quality Assurance and An-
alytics.

There exists an extensive variety of ML algorithms
and this pool is growing steadily. A recent study [1]
listed Decision Trees, Naive Bayes, and Random For-
rest as the techniques most frequently applied in Soft-
ware Engineering. However, it is important to deter-
mine which algorithm works well for a given problem
and which are less effective. The performance of any
ML technique is generally measured in terms of accu-
racy (or similar measures). However, the success of ML
does not only depend on the algorithms used because
ML is a process with various interdependent steps and
the investments made in this process need to be re-
lated to the return gained from its results. This paper
puts estimating the return-on-investment (ROI) of ML
in the spotlight. ROI is most widely used in the context
of business analysis, which we extend to ML classifica-
tion problems. In particular, we focus on the decision-
making of ML method selection, i.e., to determine when
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to stop the process and how much additional investment
is needed to achieve a target goal (result).

The most important prerequisite for generating ac-
curate ML models is high-quality training data, how-
ever securing such data is often an arduous task. Addi-
tionally, engineering and selecting appropriate features
is especially time-consuming and requires a vast amount
of effort and resources [2]. The benefits gained from the
application of ML can be dramatically offset due to data
collection and data pre-processing activities, which in-
cur substantial costs and effort.

ROI is of great interest in engineering and business,
where it is widely used as a guide for decision-making.
This is true in Software Engineering (SE) as well. For
example, Silverio et al. [3] evaluated cost-benefit anal-
ysis for the adoption of software reference architectures
for optimizing architectural decision-making. Cleland
et al. [4] studied the ROI of heterogeneous solutions
for the improvement of requirements traceability. How-
ever, the recent data explosion in the form of big data
and advances in Machine Learning (ML) have posed
questions on the efficiency and effectiveness of these
processes that have become more relevant.

In this paper, we present two empirical studies from
the field of requirements engineering. While it serves
as one sample topic for a broader problem, Require-
ments Dependency Classification (RDC) has been a
topic of interest for both researchers and practition-
ers. In particular, we study a fine-tuned BERT (Bidi-
rectional Encoder Representations from Transformers)
[5], & recent technique published by researchers from
Google, with Random Forest for solving RDC. BERT
uses bidirectional training of transformer, a popular at-
tention model, to language modelling, which claims to
be state-of-the-art for NLP tasks. We compare BERT
with Random Forest (RF), a widely used ML technique
that serves as a baseline for comparison.

The objective of this study is to present an alterna-
tive method to evaluate ML algorithms. In that sense,
we demonstrate the perspective of the returns ML al-
gorithms would generate for the investment done while
choosing a particular method for a given problem. Our
research contributions are as follows

— Describe an ML process model for ML classification
and perform related ROI modeling.

— Empirically evaluate Random Forest and fine-tuned
BERT for textual classification in the context of
requirement dependency classification (RDC) using
accuracy and ROL

The remainder of the paper is structured as follows:
Section 2 provides a motivating example of this study,
followed by the description of related work in Section 3.

Cost

Benefit

Valueand
cost of additional information

Amount of analytics

Fig. 1: Break-even point from cost-benefit analysis of
technology investment.

Section 4 explains requirement dependency, its extrac-
tion, practical relevance, and research questions. Sec-
tion 5 elaborates our ROI modeling of the ML process.
Data used in this study are detailed in Section 6 fol-
lowed by empirical results in Section 7. The discussion
Section 8 details implications and limitations of this
study before summarizing conclusions in Section 9.

2 Motivating Example

Figure 1 shows a prototypical ROI curve for technology
investment [6]. When trying to achieve better results,
the investment’s cost (or effort) is growing over time,
typically non-linearly. However, the benefit achieved
from that investment eventually reaches some satura-
tion point beyond which almost no further improvement
is achieved. In total, a saturation point is achieved, af-
ter which further investment does not pay off anymore
(i.e., point of diminishing returns).

Thus, the most crucial question arises-Do similar
arguments apply for ML classification in Software En-
gineering? While this could be true in general, we study
it in the context of the requirements dependency clas-
sification problem.

Deshpande et al. [7] report the results of a recent
survey for requirements dependency classification and
maintenance, with 76% of responses (out of 70) from
practitioners. More than 80% of the participants agreed
or strongly agreed that dependency type classification
is difficult in practice; dependency information has im-
plications for maintenance, and ignoring dependencies
has a significant impact on project success [7].

Applying the advanced NLP technique BERT, we
performed an ROI analysis on the requirements de-
pendency classification. Automating this process saves
time, and making the classification more effective helps
better align the development process with the existing
dependencies. For example, if a requirement r depends
on another requirement s, then the implementation of
s should precede implementing r. Violating this logical
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dependency will not only delay the usage of r but also
decrease the effectiveness of testing.
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Fig. 2: ROI vs F1 of BERT for Firefox dataset [8]

Figure 2 shows that there is an early peak in the
ROI of using BERT. Since it is a very data-intensive
technique, the ROI goes down with increasing training
set size before the ROI reaches the global maximum. By
comparison, considering only the harmonic mean (F1)
of precision and recall gives a different recommendation
for training set size. We discuss this in detail in Section
5.

3 Related Work

Although ROI is used in various contexts in Software
Engineering and Data analytics, we discuss noted find-
ings from the literature in the context of our proposed
research.

3.1 Exploration of ROI in Software Engineering

Farbey et al. [9] explained that as a product moves
through its life cycle, various evaluation methods such
as ROI, Multi-Objective multi-criteria, Value analysis
etc. play an important role in decision making. In this
study, ROI was recommended either as a strategy to
decrease uncertainty in the business area or to improve
knowledge of how technology would operate.
Khoshgoftaar et al. [10] presented an interesting
case study of a large telecommunication software sys-
tem and demonstrated a methodology for cost-benefit
analysis of a software quality classification model. The
cost and benefit computations were based on the type-
I (FP) and type-II (FN) values of classification mod-
els. Although these cost-benefit models were ahead of
their time, they did not consider the time and effort
investment done on data and metrics gathering for cost
computation. In another study on calculating ROI in
the software product line, Bockle et al. [11] derived
cost and benefit estimates based on organization level

criteria, such as cost to the organization and cost of
reuse. However, this did not involve data analytics of
any form.

The guesswork could be eliminated from the
decision-making process while evaluating the profitabil-
ity of expenditure, which could help measure success
over time. For instance, Erdogmus et al. [12] analyzed
the ROI of quality investment to bring its value into
perspective; posed an important question, "We gener-
ally want to increase a software product’s quality be-
cause fixing existing software takes valuable time away
from developing new software. But how much invest-
ment in software quality is desirable? When should we
invest, and where?", which we think is difficult to quan-
tify yet crucial for the success of software-based prod-
ucts.

Begel & Zimmermann [13| gathered and listed a set
of 145 questions in a survey of 200 Microsoft develop-
ers and testers and termed them relevant for DA at
Microsoft. One of the questions: "How important is it
to have a software DA team answer this question?", ex-
pected answer on a five-point scale (Essential to I don’t
understand). Although this analysis provides a sneak
peek of the development and testing environments of
Microsoft, it does not provide emphasis on any form
of ROI. Essentially, we speculate that the ROI aspect
was softened into asking for the perceived subjective
importance through this question.

Boehm et al. [14] [15] presented quantitative results
on the ROI of Systems Engineering based on the anal-
ysis of the 161 software projects in the COCOMO II
database. Ruhe and Nayebi [16] proposed the Analytics
Design Sheet as a means to sketch the skeleton of the
main components of the DA process. The four-quadrant
template provides direction to brainstorm candidate
DA methods and techniques in response to the prob-
lem statement and the available data. In its nature, the
sheet is qualitative, while ROI analysis goes further and
adds a quantitative perspective for outlining DA.

Ling et al. [17] proposed a system to predict the
escalation risk of current defect reports for maximum
return on investment (ROI), based on mining historic
defect report data from an online repository. ROI was
computed by estimating the cost of not correcting an
escalated defect (false negative) to be seven times the
cost of correcting a non-escalated defect (false positive).

3.2 Exploration of ROI in Data Analytics

Ferrari et al. [18] studied the ROI for text mining and
showed that it not only has a tangible impact in terms
of ROI but also intangible benefits, which arise from
the investment in the knowledge management solution.
This solution translates the returns directly that must
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Fig. 3: Requirements dependencies across various releases of project

be considered while integrating the financial perspec-
tive of analysis with the non-financial ones.

Weiss et al. [19] emphasized how the quality of ex-
ternal data influence the results and quantified the ef-
fort of gathering and using such data when it is avail-
able at a premium into cost in terms of CPU time, even
though the treatment of the subject is limited to a static
setting. In a similar vein, Nagrecha et al. [20] proposed
a Net Present Value model to determine the cost and
impact of analytics programs for an organization.

Taking inspiration from these studies in our re-
search, we not only consider data pre-processing costs
as an additional cost aspect but also transform machine
learning metrics to dollar amounts, with derived costs
and benefits being also validated by industry experts.

3.3 Empirical Analysis for Requirements Dependency
Classification

Requirements dependencies classification is an active
field of SE research. The practical importance of the
topic was confirmed by a survey [7] of over 90 partici-
pants from the SE industry. Results showed that more
than 80% of the participants agreed or strongly agreed
that (i) dependency type extraction is difficult in prac-
tice, (ii) dependency information has implications on
maintenance, and (iii) ignoring dependencies has a sig-
nificant negative impact on project success.

Several empirical studies have explored diverse com-
putational methods that used natural language pro-
cessing (NLP) [21] [22], semi-supervised technique [23],
hybrid techniques [24] and deep learning [25] in this
context. Recently, Wang et al. [26] explored a semi-
automatic ML approach based on traceability to iden-
tify requirement dependencies to further identify secu-
rity vulnerabilities. However, none of the approaches
considered ROI to decide among techniques and the
depth and breadth of their execution level.

3.4 Exploration of Machine Learning process in Soft-
ware Engineering

We analyzed 96 papers from IEEE, Scopus, ScienceDi-
rect, and ACM Digital Library which exclusively used
ML, and data analytics within software engineering,
and software development domains. Precision, Recall,
Accuracy, and AUC were by far the most common per-
formance measures used by researchers in these papers.
Additionally, the choice of performance measure was
generally not justified. Most studies did not present all
steps of the ML process, and most of the papers for-
mally present only 3 steps of the ML process such as
data pre-processing, evaluation, and parameter tuning
and all these steps are underestimated in terms of effort
spent.

This study highlights the merits of simultaneously
considering technical and business criteria when eval-
uating tradeoffs faced within machine learning ap-
proaches for requirements dependency -classification
(RDC). We extend prior work that focused on compar-
ing various ML techniques based upon technical crite-
ria of accuracy to include broader consideration of the
impact i.e. Evaluating value generated by the analysis
compared to the costs incurred for the analysis.

4 Requirements Dependency Classification

Similar to requirements elicitation [27], extraction of re-
quirements dependencies is a cognitively difficult prob-
lem. These dependencies not only influence the devel-
opment of software but also impact how requirements
operate. In this section, we provide the formal problem
definition which serves as an example to demonstrate
the value of looking beyond accuracy measure and in-
vesting in more general concepts of ROI analysis.

4.1 Practical Relevance

Figure 3 is an illustration of the practical relevance of
considering requirements dependencies for incremental
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and iterative software development. Having multiple re-
lease cycles: R;_1, R;, R;11 defines the order of imple-
menting and testing new or updated features. However,
if a requirement is implemented in a release R; but re-
quires a requirement implemented in a later release,
then the requirement will not be usable. Similar ar-
guments hold for two requirements that are related to
each other but are implemented in different releases.
Thus, identifying the dependencies early on is crucial
as it drives the implementation as well as testing and
rework efforts immensely.

4.2 Problem Formulation

While there are different types of dependencies between
requirements [28], [29] we provide the definitions just
for the ones used in the empirical study . For a set of
requirements R and a pair of requirements (r, s) e RX R

1) Two requirements r, s are called INDEPEN-
DENT if handling one of them has no logical or
practical implication for handling the other one.
Otherwise, they are called DEPENDENT.

2) REQUIRES is a form of DEPENDENT relation-
ship. If requirement 7 requires the requirement s to
be implemented, then, r and s are in a REQUIRES
relationship. REQUIRES is an asymmetric relation-
ship.

3) RELATES TO is another specific form of DE-
PENDENT relationship. Requirement r relates_to
requirement s if changing one of them has an im-
pact on the other. RELATES TO is a symmetric
relationship!.

Problem: Binary Requirements
Classification (RDC)

For a given set R of requirements and their textual
description, the binary Requirements Dependency Clas-
sification problem (RDC) is to decide for a given pair
(r;s) e Rx R if (r,8) is in a REQUIRES (called prob-
lem RDC 1) or in a RELATES TO (called problem
RDC_ 2) relationship.

Dependency

4.3 Research Questions

In this paper, two research questions (RQs) are ad-
dressed:

RQ1: How to model the ROI for ML classification?
Specifically, how to instantiate the model for the
problem of RDC?

Rational: The exclusive consideration of accuracy
in the selection of ML classification techniques

I There are other types of dependencies such as DUPLI-
CATES, BLOCKS etc. that also occur in the these datasets,
however, we have considered the ones that occur most fre-
quently

might be misleading. We consider ROI as an alter-
native and additional criterion. To study the cost
and benefit of the ML classification in a specific
context, it is essential to consider the complete
process of ML classification and the impact of the
results in the original problem space.

RQ2: For RDC, how is the preference decision be-
tween RDC-BERT and RF impacted by the accu-
racy criteria F1 that includes ROI?

Rational: We evaluate the impact of the selection
criteria through two empirical studies on two open-
source software (OSS) datasets: Firefox, a software
application from Mozilla family [30] and Typo3 [31],
a content management software. Our goal is to eval-
uate two extraction techniques (RDC-BERT and
RF) to demonstrate the impact of the consideration
of ROI in addition to accuracy considerations.

5 ROI Modeling of ML Classification - RQ1

Machine Learning classification is an iterative process
comprising a series of steps. Aiming at ROI analysis of
ML classification requires a look at the effort consumed
for all these steps. In what follows, we describe various
ML process steps, we estimate cost and benefit, and
project the ROI of ML classification.

Although various ML workflow has been defined in
the literature [32] [33] [34], in this section, we present
the simplified version of it mainly focusing on the ML
process.

5.1 Modeling the Process

The process steps are organized into four Phases: A, B,
C, and D called Planning, Data Preparation, Execution,
and Validation, respectively. Depending on the context,
the effort allocated for these steps may vary. However,
this approach parallels the process steps and guidelines
for pragmatic optimization in software engineering by
Ruhe et al. [6].

An overview of the steps is illustrated in Figure
4. Here, we did not show all the possible arrows to
indicate that loops can, and do, occur between any two
steps in the process. The iterative and interactive ML
process, involving various phases is summarized as:

Phase A : Planning

Step 1: Scoping and problem formulation

Scoping defines the problem context and its
boundaries. Problem formulation addresses the
key independent and dependent attributes to be
considered. As a result of later steps, the problem
formulation eventually needs to be adjusted as
asking the right question constitutes the largest
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Fig. 4: Overview of the steps constituting the ML process

effort for any application effort.

Step 2: Evaluation of candidate machine
learners

A variety of ML algorithms exist and new ones
are discovered regularly. Commonly used machine
learning algorithms include Linear Regression,
Logistic Regression, Decision Trees, K-means,
Support Vector Machines, Naive Bayes, Random
Forest, and Neural Networks. There is no obvious
preference in the sense that "One size fits all".
However, there could be recommendations for
a particular ML algorithm for a given problem
based on its exemplary performance for a similar
problem(s). An initial evaluation helps to select the
most promising one(s). The selection is influenced
by the success criterion of the classification (e.g.,
accuracy).

Phase B: Data Preparation

Step 3: Data collection

Different sources of data might exist for performing
ML classification. Data collection looks into what
is potentially relevant and checks the type and
availability of the data.

Step 4: Data pre-processing

Raw data would not be ready for processing
through the ML algorithm as it could have dupli-
cates, missing values, and contradictions that need
to be tackled first for error-free results. Performing
such pre-processing operations, for example, data
cleaning, normalization, transformation, feature
extraction and selection, etc. are essential for

the success of ML classification, but these steps
consume a considerable amount of human re-
sources and processing time. The outcome of data
pre-processing is the training set which could be
processed through ML algorithm further [35].

Step 5: Labeling

Labeling is to assign labels to ground truth data
[33]. Supervised ML methods need labeled data un-
like unsupervised ML methods. Labeling is generally
performed by domain experts who identify a set of
samples (that are most likely representative of the
real-world data) to train the ML models. Depending
on the nature of the problem, online crowdsourced
platforms could also be used for labeling tasks [36].

Phase C: Execution

Step 6: Training

The key idea of ML is to learn from existing data
and then apply the resulting model to new data.
The quality and quantity of the training data are
often as important as the actual machine learning
algorithm. To learn from existing data also means
that the data set is complete, with known input
and output of the observations.

Step 7: Hyper-parameter tuning

ML algorithms depend upon several parameters
such as named model parameters and named
hyper-parameters. Named model parameters can
be initialized and updated through the data
learning process (e.g., the weights of neurons in
neural networks). Named hyper-parameters cannot
be directly estimated from data learning and
should be set before training an ML model because
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they define the model architecture. Tuning these
parameters means achieving settings that enable
good algorithmic performance [37].

Step 8: Testing

After training, the model is applied to the selected
test set(s) (a small part of labeled data that is held
out and excluded from the training process). The
larger the number of variables in the real world, the
bigger the training and test data should be. From
performing testing, classification error counts are
captured in the form of a confusion matrix.

Phase D: Validation

Step 9: External validation

Success from Step 8 does not automatically imply
the success of the results in the context of the ap-
plication. The validity of the problem formulation
and the data might prevent the applicability of the
results (i.e., not actionable within the organization
resulting in significant wasted effort).
Internal validation approaches such as
validation can not guarantee the quality of a ma-
chine learning model due to potentially biased train-
ing data. External validation is critical for evaluat-
ing the generalization ability of the machine learning
model, where independently derived datasets (ex-
ternal) are leveraged as validation datasets. While
such independent validation is also sometimes used
to refer to a validation study by other researchers
that the researchers who developed the model [38].

5.2 Modeling Cost and Benefit

Cross-

Acknowledging that ML classification is a process of
steps with possibly multiple iterations suggests the need
to look at the estimated cost for all these steps. Cost es-
timation is known to be inherently difficult in software
engineering [39]. The same is true for value prediction.
Despite many factors influencing the costs and benefits
of ML classifications, we provide a preliminary model
to allow a rough estimate of the ROI.

For cost estimation, we make the assumption that
the total cost of performing ML classification with any
given ML technique is the sum of cost components of
the four phases outlined in the previous section. To sim-
plify the model, we focus on Phase B (Data Prepara-
tion) and Phase C (Execution) and ignore the other two
phases. Finally, we assume an 80:20 effort (and cost) ra-
tio between Phase B and Phase C, emphasizing the fact
that the majority of effort is spent on data preparation.

For modeling the benefit of the classification results,
we are looking at classification errors and their cost
(penalty) created. A confusion matriz CM is a matrix
that contains information relating actual with predicted

classifications. For n classes, CM will be an n xn matrix
associated with a classifier. Table 1 shows the principal
entries of CM for binary classification.

Table 1: A confusion matrix of binary (two) class
classification problem

Predicted
Negative

Predicted
Positive

False Positive
(FP)

Actual Negative | True Negative

(TN)

True Positive
(TP)

Actual Positive False Negative

(FN)

The F1 score is a measure of the model’s accuracy
based on the training set and defined as the harmonic
mean of the model’s precision and recall in (1).

_ 2xTP 1

~ 2xTP+FP+FN S
In the context of dependency classification, the ben-
efit could be modeled in terms of the ability of the ML
model to produce the least amount of overhead by 1)
Incorrectly classifying independency as a dependency
(False Positive) 2) Incorrectly classifying dependency
as independent (False Negative). So, using Costpp and
Costpn as estimated re-work costs due to classification
overhead, Sum/(Costpn,Costpp) would be the cumu-
lative expense that a company has to bear.

In a release cycle, if estimated value that a product
could generate is :Valuep o4 then the Benefit would
be the difference of the estimated value and the classi-
fication overhead. Table 2 lists the relevant cost com-
ponents and their corresponding units.

5.3 Modeling ROI

F1

During every classification, Cost and Benefit were
computed using the parameters explained in Table 2.
Cost factors are data processing costs (Phase B and
Phase C) for all the train (Ng-qq,) and test (Nyest) sam-
ples (n) in every iteration. This is further translated
into dollar-cost by multiplying with hourly charges
(Cur) of Ngr human resources.

Cost =n x Z

all applicable

Cost factors x Nggr x Cyr(2)

Return computations for RDA, assumes reward
(Costpp) for misidentifying the independent require-
ments (FP) and heavily penalizing (Costpy) instances
that were falsely identified as independent (FN).

TotalPenalty = FP x Costpp + FN x Costpn — (3)

Benefit = Valueyroq — Total Penalty (4)
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Table 2: Parameters used for ROI computation

Symbol Meaning Unit
Phase A | Cp,;2 Planning phase cost $
Phase B Cag Data gathering cost $
Chpp Pre-processing cost $
Cost factors?! (o} Labeling cost $
Phase C | C,2 Hyper-parameter tuning cost $
Ctrain/test ~Training and testing cost $
Phase D | C.2 External Validation cost $
Classification Penalty Costrp Penalty per FP S
Costrpn Penalty per FN $
Nuyr #Human resources Number
Cur Human Resource cost $/hr
Others Nirain Size of the training set Number
Niest Size of the test set Number
N Ntirain + Ntest Number
Valuepmd3 Estimated value of the product for a release cycle $

1These are per sample cost factors. All the costs are computed by translating them from minutes to $ by multiplying with

resources and cost per hour of the resources

2For simplicity few of the cost factors have been assumed to be zero
3This value was computed using various cost estimates for a period of one release cycle (= 18 months)

Return and investment are context-specific terms,
and studying the ROI of Machine Learning classifica-
tion needs tailoring to the context of the study. To
determine the ROI, we follow the simplest form of its
calculation relating to the difference between Benefit
and Cost to the amount of Coost as shown in (5). Both
Benefit and Cost are measured as human effort in
person-hours.

ROI = (Benefit — Cost)/Cost (5)

The core investigative focus of our study is to evaluate
various conditions under which RDC-BERT (fine-tuned
BERT using data specific to requirement dependency
extraction) is preferable to the baseline ML method:
Random Forrest (RF).

In this empirical analysis, beginning with a small
train set, classifiers were created, and then the train
set was incremented slowly by a fixed factor to gener-
ate new classifiers in every iteration until all the data
available for training was exhausted. In every iteration,
the classifiers were tested for a small fixed data set to
capture the results.

6 Data and Experiment Setup

Online bug tracking systems such as Bugzilla [40] and
Redmine [41] are widely used in open-source software
development. Feature requests, tasks, bugs, epics, sto-
ries, features, enhancements, and new requirements are
logged into these systems in the form issue reports [42]

[43] which help software developers to track them for
effective implementation [44], testing and release plan-
ning [45].

We mined data from Bugzilla and Redmine related
to features for the two OSS projects namely, Firefox - a
Mozilla web browser application and Typo3 - a content
management system.

6.1 Firefox

In Bugrzilla, feature requests are specific types of issues
that are typically tagged as “enhancement” [30]. We re-
trieved these feature requests for the Firefox project
using the search engine in the Bugzilla issue tracking
system and exported all the related fields such as Ti-
tle, Type, Priority, Product, Depends on, and Blocks.
Each issue report contains dependency relationships
with other issue reports as references metadata [46].
Using this information, 3,773 depends on (also inter-
preted as REQUIRES dependency type) requirements
pairs were retrieved. To generate negative samples, re-
quirements that had no relationship were paired and
21,358 samples were generated.

6.2 Typo3

Redmine [41] is a free and open-source web-based man-
agement and issue tracking tool website. It allows users
to manage multiple projects and associated projects.
Various issues across a range of projects are updated
each day which helps software developers to track them
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Table 3: Dependency pair samples from the two datasets

Dependency ID Description ID Description
type
1432952 add ability to associate saved billing | 1429180 option to use new billing address
address with payment card in when adding new payment card
add/edit card form
1394451 update illustration for error connec- | 1358293 wux error connection failure copy de-
REQUIRES tion failure sign and illustration update
1524948 introduce session group to allow to | 1298912 multiple snapshot perform periodic
manage multiple session at same session backup and let user restore
time particular backup
92822 ignore button for link targets 92297 make it possible to mark specific
links to not get checked by linkval-
idator
92576 page tree filter: make it possible to | 36075 advanced filtering for the page-tree
RELATES TO explicitly filter by uid
91496 differentiate between password reset | 89513 provide password recovery for back-
"by user" and "by admin" end users

for effective implementation. In Redmine, features are
a specific type of issue that is extracted in this paper
for further data analysis. Typo3 Content Management
System (CMS) is an Open Source Enterprise Content
Management System[31] with a large global community
of approximately 900 members of the TYPO3 Asso-
ciation. We collected information such as issue links,
description, the version found, the version released, is-
sue_id etc. for 5,017 features using Redmine’s REST
API through a Python script for this study.

All feature descriptions that had fewer than three
words in them were filtered out, resulting in 1,324 fea-
ture pairs with dependency type RELATES TO. Using
the rest of the features that were not in any type of de-
pendency with others, 9,270 pairs were generated as a
negative sample set.

Table 3 mentions sample pairs of requirements de-
pendencies. For example, to be able to associate the
address with payment card REQUIRES ability to use
a new billing address when adding a new payment card.
For both data sets, to perform binary classification,
both positive and negative samples are needed for train-
ing. Since we only had dependent (positive) samples in
the data, we generated negative samples by pairing the
requirements which were not related in the given snap-
shot of the dataset.

6.3 Effort and Value Estimation

Typo3, currently at released version 11, is a complex
content management system that is developed as a hy-
brid OSS software product. It has a core team of 12
members with varying skills and expertise. They have
a major release cycle of 18 months and they plan two
or more releases ahead of time. Developers are encour-

aged to track the dependencies in Jira, however, a few
of the team members utilize post-its to work and track
them. Typo3 does not explicitly consider Requirements
Engineering as a development phase, but they term the
efforts towards identifying features and extracting de-
pendencies as conceptual work or scoping. Over 15%
of the release, the cycle is identified as scoping effort
and about 25% of scoping in a release cycle is identi-
fied as dependency extraction and identification. Nine
team members and the CTO are involved, mostly in
identifying the dependencies.

The CEO confirmed that about 80 % of the fea-
tures are in some form of dependency with each other
and missing the dependencies is more problematic than
misidentifying them. As he puts this in words, “if you
miss dependencies then it starts to ramp up quickly and
this is when things go wrong, and breaks deadlines. we
wanted to release in April (4 weeks ago) now deadline
is mid October”.

Typo3 identifies and manages seven different types
of dependencies and their inversions such as precedes,
blocks, clones, caused by etc. Most of the dependency
issues are identified rigorously through testing and the
estimated re-work is about 12%. They have minimal
manual testing as they have test suits of over 75,000 test
cases. The CEO estimated that the overwork caused by
missing dependencies is about 10% of the efforts. The
average salary of the nine people involved in re-work is
$70 (CAD). A summary of all estimates is provided in
Table 5.

6.4 Experiment Setup

Figure 5 depicts the overview of our experiment setup.
The complete approach is multi layered as highlighted
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Fig. 5: Overview of the experiment setup

in the shades. Each one of these could be further ex-
panded to include additional elements for solution space
evaluation further.

In this study, to generate the results, RF, Naive
Bayes and SVM ML algorithms were compared against
RDC-BERT for the two datasets: Firefox and Typo3.
Overall eight experiments were conducted. Since RF
performed better among all the conventional ML algo-
rithms [8], we report the results of RF and RDC-BERT
(i.e. totally four experiments).

For each experiment, we computed ROI using False
Negative and False Positive values (from Confusion
matrix). In Section 7 we present the insights to aid
decision-making in algorithm selection based on these
eight outcomes. For additional clarity, we list the names
of the analysis of the results and their description in Ta-
ble 4.

Requirements pairs were pre-processed to eliminate
noise such as spatial characters and numbers. The gen-
erated output is fed to RDC-BERT and RF for train-
ing. Care was taken to process the same data snapshot
through RF and RDC-BERT models. Further, the fine-
tuned BERT model (RDC-BERT) is then used for clas-
sification. The data was split (80:20) into train and test
sets, and balanced between both classes.

In this empirical analysis, we conducted classifi-
cation by utilizing a fraction of the whole dataset for
training and testing for a small fixed data set. This
was repeated by slowly increasing the training set and
results were captured.

Random Forest: For RF, we use TF-IDF to
generate word vectors before training. Also, hyper-
parameter tuning was performed and the results for

10-fold cross-validation were computed, followed by
testing.

RDC-BERT: For fine-tuning BERT, a pre-trained
BERT model is used in combination with our RDC
specific dataset. The result is a fine-tuning BERT
model called RDC-BERT. To fine-tune the BERT
model, we used NextSentencePrediction?, a sentence
pair classification pre-trained BERT model, and
further fine-tuned it for the RDA specific dataset on
Tesla K80 GPU on Google Colab?.

In every instance, for a given training set size, RDC-
BERT was trained through three epochs with a batch
size of 32, and a learning rate of 2e-5. In each epoch, the
train set was divided into 90% for training and 10%for
validation. Finally, RDC-BERT was used to classify the
test set and the resulting F'1-score and confusion matrix
were captured.

BERT eliminates the need for feature extraction
since it is a language model based on deep learn-
ing. BERT, pre-trained on a large text corpus, can be
fine-tuned on specific tasks by providing only a small
amount of domain-specific data.

7 Empirical Analysis - RQ2

In this section, we report the results of our empirical
analysis and answer RQ2. We structure results by the
type of decisions to be made: (i) RQ 2.1: When com-
paring two techniques: Which one is preferable under
conditions selected?, and (ii) RQ 2.2: When looking
at one technique, when to stop the analysis? For both

2 https://huggingface.co/transformers/model_doc/
bert.html#bertfornextsentenceprediction
3 https://colab.research.google.com/
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Table 4: Overview of the various analyses done in Section 7

Description
Fig 6 F1 _Firefox Firefox: Compare F1 of RF and RDC-BERT RQ 2.1
Fig 7 F1_Typo3 Typo3: Compare F1 of RF and RDC-BERT RQ 2.1
Fig 8 ROI _Firefox Firefox: Compare ROI of RF and RDC-BERT RQ 2.1
Fig 9 ROI Typo3 Typo3: Compare ROI of RF and RDC-BERT RQ 2.1
Fig 10 F1_ROI_RDC-BERT _Firefox Firefox: F1 vs ROI of RDC-BERT RQ 2.2
Fig 11 F1_ROI_RF _Firefox Firefox: F1 vs ROI of RF RQ 2.2
Fig 12 F1_ROI_RDC-BERT_Typo3 Typo3: F1 vs ROI of RDC-BERT RQ 2.2
Fig 13 F1_ROI_RF_Typo3 Typo3: F1 vs ROI of RF RQ 2.2

decisions, we present the results of the analysis for the
two data sets introduced above and the two techniques
under investigation using estimates from Table 5.

Table 5: Parameter settings for the two empirical
analysis scenarios

Parameters Values
Phase B: (Cag + Cpp + 1)1

Phase C: Ctrain/test

1.5 min/sample

0.30 min/sample

Cur $70/hr

Nur 10

N Firefox:7,546
Typo3: 2,648

COStFN $25,000

Costrp $10,000

Valueprod $4,000,000

L Cq4q,Cpp and C; are weighed equally (= 0.5min/sample)
each. Also ratio of Phase B:Phase C = 80:20 has been
considered

7.1 RQ 2.1: Comparison between RDC-BERT and RF

The traditional approach for comparing techniques is to
look at just accuracy for some fixed training set. Fig-
ures 6 (F1_Firefox) and 7 (F1_Typo3) show the com-
parison of the Fl-scores for varying training set sizes
for the two datasets. Results show that RF achieves a
higher accuracy more quickly for even small-sized train
sets respectively. However, with a training set greater
than 40% of the dataset for Firefox and 30% for Typo3,
RDC-BERT achieves better results overall.
Comparison of ROI for the two datasets and two
methods (RDC-BERT and RF) is shown in Figures 8
(ROI_Firefox) and 9 (ROI_Typo3) respectively. For
Firefox, with a smaller-sized train set, RF once again
performs better comparatively, even though the ROI is
negative. Similar results are evident for Typo3. RF per-
forms marginally better ROI-wise for the smaller train-
ing set. ROI of RDC-BERT picks up pace only beyond

40% and 30% train set for Firefox and Typo3, respec-
tively.

7.2 RQ 2.2: Bi-criterion analysis of RDC-BERT and RF

In the second part of the analysis for RQ2, we look at
one technique at a time from the perspective of both
Fl-score and ROI. This will support decision-making
towards the question of when does increase accuracy
no longer pays off?

As illustrated in figures 6 and 7, increased training
set does not yield better F1-score beyond 65%. The F1-
score hits a plateau and even starts to degrade for both
of the methods and datasets.

However, if we look at the trade-off between the
F1 and ROI for both datasets, the results become in-
teresting. Figures 10: F1 ROI RDC-BERT Firefox
show that for RDC-BERT, F1l-score increases linearly,
however, max ROI is achieved when the train set is
70% of the dataset. Whereas, for RF, in Figure 11 :
F1 ROI RF Firefox shows that F1 and ROI for the
train set lower than 40% is better than that of RDC-
BERT. Chasing for a higher F1 score does not payoff
and one needs to take a closer look at the benefits vs
investment in more training data, eventually.

For Typo3, in Figure 12: F1 ROI_RDC-
BERT Typo3 shows that Fl-score and ROI grow
steeply for RDC-BERT with the increasing train set.
However, similar to Firefox, ROI and F1 of RF are
stable and better than RDC-BERT for the train set
smaller than 30%. These findings once again emphasize
the need to relook at how F1 and ROI together could
aid in deciding on the ML selection.

In both datasets studies, it is evident that RDC-
BERT models require large amounts of data (at least
30% or more) to stabilize and show value (steady posi-
tive ROI). When comparing RDC-BERT with RF using
ROI criteria (Fig 8 and 9) across the two data sets,
RF outperforms RDC-BERT for the lower train set
(incurring lower negative returns). However, positive
ROIs are observed only at the larger train set at which
RDC-BERT is consistently better than RF. Based upon
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Fig. 10: F1 vs ROI of RDC-BERT for Firefox
dataset, utilizing values from Table 5

the Firefox findings (Fig 10 and 11), RDC-BERT ap-
proaches the 80% benchmark accuracy with approxi-
mately 50% of the training data while RF requires 70%
training data to attain the same level of accuracy. How-
ever, both techniques can achieve positive ROI with as
little 50% training data but RBC-BERT achieves max-
imum ROI (30) with an accuracy of 0.87 with approxi-
mately 70% training data, while RF achieves maximum
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Fig. 7: F1 of RDC-BERT vs RF for Typo3 dataset
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Fig. 9: ROI of RDC-BERT vs RF for Typo3
dataset
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Fig. 11: F1 vs ROI of RF for Firefox dataset,
utilizing values from Table 5

ROI (2.2) with an accuracy of 0.75 with approximately
70% training data.

Based upon the Typo3 findings (Fig 12 and 13),
RDC-BERT approaches the 80% benchmark accuracy
with approximately 55% of the training data while RF
requires 70% training data to reach the same level of ac-
curacy. However, both RBC-BERT and RF can achieve
positive ROI with as little 15% training data, but RBC-



How Much Data Analytics is Enough? 13
1 . 100 1
; 90.00
*- '
0.8 ' 50 0.8 i 60.00
' .
Max ROI = 73.5 : / i 30.00
ax = o 1 [
0.6 atF1=0.86 0 0.6 ! 0.00
et - MaxROI=48 -
atF1=0.38
0.4 50 0.4 -30.00
-60.00
0.2
0.2 -100
i —==F1 | -90.00
—s—ROI
——Rol 0 -120.00
0 -150

10 15 20 25 30 35 40 45 50 55 60 65 70 75
Relative size training set (%)

Fig. 12: F1 vs ROI of RDC-BERT for Typo3
dataset, utilizing values from Table 5

BERT achieves maximum ROI (73.5) with an accuracy
of 0.86 with approximately 65% training data, while RF
achieves maximum ROI (48) with an accuracy of 0.80
with approximately 70% training data. Thus, RBC-
BERT can deliver much higher ROI and similar lev-
els of accuracy than RF given approximately the same
amount of training data.

Finally, the parameter settings that seeded the ini-
tial model (Table 5) were based upon industry esti-
mates, which were possible were verified by senior man-
agement in the respective firms. However, some of the
findings may be sensitive to these initial conditions.
Thus, these would need to be set for the specific context
upon which the data sets are based. This is also the ba-
sis upon which scenario analysis could be conducted to
evaluate the worst case, best case and most likely ini-
tial conditions to evaluate the impacts on subsequent
decisions.

8 Discussion
8.1 Implications

ML is not simply a cost of doing business, rather it is
a foundational activity that can provide value for the
money invested. Our proposed approach aligns this no-
tion with the strategic direction of the organization.
While return on investment (ROI) is a common ap-
proach used for business planning and decision making,
it is not applied as widely within software engineering
or specifically within applied ML.

In our study, we demonstrate how to instantiate
ROI in the context of RDC. Our approach provides a
pragmatic link between the business and technical as-
pects of the organization by providing a common lan-
guage that incorporates both the technical aspects in-
herent in the evaluation of accuracy, with the business
considerations of costs and benefits. We argue that this

10 15 20 25 30 35 40 45 50 55 60 65 70 75
Relative size training set (%)

Fig. 13: F1 vs ROI of RF for Typo3 dataset,
utilizing values from Table 5

is an extremely powerful approach that provides evi-
dence that is compelling and consistent for both tech-
nical and business decision-making.

In addition, we think that the ROI approach could
sensitize the ML team to the entire process of ML clas-
sification and how that process fits into organizational
processes. The ROI approach is essential for evaluating
the possible tradeoffs between accuracy and the bene-
fits. Mainly because without consideration of the key
dependencies within the process, benefits in one part
of the process (e.g., improved accuracy) can easily be
undermined by excessive costs in another part of the
process that would not typically be considered if fo-
cused exclusively on accuracy. Alternatively, lower lev-
els of accuracy in the ML process might be acceptable
if other benefits are accruing at reasonable costs. Thus,
valuable ML investments are potentially being avoided
based upon not meeting accuracy expectations, when
those ML solutions could be sufficient to realize high
payoffs for the organization.

Our approach increases the transparency of the
decision-making process by adding diversity to the eval-
uation criteria that foreground the various tradeoffs be-
ing made. The development of AT tools that businesses
and consumers can trust is essential for their continued
adoption, especially as there is increasing regulatory
scrutiny of the biases that arise in the ML algorithms
or inherent in the data used for training.

While ML algorithms are generally trusted for rel-
atively mechanical well-defined problems, this trust
plummets when the decisions are subjective, and likely
to vary by contextual variables that are not well un-
derstood. This in turn increases the pressure to adjust
ML algorithms for variations in specific markets fur-
ther driving up development costs. Such pressure di-
rects the focus on customizing products and services
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based upon ML algorithms for specific markets while in-
creasing costs further and undermines the benefits for
certain markets or customers [47]. The proposed ap-
proach considers technical and business aspects simul-
taneously and provides a more traceable set of inter-
connected processes. This approach includes business
and technical considerations to enable management to
evaluate the risks of some undesirable decisions and the
tradeoffs needed to realize the likely benefits.

8.2 Limitations

We have explored RF and RDC-BERT in the context
of the RDC problem and presented our results. Since
there is no single method which could work for any
given problem, comparison of multiple approaches and
their results remains out of the scope of this study.

Another threat to validity is the related to the con-
clusions made. Although we have taken care to ran-
domize the data by shuffling and used stratified split
to take care of balanced data in both training and val-
idation, multiple runs with varying first iteration data
sample are needed to be more confident on the conclu-
sions made. However, we argue that the key observa-
tions made are valid from the restricted empirical vali-
dation performed.

9 Conclusions and Future Work

ML classification is widely used in many disciplines of
Science and Engineering. In this study, we demonstrate
that just looking at performance measures such as ac-
curacy could be misleading when, for example, decid-
ing between two ML techniques evaluated for solving
the same problem. Conversely, ignoring the cost and
benefit of such a classification could cause the risk of
unprecedented emphasis on improving accuracy that
might not generate any value for the additional efforts
spent. Additionally, in this research, we also provide
a high-level ML process for classification (supervised
machine learning). However, with minuscule changes,
this process can be adapted to unsupervised or semi-
supervised ML methods easily.

We use Requirements Dependency Classification as
a sandbox to build a proof of the concept based on the
two ML techniques used to solve RDC. In the future,
we will extend the results in various dimensions. The
concepts of this paper will be applied and evaluated for
problems from other domains. However, the challenge
is to project the benefit of achieving better accuracy
results and estimating the total effort of data analy-
sis. Also, depending on the problem, we will investigate
other ML techniques and additional data sets.

With a broader data and knowledge base, we aim at
developing a customized recommendation system that

would support practitioners in their decision-making in
terms of "How much Data Analytics is Enough".
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