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Abstract

Several indices used in a factor graph data structure can be permuted without chang-
ing the underlying probability distribution. An algorithm that performs inference
on a factor graph should ideally be equivariant or invariant to permutations of
global indices of nodes, variable orderings within a factor, and variable assignment
orderings. However, existing neural network-based inference procedures fail to
take advantage of this inductive bias. In this paper, we precisely characterize these
isomorphic properties of factor graphs and propose two inference models: Factor-
Equivariant Neural Belief Propagation (FE-NBP) and Factor-Equivariant Graph
Neural Networks (FE-GNN). FE-NBP is a neural network that generalizes BP and
respects each of the above properties of factor graphs while FE-GNN is an expres-
sive GNN model that relaxes an isomorphic property in favor of greater expressivity.
Empirically, we demonstrate on both real-world and synthetic datasets, for both
marginal inference and MAP inference, that FE-NBP and FE-GNN together cover
a range of sample complexity regimes: FE-NBP achieves state-of-the-art perfor-
mance on small datasets while FE-GNN achieves state-of-the-art performance on
large datasets.

1 Introduction

Probabilistic graphical models (PGM) provide a statistical framework for modeling dependencies
between random variables. Performing inference on PGMs is a fundamental task with many real-
world applications including statistics, physics, and machine learning [3, 20, 29, 1, 24]. Factor graphs
are a general way of representing PGMs. As a data structure, a factor graph can be viewed as a
bipartite graph of variables and factors; each factor node indicates the presence of dependencies
among the variables it is connected to. Many inference algorithms have been developed to leverage
the conditional independence structure imposed by a factor graph representation. Among these,
Belief Propagation (BP) [13] has demonstrated empirical success in a variety of applications such as
error correction decoding algorithms [18] and combinatorial optimization [2].

Despite their empirical success, traditional inference algorithms like BP are handcrafted and perform
the same computational procedures for any input PGM, limiting their accuracy. Thus, researchers
have started to develop trainable neural network-based inference models [15, 27, 33, 34], aiming
to enable inference algorithms to adapt by learning from data. However, prior works have treated
factor graphs simply as bipartite graphs, overlooking the more complex isomorphisms associated with
factor graphs. Recently, [15] presents a description of factor graph isomorphism yet it is incomplete
and lacks empirical evidence. In this work, we present a complete description of factor graph
isomorphism, with empirical evidence of improved inductive bias.

We propose two neural network-based inference models that leverage these factor graph isomorphism
properties to improve their inductive bias: Factor-Equivariant Neural Belief Propagation and (FE-
NBP) and Factor-Equivariant Graph Neural Networks (FE-GNN). FE-NBP is a neural network that
adopts the message passing procedure of standard BP but incorporates a neural network module
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Figure 1: Consider a factor graph with one factor and two variables X and Y . Both variables are binary and thus
the factor potential a is a 2 by 2 tensor. Note all three factor graphs in the figure are isomorphic. That is, all three
represent the same probability distribution and are related by bijective mappings. F is a function or algorithm
that takes a factor graph as input and outputs an ordered list of vectors where each vector represents marginal
estimates for a variable. If we permute variable orderings (X,Y to Y,X) within factor a and F gives invariant
outputs, F respects Local Variable Symmetry of factor graph isomorphism. If we permute variable assignments
within a variable (X = 0, X = 1 to X = 1, X = 0) and F gives equivariant outputs, F respects Variable
Assignment Symmetry of factor graph isomorphism (the dimension of marginal vectors permute accordingly)

.

that learns adaptive damping ratios while updating the messages. FE-NBP fully respects factor
graph isomorphism. FE-GNN is an end-to-end inference model parameterized by a graph neural
network (GNN) tailored for factor graphs. Compared with other existing GNN-based inference
models, FE-GNN has a better inductive bias; compared with BP or FE-NBP, its discriminative power
can be leveraged when a larger amount of training instances is available.

Using one of the most common experimental settings for evaluating probabilistic inference algorithms
– marginal inference on Ising models, we show that FE-NBP achieves state-of-the-art performance on
small datasets while FE-GNN achieves state-of-the-art performance on large datasets. We further
conduct experiments on factor graphs where at least one factor potential is not a symmetric tensor
and show dramatic improvement of FE-GNN over other existing GNN-based inference models. This
supports our claim that respecting factor graph isomorphism improves the inductive bias of neural
architectures that perform inference on factor graphs. We also conduct experiments on real-world
UAI-challenge datasets and demonstrate that FE-NBP outperforms existing inference models on
MAP inference.

We summarize our contributions as follows:

• We identify a previously overlooked isomorphism between factor graphs and empirically
demonstrate the effectiveness of incorporating it as an inductive bias.

• We propose Factor-Equivariant Neural Belief Propagation (FE-NBP), a neural architecture
that performs inference on factor graphs. FE-NBP generalizes belief propagation by learning
adaptive damping ratios while fully respecting factor graph isomorphism. Experiments
conducted on both Ising models and UAI-challenge datasets manifest the effectiveness of
FE-NBP.

• We propose Factor-Equivariant Graph Neural Networks (FE-GNN), an end-to-end GNN-
based inference model that respects more conditions of factor graph isomorphisms than
existing GNNs. In our experiments, we demonstrate that FE-GNN is superior to other
existing GNN-based inference models.

• Empirically, we show that FE-NBP and FE-GNN together cover a wide range of sample
complexity regimes and discuss the trade-offs between different classes of models.

2 Background

In this section we provide background on factor graphs [14, 32], belief propagation [13], and graph
neural networks [10, 28, 12].
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Factor Graph A factor graph is a compact representation of a discrete probability distribution that
takes advantage of (conditional) independencies among variables. Let p be a distribution defined
over n discrete random variables {X1, X2, . . . , Xn}. Let xi denote a possible assignment of the ith
variable. We use the shorthand p(x) = p(X1 = x1, . . . , Xn = x1) for the joint probability mass
function, where x = {x1, x2, . . . , xn} is a realization of all n variables. Without loss of generality,
p(x) can be written as following:

p(x) =
1

Z

M∏
a=1

fa(xa), Z =
∑
x

(
M∏
a=1

fa(xa)

)
. (1)

The factor graph is defined in terms of a set of factors {f1, f2, . . . , fM}, where each factor fa takes a
subset of variable’s assignments xa ⊂ {x1, x2, . . . , xN} as input and fa(xa) > 0. Z is the factor
graph’s normalization constant (or partition function). As a data structure, a factor graph is a bipartite
graph with N variables nodes and M factor nodes. Factor nodes and variables nodes are connected
if and only if the variable is in the scope of the factor. For readability, we will use a and b to index
factors, i and j to index variables, upper-case Xi to indicate variable i, and lower-case xl to indicate
a variable assignment.

Belief Propagation Belief propagation (BP) is a method for estimating marginal distribution of
variables and the partition function (marginal inference). BP performs iterative message passing
among neighboring variable and factor nodes. For numerical stability, belief propagation is generally
performed in log-space, and messages are normalized at every iteration.Variable to factor messages
(variable Xi to factor fa), m(k)

i→a, and factor to variable messages (factor fa to variable Xi), m
(k)
a→i,

are computed at every iteration k as

m
(k)
i→a(xl) = −zi→a +

∑
c∈N(i)\a

m
(k−1)
c→i (xl), (2)

m̃
(k)
a→i(xl) = −za→i + LSE

xa\Xi=xl

(
Ψa(xa) +

∑
j∈N(a)\i

m
(k)
j→a(xj)

)
. (3)

We use the shorthand m(k)
i→a(xl) and m(k)

a→i(xl) to denote m(k)
i→a(Xi = xl) and m(k)

a→i(Xi = xl),
respectively. Note that m(k)

i→a and m
(k)
a→i are vectors of size |Xi| and m(k)

i→a(xl) and m(k)
a→i(xl) are

scalars. Ψa(xa) = ln (fa (xa)) denotes log factor potentials, zi→a and za→i are normalization terms,
and N(a) and N(i) denote the nodes adjacent to a and i respectively. We use the shorthand LSE

for the log-sum-exp function. The subscript xa \Xi = xl means that we iterate over all variable
realizations of variables connected to factor a except that variable Xi is fixed to an assignment of xl.

The belief propagation algorithm proceeds by iteratively updating variable to factor messages and
factor to variable messages until they converge or a predefined maximum number of iterations is
reached. Variable beliefs b(k)i and factor beliefs b(k)a are computed to estimate marginals

b
(k)
i (xl) ∝ exp

( ∑
a∈N(i)

m
(k)
a→i(xl)

)
, b(k)a (xa) ∝ exp

(
Ψa(xa) +

∑
j∈N(a)

m
(k)
j→a(xj)

)
(4)

To perform MAP inference with BP, we replace the the log-sum-exp function in Equation 3 with max
and decoding variable assignments using variable beliefs x̂∗i = arg maxxi

bi(xi).

Graph Neural Networks Graph Neural Networks (GNNs) take an input graph G = (V,E) with or
without node features and edge features and learn representation vectors of all nodes. Modern GNNs
follow a neighborhood aggregation strategy [31, 8], where we iteratively update the representation of
a node by aggregating representations of its neighbors. After k iterations of aggregation, a node’s
representation captures the structural information within its k-hop network neighborhood. Formally,
the k-th layer of a GNN with edge features is

h(k)v = φ
(
h(k−1)v , f

({(
h(k−1)u , euv

)
: u ∈ N(v)

}))
(5)

where h(k)v is the feature vector of node v at the k-th iteration/layer, N(v) is a set of nodes adjacent to
v, and euv is the feature vector of edge (u, v). The choice of φ and f can be crucial in GNNs [30].
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3 Methodology

Ideally, an inference algorithm should produce equivalent (or equivariant) outputs for two isomorphic
factor graphs. This is a property that BP satisfies, but is overlooked by existing works that perform
probabilistic inference using neural networks. We aim to address this problem in this paper.

3.1 Factor Graph Isomorphism

In this section we characterize three conditions of factor graph isomorphism, an equivalence relation
between factor graphs.
Definition 1.

1. Global Symmetry: permuting the global indices of variables or factors in a factor graph
results in an isomorphic factor graph. A function or algorithm F respects Global Symmetry
if the output of F is either equivariant or invariant to the permutation of global node
ordering.

2. Local Variable Symmetry: permuting the local indices of variables within factors results in
an isomorphic factor graph. A function or algorithm F respects Local Variable Symmetry if
the output of F is either equivariant or invariant to the permutation of variable orderings
within factors.

3. Variable Assignment Symmetry: permuting the variable assignments within variables will
result in an isomorphic factor graph. A function or algorithm F respects Variable Assign-
ment Symmetry if the output of F is either equivariant or invariant to the permutation of the
orderings of variable assignments within variables.

Find the formal definition of factor graph isomorphism in Appendix A. This concept is further
illustrated in Figure 1. Note that whether an algorithm should be either equivariant or invariant to
each of the above permutations depend on the output of the inference algorithm1. Prior work [15]
identified Global Symmetry and Local Variable Symmetry but failed to identify Variable Assignment
Symmetry. As we show in our experiments, respecting Variable Assignment Symmetry results in
improved performance.

3.2 Factor-Equivariant Neural Belief Propagation

Factor-Equivariant Neural Belief Propagation (FE-NBP) is an inference model that incorporates a
neural network on top of BP’s procedures. In BP, factor-to-variable messages are iteratively updated
and our key idea is to learn an adapted damping ratio for those updates:

m
(k)
a→i(xl) = m̃

(k)
a→i(xl) + α

(k)
a→i(xl)

(
m

(k−1)
a→i (xl)− m̃(k)

a→i(xl)
)

(6)

for a ∈ [M ], i ∈ [N ], l ∈ [|Xi|]2 and k denotes the number of current iterations. m̃(k)
a→i(xl) has the

same definition as in Equation 3. Note that m(k)
a→i is a vector of size |Xi| and m(k)

a→i(xl), being the
shorthand of m(k)

a→i(Xi = xl), is a scalar in m(k)
a→i.

The damping ratio α(k)
a→i(xl) is adaptive and calculated using a neural network module as follows:

α
(k)
a→i(xl) = φNN

m(k−1)
a→i (xl), m̃

(k)
a→i(xl), b

(k)
i (xl),

∑
xa\Xi=xl

b(k)a (xa), max
xa\Xi=xl

b(k)a (xa)

 , (7)

where b(k)i and b(k)a denote variable beliefs and factor beliefs, respectively, following Equation 4.
The term

∑
xa\Xi=xl

b
(k)
a (xa) denotes factor beliefs summed over all variable realizations of a

1For an inference algorithm that infers partition function, it should ideally be invariant to each of the above
permutations. For an inference algorithm that estimates marginal probabilities of all variables, it should ideally
be equivariant to permutations of global indices of nodes and variable assignment orderings and invariant to
variable orderings within factors

2For K ∈ N, we use [K] to denote {1, 2, . . . ,K}.
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except that Xi it set to an assignment of xl. maxxa\Xi=xl
b
(k)
a (xa)) denotes maximum factor belief

achievable when fixing Xi to xl in xa. φNN is a neural network function whose parameters are
shared for all updates of the factor-to-variable messages. Output of φNN is a scalar. These five input
features are designed based on the intuitions of classical improvements of BP, such as incorporating
the information of the residual of messages [7] (i.e. |m(k−1)

a→i (xl) − m̃(k)
a→i(xl)|) or inducing more

calibrated beliefs [13] (i.e. |b(k)i (xl)−
∑

xa\Xi=xl
b
(k)
a (xa)| and |b(k)i (xl)−maxxa\Xi=xl

b
(k)
a (xa)|)

to facilitate faster, more often convergence and better performances.

Proposition 1. For any parameterization of φNN, FE-NBP respects Global Symmetry, Local Variable
Symmetry, and Variable Assignment Symmetry of factor graph isomorphism in Definiton 1.

We can easily verify that Proposition 1 hold since messages are updated individually similar to BP.
Due to the space limit, we leave more detailed proofs and explanations in Appendix B.

In BPNN [15], they also propose to adjust factor-to-variable messages in BP by a neural network.
However, FE-NBP offers major advantages over their model: (1) BPNNs does not respect Variable
Assignment Symmetry as they apply neural networks directly on message vectors and MLPs are
not equivariant to permutation of input vectors. The neural network module φNN in FE-NBP adjusts
factor-to-variable messages individually for each variable assignments and thus respects Variable
Assignment Symmetry; (2) their neural network only takes in messages as input whereas FE-NBP
also incorporates information from variable beliefs and factor beliefs to facilitate the process of
calibrating BP’s message updates; (3) in their paper, they only conduct experiments on partition
function estimation while we conduct experiments with FE-NBP on both marginal inference and
MAP inference. For FE-NBP to perform MAP inference, we simply change the log-sum-exp in
Equation 3 to log-max-exp and train our model with MAP inference objectives instead of marginal
inference objectives. FE-NBP can provide an upper bound and a lower bound for the probability of
the output MAP assignment. Find proof in Appendix C.

3.3 Factor-Equivariant Graph Neural Network

Prior works [13, 34] have attempted to use GNN-based models to perform inference. While these
GNN-based models respects Global Symmetry, they do not respect further symmetries of fator
graphs. In this section, we first provide a perspective of BP by rewriting its formulation and showing
that BP can be considered as a non-parameterized GNN. Building on this observation, we propose
Factor-Equivariant GNN, a highly expressive GNN architecture that respects Global Symmetry and
Local Variable Symmetry.

Rewriting Message Passing of Belief Propagation In Equation 2 and 3,m(k)
i→a(xl) andm(k)

a→i(xl)
are scalars. In this paragraph, we first rewrite the formulation of a standard log-space BP with damping
in terms of vectors and tensors:

m
(k)
i→a = m̃

(k)
i→a + α

(
m

(k−1)
i→a − m̃

(k)
i→a

)
, m̃

(k)
i→a = −zi→a +

∑
c∈N(i)\a

m
(k−1)
c→i , (8)

m
(k)
a→i = m̃

(k)
a→i + α

(
m

(k−1)
a→i − m̃

(k)
a→i

)
, m̃

(k)
a→i = −za→i + LSE

Xa\Xi

(
Ψa +

⊕
j∈N(a)\i

m
(k)
j→a

)
.

(9)

Vectors and tensors are boldfaced but not scalars. The terms m(k)
i→a and m

(k)
a→i are vectors over the

states of variable xi and thus have length |Xi|. Log factor potential, Ψa, is a multi-dimensional tensor

with shape of
(
|Xa1| , |Xa2| , · · · , |XaK |

)
where Xai denotes the i-th variable that associates with

factor a. We use Xa to denote the set of variables that are connected to factor a. Operator
⊕

denotes
“tensor sum” (think of outer sum for tensors not just for one-dimensional vectors):

v = [v1, v2, · · · , vm],w = [w1, w2, · · · , wn],v
⊕

w =


v1 + w1 v1 + w2 . . . v1 + wn
v2 + w1 v2 + w2 . . . v2 + wn

...
...

. . .
...

vm + w1 vm + w2 . . . vm + wn


5



Thus,
⊕

j∈N(a)\im
(k)
j→a would have a dimension of(

|Xa1| , |Xa2| , · · · ,
∣∣Xa(i−1)

∣∣ , ∣∣Xa(i+1)

∣∣ , · · · , |XaK |
)

3. It is added with Ψa at all corresponding

dimensions except at the dimension of Xi and then LSE
Xa\Xi

would then sum over all other variable

dimension except at the dimension of variable Xi, resulting a vector of size |Xi|.We make the
observation that standard BP is just an instance of GNN without trainable parameters where message
passing is performed between message vectors. More specifically, Equation 8 and 9 can be viewed
as instances of Equation 5 (m(k)

i→a and m
(k)
a→i corresponds to node feature vectors h(k)v , damping

corresponds to function φ, and the aggregation of neighboring messages corresponds to function f ).

Factor-equivariant Graph Neural Network We propose Factor-Equivariant GNN, a GNN ar-
chitecture that satisfies two important properties of BP: no double counting of messages and is
equivariant to permutation of variable orderings within factors. FE-GNN avoids double counting of
messages by performing message passing between message vectors instead of variables and factors.
The key insight that makes FE-GNN equivariant to permutation of variable orderings within factors is
that instead of treating factor potentials as input node or edge features, we combine factor potentials
with message vectors in a similar fashion to BP by incorporating an operation unconventional for
GNNs - tensor sum.

In detail, the model looks like this:

m
(k)
i→a = φNN1

m
(k−1)
i→a ,

∑
c∈N(i)\a

MLP1

(
m

(k−1)
c→i

) , (10)

m
(k)
a→i = φNN2

m
(k−1)
a→i , LSE

Xa\Xi

(
Ψa +

⊕
j∈N(a)\i

MLP2

(
m

(k)
j→a

) (11)

where m
(k)
j→a and m

(k)
a→i are node embeddings at layer k. m(k−1)

c→i and m
(k−1)
j→a are neighboring

node embeddings of m(k)
j→a and m

(k)
a→i respectively. φNN1

and φNN2
are neural network modules,

which are implemented as GRUs [5] in our experiments. After multiple message passing layers,
variable beliefs (or variable marginals) can be estimated by another neural network module such as
b
(k)
i = MLP3

(∑
a∈N(i) m

(k)
a→i

)
. FE-GNN is trained end-to-end on an objective just like any other

GNNs. In our experiments, FE-GNN is trained directly on ground truth marginals of all variables.
Additionally, hand-crafted features like those used by FE-NBP can be concatenated with neighboring
node embeddings before all neighboring information is aggregated.

Proposition 2. For any parameterization of φNN1 and φNN2 , FE-GNN respects Global Symmetry and
Local Variable Symmetry of factor graph isomorphism in Definiton 1.

FE-GNN respects Local Variable Symmetry of factor graph isomorphism similar to how BP respects

Local Variable Symmetry. The term LSE
Xa\Xi

(
...

)
is not subject to the orderings of variables within

factor a since each transformed message vector is summed with factor potentials Ψa at the dimension
that corresponds to the particular variable, and LSE

Xa\Xi

eventually sums out all the dimension except

for the dimension of a particular variable Xi.

4 Experiments

We conduct three experiments to support our claims of contribution. First, we conduct experiments
on Ising model datasets of different sample sizes to demonstrate the competence of FE-NBP and
FE-GNN on marginal inference. Second, we evaluate FE-GNN on a synthetic dataset of “asymmetric”
factor graphs to support our claim that FE-GNN is superior to other GNN-based models as it respects
Local Variable Symmetry. Finally, we conduct experiments on real-world UAI-challenge datasets and

3We slightly abused the notation by assuming variable Xi is equivalent to the i-th variable of factor a (Xai)
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Figure 2: Left: KL divergence between estimated marginals and ground truth for each model trained on Ising
model datasets of different sample sizes. Right: RMSE between estimated marginals and ground truth for each
model trained on Ising model datasets of different sample sizes.

show that FE-NBP outperforms BPNN [15] by a large margin, supporting our claim that respecting
Variable Assignment Symmetry is a beneficial inductive bias to incorporate.

4.1 Ising Models

The goal of this experiment is to compare FE-NBP and FE-GNN with other existing inference models
and to investigate how the amount of training data and the expressiveness of a model affect the
performance of each inference model.

Experiment setting Ising model is a type of Binary Markov Random Field and is usually repre-
sented with (J, b) where b biases individual variables and J couples pairs of neighbor variables.
Following a common experimental settings to evaluate inference algorithms [15, 27, 33], we generate
4x4 grid structured Ising models (J, b) where x ∈ {+1,−1}|V|, bi ∼ N(0, 0.252), Jij ∼ N(0, 1)
and |V| = 16 is the number of variables. Ground truth marginals can be computed exactly using
junction tree algorithm [16]. We vary the amount of data the model is trained on and evaluate them
on the same testing set of 1000 factor graphs.

We evaluated FE-NBP and FE-GNN against the following baselines: Markov chain Monte Carlo [23],
Belief Propagation (BP) [13], BP with damping of 0.5 [22], Neural Enhanced Belief Propagation
(NEBP) [26], Belief Propagation Neural Networks (BPNN) [15], Gated Graph Neural Network
(GGNN) [17], and Factor Graph Neural Network (FGNN) [34]. For more details of these baselines,
refer to the Related Works section. Note that the authors of NEBP did not release their code, thus we
take the KL divergence results reported on their paper as we have the same experimental settings. For
more model and training details, refer to Appendix D.

Results As shown in Figure 2, the performance of BP, Damping BP, and MCMC are unchanged as
they are not learnable algorithms. Observe that FE-NBP and BPNN, when untrained, both correspond
to Damping BP as we initialize all neural network parameters to zero (sigmoid function at 0 equals
0.5). When we have 50 or 100 training instances available, FE-NBP performs the best and all the
GNN-based models performs poorly. As we increase the number of training instances to more than
1000, FE-GNN outperforms all baselines and all GNN-based models continue to improve while
BPNN and FE-NBP plateaued. The results can be interpreted by the classic bias-variance trade-off:
learning algorithms need (inductive) bias tailored to specific learning problems in order to make the
target function easier to approximate; learning algorithms also need expressivity so that they can
adapt to training data but higher “flexibility” can lead to higher variance. BPNN and FE-NBP are
algorithms with high (inductive) bias but are relatively less expressive because they are only learning
on top of the backbone of BP, whereas GNN-based models are end-to-end parameterized models with
less bias but higher expressiveness. In other words, BPNN and FE-NBP are algorithms in the lower
sample complexity regimes while GNN-based models are algorithms in the higher sample complexity
regimes.

4.2 Factor-Equivariant GNN on Asymmetric Binary Markov Random Field

To further show that the importance of incorporating Local Variable Symmetry as an inductive bias
for neural network-based inference models, we compare FE-GNN with existing GNN-based inference

7



Model BP BP (damping) GGNN FG-GNN FE-GNN

KL 0.0286 0.0236 0.3770 0.3780 0.0109
RMSE 0.0818 0.0748 0.3877 0.3877 0.0584

Table 1: KL divergence and RMSE between estimated marginals and ground truth for FE-GNN and other
baselines on a dataset of asymmetric binary markov random field.

models on a dataset of asymmetric binary markov random field (BMRF) [19]. To clarify, asymmetric
means that at least one factor potential is an asymmetric tensor.

Experiment setting In this experiment, we generate 6000 instances of asymmetric BMRF. 5000
instances are used for training and 1000 for testing. BMRF are generated in a similar fashion to the
previous experiment except that now a factor a that couples variable i and j would have a factor

potential of fa =

[
eJij+Jji e−2∗Jij

e−2∗Jji eJij+Jji

]
where Jij ∼ N(0, 1) and Jji ∼ N(0, 1). Jij = Jji = 0 if

variable i and j is not coupled by any factor. As for baselines, we compared FE-GNN with Gated
Graph Neural Network (GGNN) [33], Factor Graph Neural Network (FGNN) [34], BP [13], and BP
with damping (0.5) [22]. We follow the same model and training settings as the previous experiment.

Results In Table 1, we present KL divergence and RMSE between estimated marginals and
ground truth for each model. FE-GNN outperforms all other models by a significant margin. More
importantly, observe how other GNN-based inference models perform poorly. The reason is that
existing GNN-based inference models like GGNN or FGNN do not respect Local Variable Symmetry
of factor graph isomorphism. More specifically, they treat factor potentials as node/edge features
and do not take variable orderings within a factor into consideration. As a result, they fail to learn
effectively when factor potentials are asymmetric tensors. This experiment shows that FE-GNN,
designed with tensor operations that take variable orderings into consideration, is able to learn on
more complex factor graphs given the same amount of training data due to its superior inductive bias.

4.3 Factor-Equivariant Neural BP on the UAI-challenge datasets

In this experiment, we evaluate FE-NBP on MAP inference with the UAI-challenge datasets4. We
did not evaluate GNN-based models on UAI-challenge datasets as the number of instances in those
datasets is very limited and is thus not suitable for evaluating highly expressive models (models with
high sample complexity).

Experiment setting We randomly split the dataset into a training (70%) and a testing (30%) dataset,
and adopt the same evaluation metric as the UAI-2012 challenge:

1

|D|
∑
G∈D

∣∣∣∣ log score(x∗)− log score(x̂∗)

log score(x∗)

∣∣∣∣ ,
where the log-score of a state is defined as

∑M
a=1 log fa(xa), G stands for the factor graphs, D is the

dataset, x∗ is the true MAP assignment, and x̂∗ is the estimated MAP assignment.

We compare FE-NBP with BPNN [15] and multiple traditional inference algorithms including
BP [13], BP with damping of 0.5 [22] (with standard argmax decoding), BP with an advanced
heuristic sequential MAP-assignment decoding mechanism5 [21], MPLP [9], and different variants
of the local search algorithms [25, 6]. For model and training details, refer to Appendix E.

Results In Table 2, we show the performances of different MAP inference models and algorithms
on the UAI-challenge datasets. FE-NBP consistently outperforms BPNN by a significant margin on
all four datasets. That supports our claim that respecting Variable Assignment Symmetry of factor
graph isomorphism is an effective inductive bias since one of the biggest distinction between FE-NBP
and BPNN is that FE-NBP respects Variable Assignment Symmetry but BPNN does not. FE-NBP
also outperforms BP and BP (damping) which indicates the benefits of learning and adapting, even
on small datasets. Compared with other traditional inference algorithms, FE-NBP outperforms all

4http://sli.ics.uci.edu/~ihler/uai-data/
5implemented by libdai, https://staff.fnwi.uva.nl/j.m.mooij/libDAI/
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Grids Segment ObjDetect DBN

#samples 11 100 116 66
#variables (mean) 290.9 229.1 60 780.2
var-cardinality (max) 2 21 21 2

best-first-search 0.15 0.37 inf inf
beam-search 0.13 0.37 inf inf
MPLP 0.25 .003 0.28 0.33
BP 0.71 4.27 0.98 0.77
BP (damping) 0.22 0.09 0.62 0.18
BP+seq-decoding 0.41 0.03 0.01 0.25
BP+seq-decoding (damping) 0.22 0.08 0.03 0.05

BPNN [15] 0.21 0.25 0.20 0.33
FE-NBP (ours) 0.11 0.09 0.03 0.03

Table 2: Log-scores on UAI-challenge datasets. FE-NBP performs the best on two out of four datasets while
achieving competitive performance on the other two datsets. Note that when the output assignment has a ground
truth probability of zero, the log-score will be inf.

baselines on the Grids and DBN datasets while achieving competitive performance on the other two
datasets.

5 Related Works

Belief propagation neural network (BPNN) [15] is a class of inference models that takes a factor graph
as input and estimates factor graph’s log partition function. BPNN strictly generalizes (sum-product)
BP and still guarantees to give a lower bound to the partition function upon convergence for a class
of factor graphs by finding fixed points of BP6. More specifically, BPNN keeps the variable-to-factor
messages as it is in Equation 2 but modifies factor-to-variable messages (Equation 3) using the output
of a learned operator. Similar to the idea of correcting belief propagation’s outputs by a learned
neural network module, [27] proposed Neural Enhanced Belief Propagation (NEBP), a hybrid model
that runs conjointly a GNN with belief propagation. The GNN receives as input messages from belief
propagation at every inference iteration and outputs a calibrated version of them. However, these
existing works that attempt to combine belief propagation and neural network fail to take Variable
Assignment Symmetry of factor graph isomorphism into consideration. In this paper, we address this
issue by proposing FE-NBP.

Instead of augmenting BP with neural networks, some other works aim to devise end-to-end trainable
inference systems. In [33], they apply Gated Graph Neural Network (GGNN) [17] to graphical
model inference. Factor Graph Neural Network (FGNN) [34] is another graph neural network model
proposed to perform MAP inference on factor graphs. Mimicing the procedures of max-product
belief propagation, FGNN consists of Variable-to-Factor modules and a Factor-to-Variable modules.
Nevertheless, these works fail to consider Local Variable Symmetry and Variable Assignment
Symmetry. In this paper, we propose FE-GNN, which considers one more symmetry than existing
GNN-based inference models.

6 Conclusion

In this paper, we identify factor graph isomorphism and introduce two neural network-based inference
models that takes advantages of such inductive biases: Factor-Equivariant Neural Belief Propagation
(FE-NBP) and Factor-Equivariant Graph Neural Networks (FE-GNN). FE-NBP is an inference model
that incorporates a learnable neural network module on top of BP while respecting all symmetries
of factor graphs. FE-GNN is an end-to-end trainable GNN model that has great expressivity while
respecting one more symmetry than existing GNN-based models. We perform experiments on both
marginal inference and MAP inference and show that FE-NBP and FE-GNN achieves state-of-the-art
performance on different sample complexity regimes. We further perform experiments to support
that the proposed inductive biases are indeed beneficial for neural network-based inference models.

6For lack of space, find proofs at [15].
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A Factor Graph Isomorphism

A factor graph is represented as7 G = (A,P, I,X). A ∈ {0, 1}M×N is an adjacency matrix over
M factor nodes and N variable nodes, where Aai = 1 if the i-th variable is in the scope of the a-th
factor and Aai = 0 otherwise. P is an ordered list of M factor potentials, where the a-th factor
potential, Pa, corresponds to the a-th factor (row) in A and is represented as a tensor with one
dimension for every variable in the scope of Pa. I is an ordered list of ordered lists that locally
indexes variables within each factor. Ia is an ordered list specifying the local indexing of variables
within the a-th factor. Iak = i specifies that the k-th dimension of the tensor Pa corresponds to
the i-th variable (column) in A. X is an ordered list of N variables that specifies possible states of
all variables. Xi is a list specifying the local indexing of states within the i-th variable. Xij = x
specifies that the j-th state of variable i is x. According to our definition, Pa will have the shape of(
|XIa1 | , |XIa2 | , · · · , |XIaK

|
)

where K is the number of variables associated with factor a and

|Xi| is the number of states of variable i. We will use Pa(Xi = x) to denote the resulting factor
potential tensor of Pa when Xi = x.

Two factor graphs is isomorphic when they meet the following conditions:

Definition 2 (Factor Graph Isomorphism). Factor graphs G = (A,P, I,X) and G′ =

(A′, P ′, I ′, X ′) with A ∈ {0, 1}M×N and A′ ∈ {0, 1}M ′×N ′ are isomorphic if and only if M = M ′,
N = N ′, and

1. There exist bijections8 fF : [M ]→ [M ] and fV : [N ]→ [N ] such that Aai = A′bj for all
a ∈ [M ] and i ∈ [N ], where b = fF (a) and j = fV (i).

2. There exists a bijection Fa : [|Ia|] → [|I ′b|] for every factor a ∈ [M ] in G and factor
b = fF (a) in G′ such that fV

(
Iak
)

= I ′bl and Pa = σa
(
P ′b
)

for all k ∈ [|Ii|], where
l = Fa(k), and σa

(
P ′b
)

denotes permuting the dimensions of the tensor P ′b to the order of(
(Fa(Ia1), Fa(Ia2), . . . , Fa(Ia(|Ia|))

)
.

3. There exists a bijection Fi : [|Xi|]→ [|X ′j |] for every variable i inG and variable j = fV (i)
in G′, such that for all factors a in G that associates with variable i and factor b = fF (a)
in G′, Pa(Xi = k) = σ(P ′b)(Xj = l) for all k ∈ [|Xi|], where l = Fi(k) and σ(P ′b)
denotes permuting the order of variables states of all variables v in σa(P ′b) according to(
Fv(Xv0), . . . , Fv(Xv|Xi|)

)
.

B Factor graph isomorphism for FE-NBP

We denote the permutation group of of variable orderings within the i-th factor as PGi, the
permutation group of variable orderings of all factors PG = PG1 × PG2 × · · ·PGM =
S|I1| × S|I2| × · · ·S|IM | where S|Ii| includes all the possible permutations of |Ii| elements. To
satisfy Local Variable Symmetry of factor graph isomorphism in Definition 1, the output of an
inference algorithm F that operates on a factor graph G should be equivariant (or invariant) to the
permutation group PG of variable orderings within factors. That means for any permutation σ ∈ PG,
F(σ(G)) = σ(F(G)). In more details, the permutation σ is composed of the permutations of all
variable orderings within factors. In more details, a permutation σ is composed of permutations of
variables within all factors, i.e., σ = σ1× σ2× · · ·σM and σa ∈ S|Ia| (|Ia is the number of variables
associated with factor a).

7Note that a factor graph can be viewed as a weighted hypergraph where factors define hyperedges and
factor potentials define hyperedge weights for every variable assignment within the factor.

8For K ∈ N, we use [K] to denote {1, 2, . . . ,K}.
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Writing down all steps in FE-NBP, we have:

m
(k)
i→a(xl) = −zi→a +

∑
c∈N(i)\a

m
(k−1)
c→i (xl),

m
(k)
a→i(xl) = m̃

(k)
a→i(xl) + α

(k)
a→i(xl)

(
m

(k−1)
a→i (xl)− m̃(k)

a→i(xl)
)
,

m̃
(k)
a→i(xl) = −za→i + LSE

xa\Xi=xl

(
Ψa(xa) +

∑
j∈N(a)\i

m
(k)
j→a(xj)

)
,

α
(k)
a→i(xl) = φNN

m(k−1)
a→i (xl), m̃

(k)
a→i(xl), b

(k)
i (xl),

∑
xa\Xi=xl

b(k)a (xa), max
xa\Xi=xl

b(k)a (xa)

 .

(12)
Observe that no terms in the FE-NBP’s formulations is affected by the permutation of variables
within factors. Every term in the above formulations is a scalar. φNN only takes features that are
relevant to variable i and its variable assignment xl, thus it is invariant to variable orderings. That
is, F(σ(G)) = σ(F(G)) when F corresponds to FE-NBP since σ does not affect any step in the
algorithm. FE-NBP respects Local Variable Symmetry of factor graph isomorphism in the same way
that BP respects Local Variable Symmetry. For proof of BP respecting Local Variable Symmetry of
factor graph isomorphism, refer to the Appendix section in [15].

To satisfy Variable Assignment Symmetry of factor graph isomorphism in Definition 1, the output
of an inference algorithm F that operates on a factor graph G should be equivariant or invariant to
the permutation group of all variable assignment orderings. Let PG be the permutation group of
all variable assignment orderings. A permutation σ ∈ PG is composed of the permutations of all
variables’ assignments, i.e., σ = σ1 × σ2 × · · ·σN and σi ∈ S|Xi| (|Xi is the number of possible
assignments of variable i). Let G′ = σ(G) denote the factor graph after the permutation, we proceed
to show that for any permutation σ ∈ PG, F(σ(G)) == σ(F(G)) when F corresponds to FE-NBP.
F(G) is the output of F when given an input factor graph G.

Proof. Let m(k)
i→a and m′(k)i→a denote variable to factor messages and m(k)

a→i and m′(k)a→i factor to
variable messages obtained by applying k iterations of FE-NBP to factor graphs G and G′. Our
ultimate goal is to show F(σ(G)) == σ(F(G)). Alternatively, we can try to prove that at any
iteration k, m(k)

i→a(σ(xl)) = m
′(k)
i→a(xl) and m(k)

a→i(σ(xl)) = m
′(k)
a→i since message vectors are the

output of FE-NBP. Note that we slightly abuse the notation by using σ to refer to a permutation and
the bijective mapping determined by the permutation.

Base case: the initial messages are all equal when constant initialization is used and therefore satisfy
any bijective mapping.

Assume m(k−1)
i→a (σ(xl)) = m

′(k−1)
i→a (xl) and m(k−1)

a→i (σ(xl)) = m
′(k−1)
a→i hold for all variable assign-

ments xl at iteration k − 1.

Inductive step: by our assumption and Equation 2 (the definition of variable to factor messages), we
have

m
(k)
i→a(σ(xl)) = −zi→a +

∑
c∈N(i)\a

m
(k−1)
c→i (σ(xl))

= −zi→a +
∑

c∈N(i)\a

m
′(k−1)
c→i (xl) = m

′(k)
i→a(xl).

(13)

By our assumption and Equation 3 (the definition of factor to variable messages), we have

m̃
(k)
a→i(σ(xl)) = −za→i + LSE

xa\Xi=σ(xl)

(
Ψa(xa) +

∑
j∈N(a)\i

m
(k)
j→a(σ(xj))

)

= −za→i + LSE
xa\Xi=xl

(
Ψ′a(xa) +

∑
j∈N(a)\i

m
′(k)
j→a(xj)

)
= m̃

′(k)
a→i(xl)

(14)
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Let xm be the shorthand of σ(xl). By Equation 4, 7, 13, and 14, we have

α
(k)
a→i(xm) = φNN

m(k−1)
a→i (xm), m̃

(k)
a→i(xm), b

(k)
i (xm),

∑
xa\Xi=xm

b(k)a (xa), max
xa\Xi=xm

b(k)a (xa)


= φNN

m′(k−1)a→i (xl), m̃
′(k)
a→i(xl), b

′(k)
i (xl),

∑
xa\Xi=xl

b′(k)a (xa), max
xa\Xi=xl

b′(k)a (xa)


= α

′(k)
a→i(xl)

(15)

By Equation 7, 13, 14, and 15, we have

m
(k)
a→i(σ(xl)) = m̃

(k)
a→i(σ(xl)) + α

(k)
a→i(σ(xl))

(
m

(k−1)
a→i (σ(xl))− m̃(k)

a→i(σ(xl))
)

= m̃
′(k)
a→i(xl) + α

′(k)
a→i(xl)

(
m
′(k−1)
a→i (xl)− m̃′(k)a→i(xl)

)
= m

′(k)
a→i(xl).

(16)

showing that the bijective mapping continues to hold at iteration k. Therefore, we prove that for
any k ≥ 1, the outputs of FE-NBP is equivalent to the permutation of the orderings of variable
assignments... i.e., F(δ(G)) ≡ δ(F(G))...

C Upper bound and lower bound of FE-NBP on MAP inference

Proposition 3. FE-NBP can provide an upper bound and a lower bound for the probability / log-score
of the MAP assignment.

Proof. Upper bound:

p(x∗) = exp

(
− logZ +

M∑
a=1

log fa(x∗a)

)
(by definition)

= exp

(
− logZ +

M∑
a=1

Ψa(x∗a)

)
(change the notation)

= exp

− logZ +

M∑
a=1

Ψa(x∗a)−
∑

j∈N(a)

m
(k)
a→j(x

∗
j )

+
N∑
i=1

∑
b∈N(i)

m
(k)
b→j(x

∗
i )


(reformulation)

≤ exp

− logZ +

M∑
a=1

max
xa

Ψa(xa)−
∑

j∈N(a)

m
(k)
a→j(xj)

+

N∑
i=1

max
xi

∑
b∈N(i)

m
(k)
b→j(xi)


(by argmax)

lower bound:

p(x∗) ≥ p(x̂∗) (by definition)

where x̂∗ = arg max bi(xi).

It is easy to find that the previous proof can be applied to any message-based inference algorithms.
Traditionally, people aimed at making the bounds tighter or making the convergence faster.
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D Details of the experiment on Ising models

In this experiment, φNN1 and φNN2 are parameterized by a GRUs with a hidden dimension of 5. All
MLPs in Equation 10 and 11 have two hidden layers with 64 units each, and use ReLU nonlinearities.
In BP of BP with damping, message propagates for at most 200 steps. In all neural network-based
inference models, messages propagate for T = 10 time steps. All inference procedures with a neural
network are optimized on binary cross-entropy loss of estimated marginals and ground truth, trained
with ADAM [11] with a learning rate of 0.001. We use early stopping with a window size of 5.
Results have been averaged over two runs.

E Details of the experiment on UAI-challenge datasets

Model Details In our experiments, φNN is parameterized by a three-layer MLP with graph-wise
normalization [4] before each activation function, the leaky ReLU. We train FE-NBP with the Adam
optimizer, learning rate as 0.0001, and the number of hidden neurons as 64 for 1000 epochs. We
tune two hyper-parameters of FE-NBP, which are the utilization of the graph-wise normalization
layers and the initialized damping ratios, and report the best performance. We train BPNN with more
computation powers and tune its hyper-parameters including the learning rate, the number of neurons,
and the initialized damping ratio.

We train our models to minimize the expectation of the UAI loss as defined in the main body. In
detail, we first calculate the variable beliefs using the messages updated by our models, as follows:

b
(K)
i (xi) =

1

Z
(K)
i

exp

 ∑
a∈N(i)

m
(K)
a→i(xi)

 ,

where Z(K)
i is the normalization term defined as

Z
(K)
i =

∑
xi

exp

 ∑
a∈N(i)

m
(K)
a→i(xi)

 .

Assuming that we estimate the MAP assignment by sampling from the categorical distribution
determined by the variable beliefs, i.e., p(x̂∗i = l) = b

(K)
i (l), the expectation of the log-score of the

estimated MAP assignment is then

E
x̂∗i∼b

(K)
i

[log score(x̂∗)] = E
x̂∗i∼b

(K)
i

[
M∑
a=1

log fa(x̂∗a)

]

=

M∑
a=1

∑
xa

∏
j∈N(a)

b
(K)
j (xj) log fa(xa)

and the training loss is then

L =
1

|D|
∑
G∈D

∣∣∣∣∣ log score(x∗)− E
x̂∗i∼b

(K)
i

[log score(x̂∗)]

log score(x∗)

∣∣∣∣∣
=

1

|D|
∑
G∈D

∣∣∣∣∣ log score(x∗)−
∑M
a=1

∑
xa

∏
j∈N(a) b

(K)
j (xj) log fa(xa)

log score(x∗)

∣∣∣∣∣ .
Graph Normalization The graph-wise normalization operates the same as other normalization
layers except for the group of hidden features used for calculating the mean and variance:

ĥ
(k)(l)
a→i [j] =

1

σ(k)[j]
(h

(k)(l)
a→i [j]− µ(k)[j]),

where h(k)(l)a→i [j] is the jth element of the hidden features while calculating the damping ratio α(k)(l)
a→i ,

µ(k)[j] =
1

Z

∑
a,i,l

h
(k)(l)
a→i [j], σ(k)[j] =

√
1

Z

∑
a,i,l

(h
(k)(l)
a→i [j]− µ(k)[j])2 + ε.
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Baselines We implement the classical beam search algorithm as follows: During search, the
algorithm maintains a cache which contains K states whose log-scores are the largest among all
visited states. The cache is first initialized with a random state. At each step, the algorithm examines
all neighbors of the states in the cache and updates the cache accordingly. We define a state x is a
neighbor of a state x′ if and only if their variable assignments are only different on one variable, i.e.,
∃i xi 6= x′i ∧ ∀j 6= i xj ≡ x′j . The algorithm stops when there is no update of the cache, when the
maximum search step is reached, or when the maximum search time is reached. We set the maximum
search step as 100000, the maximum search time as one hour per instance, and the size of the cache
K as 10. The best-first search algorithm is implemented by setting the size of the cache K as 1.
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