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ABSTRACT

Speech audio quality is subject to degradation caused by an acoustic
environment and isotropic ambient and point noises. The environ-
ment can lead to decreased speech intelligibility and loss of focus
and attention by the listener. Basic acoustic parameters that charac-
terize the environment well are (i) signal-to-noise ratio (SNR), (ii)
speech transmission index, (iii) reverberation time, (iv) clarity, and
(v) direct-to-reverberant ratio. Except for the SNR, these parame-
ters are usually derived from the Room Impulse Response (RIR)
measurements; however, such measurements are often not avail-
able. This work presents a universal room acoustic estimator design
based on convolutional recurrent neural networks that estimate the
acoustic environment measurement blindly and jointly. Our results
indicate that the proposed system is robust to non-stationary signal
variations and outperforms current state-of-the-art methods.

Index Terms—
Room acoustics, Convolutional Recurrent Neural Network,
RT60, C50, DRR, STI, SNR

1. INTRODUCTION

Speech intelligibility is defined as the recognition rate of meaning-
ful (dictionary) words given environmental conditions [1}/2]. The
environmental conditions include room acoustics effects (e.g., re-
verberation) and the presence of background noise [3]]. The speaker
may be unable to recognize alterations on these conditions during
communication (e.g., video call, remote presentation, voice record-
ing), leading to reduced speech intelligibility, which is well-known
to cause misunderstanding and loss of interest by the listener [4].
Therefore, it is of great interest to develop a system that could es-
timate and provide instantaneous feedback on background noise
and room acoustic effect parameters. This system could help the
user improve their speech intelligibility during a performance, as
attempted by some recent works [S]].

Room acoustic effects on speech intelligibility can be mea-
sured using standard acoustic parameters [|6]: (i) Reverberation time
(RT60) is defined by the time it takes for the sound energy to decay
after the source is switched off; (ii) Clarity (C50/C80) is measured
by calculating the ratio between the early reflections energy (up to
50/80ms) and the energy of the late response from the decay curve;
(iii) Direct-to-Reverberant Ratio (DRR), which, similarly to C50,
is a ratio of the direct sound energy over the later energy, consid-
ering that the direct sound is included in the leading 2.5 millisec-
onds of the RIR [[7]; (iv) the Speech Transmission Index (STI) is
a metric ranging between 0 and 1 that measures how the record-
ing environment warps the modulations of speech at frequencies
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that are important to speech perception [8|]. These parameters are
traditionally derived from Room Impulse Response (RIR) measure-
ments. Nevertheless, measuring the RIR is a laborious process that
requires specific equipment [9]. Some attempts were conducted in
the last decade to estimate acoustic parameters directly from audio
signals. In 2018, Gamper and Tashev used Convolutional Neural
Networks (CNNs) and Gammatone filterbanks to predict the aver-
age RT60 of a reverberant signal [[10] and outperformed the best
Acoustic Characterisation of Environments (ACE) challenge [11]]
method. Seetharaman et al. made no assumptions about the model
of the RIR and used deep CNNs to estimate the STI [12]. Recent
work of Looney and Gaubitch [[13]] showed promising results in the
joint blind estimation of RT60, DRR, and Signal-to-Noise Ratio
(SNR). We replicated and improved joint R60 and DRR estimation
performance in our recent work as well [[7].

The Signal-to-Noise Ratio (SNR) is the most popular metric to
compare a signal’s level to the background noise level. The SNR is
defined as the ratio of signal power to noise power, often expressed
in decibels (dB). Estimation of the global SNR has been widely
studied. Previous algorithms were based on identifying the noise
and speech energy distributions, or signal statistics [[14}/15]]. More
recent studies have focused on estimating the ideal binary mask
(IBM) that segregates speech and noise units in a time-frequency
representation of the noisy speech signal [16H19].

This work presents a deep convolutional recurrent neural net-
work architecture that blindly estimates the mentioned room acous-
tic parameters (RT60, C50, C80, DRR, and STI) and the SNR of
an input reverberant and noisy speech signal without comparing it
to a reference “clean” recording. Our data augmentation pipeline
simulates both room reverberation and different types of noise in
contrast to previous studies. This model could be used in embedded
systems to give speakers instantaneous feedback. Users could bene-
fit from this feedback to improve their presentations and recordings
within other applications. We named the proposed system “the uni-
versal acoustic room estimator*, a single model that estimates room
acoustics’ parameters.

Our central hypothesis of the proposed work is that room acous-
tics is well represented by the aforementioned complementary pa-
rameters, and multi-task ML training can benefit from it. Thus, the
joint model should perform better than isolated predictors. Besides,
most previous studies of blind acoustic environment characteriza-
tion explored mostly CNNs [13]]. In this work, we try to find the
decay of a signal, and it makes sense considering the sequence as-
pect of data, and thus using recurrent layers might be beneficial.

The paper is organized as follows: Section [J] describes the
methods: used dataset, data augmentation pipeline, and proposed
model implemented. Section [3] presents obtained results. Discus-
sion and conclusion follow in Section [l



2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

2. METHODS

Building upon our previous work [7], the proposed universal acous-
tic estimator is based on a convolutional recurrent neural network
(CRNN) architecture that jointly estimates room acoustic parame-
ters and the SNR. Figure [T]shows the pre-processing pipeline. The
method consists of the following main steps: i) data preparation, ii)
baseline model implementation, iii) proposed neural network im-
plementation, and iv) evaluation of the models.

2.1. Data preparation

A source sound signal z(t) coming from a speaker is subject to
reverberation and noise n(t) when played in a room. The resulting
signal can be expressed as:

y(t) = 2(t) * h(t) + n(t) (1

with h(t) the RIR. The training dataset and test dataset generated in
this work were obtained following Equation[I] Reverberation was
simulated by convolving speech with RIRs. The noise was simu-
lated by adding real, white, or pink noise to the (non)-reverberant
signal. Some speech signals did not present reverberation or back-
ground noise.

Clean speech signals (z(t)) and real background noise signals
(n(t)) were collected from the MUSAN dataset [20]. RIRs (h(t))
were gathered and sorted from online open-source libraries: Ope-
nAirLib, echo-thief, MIT IR Survey, and RWCP. The MUSAN data
was split into 80/20% training and testing subsets, respectively. The
406 collected RIRs were split into 306 used for training and 100 for
testing.

The values of true room acoustic parameters were extracted
from the RIR recordings. They are computed as defined in the Inter-
national Standard of Room Acoustic Measurements, ISO3382 [21]].
Figure[2]shows the distribution of the measured acoustic parameters
from our set of RIRs after it has been balanced. It also highlights
the correlation between T60, DRR, and C50, which can be inter-
preted as the fact that a room with a high reverberation goes along
with lower clarity and direct-to-reverberant ratio; thus, the speech
will be harder to understand.

To compute RT60, the decay curve is extracted from the RIR
using Schroeder integration [22] given below:

$2(t) = N - ?ohz(z)dx

where h? is the squared impulse response, N is the noise power per
unit bandwidth and s? () is the energy. A linear least-squares fit is
then performed on the decay curve from —5dB to —35dB. That
yields RT3q (the time it takes for SPL to drop 30 dB). It is then
extrapolated to RTso by multiplying by a factor of 2.

DRR, C50 and C80 ratios were extracted from RIR measure-
ments using the following equations, using respectively ¢ = 2.5ms,
t = 50ms and t = 80ms:

X, = 1010g Jo 12T
¢ = 1Ulog ———5—~-—
ft[ms] h2(7)dr
where h is the sound pressure level and X the parameter.
STI was derived from the RIRs using SoundZoneTools [23].
The SNR of each audio sample was selected randomly from -5 to
24 dB, in increments of 1 dB. In order to reach the desired SNR,

[dB]
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the noise signal was generated at a given intensity with respect to
the speech signal. The SNR is defined as:

SNR = 10log %[dB}

where P, is the power of the speech signal and P, is the power of
the background noise.

All audio samples were normalized, each using min-max nor-
malization, assuming that the min of an audio signal corresponds
to silence and thus should be zero: Sporm = S/maz(|S]). Data
were down-sampled to mono-channel 16kHz. The generated speech
files were trimmed to 8 seconds chunks since this duration showed
to be a good compromise between computation time, model com-
plexity, and evaluation score. Mel Frequency Cepstral Coefficients
(MFCC) spectrums were computed and used as inputs to the net-
work for each signal. MFCC features were chosen since they have
proven to give the best results [7]. For our experiments, we used
25ms frame size and 10ms frame steps. The MFCCs were obtained
using Librosa [24].

2.2. Neural Networks

Networks were trained to jointly predict the SNR and five acoustic
parameters: STI, RT60, C50, C80, and DRR. Table|[I]shows the ar-
chitectures of the baseline (CNN) and our proposed model (CRNN).
The baseline [13]] represents the state-of-the-art model for the joint
blind estimation of acoustic parameters. The proposed CRNN out-
performs the CNN baseline when jointly estimating RT60, C50,
C80, DRR. Baseline state-of-the-art methods for STI and SNR esti-
mation were also included in the evaluation.

WADA-SNR (Waveform Amplitude Distribution Analysis)
[15] was used as a baseline for SNR estimation. This algorithm
assumes that a Gamma distribution can approximate the amplitude
distribution of clean speech and that an additive noise signal is
Gaussian. Based on this assumption, the SNR is estimated by ex-
amining the noise corrupted speech’s amplitude distribution.

For blind STI estimation, the architecture used in [12] was im-
plemented as a baseline. It consists of a deep CNN that takes as
input reverberant speech signals. This network was trained using
simulated RIRs combined with clean speech examples. In contrast
to our work, they did not include noisy signals.

The CNN and CRNN models use the ReLU and ELU activa-
tion functions, respectively. Batch normalization, dropout, and max
pooling methods are used with the Conv2d layers. To optimize the
training process of both models, batch training with the size of 64,
early stopping with patience set to 15, ADAM optimizer [25] with
the learning rate @ = 0.001, and the mean square error loss was
implemented.

2.3. Evaluation metric

The objective is to investigate the estimation error over the SNR
and five acoustic parameters: STI. RT60, C50, C80, and DRR. The
mean square error (MAE) is used to evaluate and compare the mod-
els. For n estimations:

n
MAE = Z 7@”” ~ Yerue| ,[s or dB]

< n
i=1
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Figure 1: Overall acoustic parameter estimation pipeline. Preparation of the true parameters is described in Sec. The actual parameter
estimation of testing audio includes only the MFCCs calculation and CRNN inference.
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Figure 2: Distribution of the true (measured) acoustic parameters.

3. RESULTS

Table [2] shows the evaluation of the joint blind estimators of the
SNR and the five acoustic parameters (STI, DRR, RT60, C50, C80).
Moreover, Table 2] compares the MAE in estimating the SNR and
STI using the joint estimators to their estimation using WADA-SNR
[[15]) and the STT baseline [[12]], respectively. The best estimation for
each parameter is highlighted in bold. Figure 3] shows the CRNN
model’s performance to estimate DRR, T60, C50, and C80. Figure
E|compares the performance of our proposed model and the baseline
models for STI [[12] and SNR [15] estimation. All the models were
tested on test speech signals.

The proposed CRNN outperforms the rest of the models for
all the parameters considered. We see that the acoustic estimates
degrade with more challenging environments (e.g., smaller STI or
higher T60). On the other hand, the SNR prediction degrades for
lower background noise (higher SNR). The network was trained us-
ing noisy and non-noisy signals. The non-noisy signals could be
confused with signals that present low noise levels, which might
explain a “worse* prediction for high SNR values.

Table 2: Speech MAE obtained with proposed estimators.

Table 1: Model architectures of the baseline [13]] and our proposed
CRNN. The output classes are STI, SNR, RT60, C50, C80, and
DRR. “C* stands for Conv2D, “G* for GRU, and “D* for Dense
layers.

(size) / (kernel size, number of filters)
Model | Baseline CRNN
layers #1.66M #369K
1 C(5, 256) C(3,64)
2 C(5, 256) C(3, 128)
3 D(64) C(3, 128)
4 D) C(3, 128)
5 - G(32)
6 - G(32)
7 - D(128)
8 - D(64)
9 - D)

Method SNR STI DRR | T60 | C50 | C80
[dB] [dB] | [s] | [dB] | [dB]
WADA-SNR | 4.69 - - - - -
STI baseline - 0.091 - - - -
CNN 2.17 | 0.036 | 298 | 0.24 | 6.28 | 7.20
CRNN 1.98 | 0.033 | 291 | 0.21 | 595 | 6.60

3.1. Robustness to noise

Table 3] compare the Mean Absolute Error in estimating the acous-
tic parameters (STI, DRR, T60, C50 and C80) for different SNR
ranges. It can be seen that the acoustic estimates slightly degrade
in environments with higher background noise. SNR values smaller
than 0 dB imply that there is more noise than speech signal. This
can affect the model’s performance. Nevertheless, the prediction is
robust for all SNR conditions.
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Figure 3: CRNN model performance for joint blind estimation on a noisy and reverberant speech. The red line indicates the ideal estimation,
the blue line indicates the average estimation of the model, and the blue shade indicates the standard deviation of the prediction.
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Figure 4: This figure shows a comparison of the proposed and base-
line models. The top picture includes WADA-SNR baseline [15]],
and the bottom one plots STI baseline [[12]. The red lines indicate
the ideal estimation. The blue lines indicate the average estimation
of the CRNN model. The yellow line indicates the average estima-
tion of the baseline models, and the shade of the respective colors
indicates the standard deviation of the prediction.

Table 3: Speech MAE on acoustic parameters estimation with
CRNN for different SNR values in [dB].

STI DRR | T60 C50 C80
Range SNR [dB] | [s] | [dB] | [dB]
(-6, -1] 0.041 3.68 0.24 | 7.93 8.95
(-1,4] 0.034 2.98 0.23 6.40 7.18
4, 9] 0.032 2.91 0.23 5.93 6.58
9, 14] 0.030 2.70 0.20 | 5.59 6.18
(14, 19] 0.031 2.80 0.20 | 5.53 6.18
(19, 24] 0.030 3.68 0.20 | 5.31 5.81

4. DISCUSSION AND CONCLUSION

In this work, we have proposed the universal acoustic environment
estimator — an end-to-end method to blindly and jointly estimate
the signal-to-noise ratio (SNR) and five acoustic parameters from a
noisy reverberant audio recording. This first version estimates re-
verberation time (RT60), direct-to-reverberant ratio (DRR), clarity
(C50 and C80), and speech transmission index (STI). The speech,
noise, and RIR samples were carefully split for training and test-
ing, and a mixture of datasets has been used. Moreover, different
types of background noises were considered (real, white, and pink).
This ensures the validity of the results and our algorithm’s robust-
ness against noise and unseen examples. It has been shown that
the estimation of the room acoustic parameters (STI, T60, C50, and
C80) is robust to different types and levels of noise. Similarly, the
SNR estimation is robust to reverberant speech audio signals. We
have confirmed our hypothesis that multi-task model training out-
performs individual predictors for the SNR and STI parameters, and
CRNN has been consistently better than CNN.

Besides, the CRNN model has almost five times fewer param-
eters than the baseline CNN model. Therefore, it is more suitable
for embedded platforms. The proposed algorithm could be used in
an application to provide real-time feedback on speech, similarly to
the proposed in [5)|. The user could benefit from this feedback to ad-
just the recording setup to improve the quality of voice recordings
and remote presentations within others. The universal room acous-
tic estimator is released as a Code Ocean [26|] Python/TensorFlow
capsule [27].
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